26
Fagin’s 0/1 Law for FO
•Theorem
  For every f 2 FO, either m(f) = 0 or m(f) = 1.
•
•Proof. 
•Case 1:  R ˛ f.  Then there exists m extension axioms s.t. t1, …, tm ˛ f.  Then mn(f) ¸ mn(t1 Ć … Ć tm) ! 1
•Case 2: R 2 f.  Then R ˛ : f, hence m(: f) = 1, and m(f) = 0