
Dirac Notation and Basic Linear Algebra for Quantum Computing

Dave Bacon
Department of Computer Science & Engineering, University of Washington

“Mathematicians tend to despise Dirac notation, because it can prevent them from making important distinctions,
but physicists love it, because they are always forgetting such distinctions exist and the notation liberates them from
having to remember.” - David Mermin

In quantum theory, the basic mathematical structure we deal with is a complex Hilbert space. A complex
Hilbert space is a complex vector space with an inner product and which is also complete with respect to the norm
defined by the inner product (complete here means that every Cauchy sequence of vectors converges to a vector
where convergence is measured by the norm.) In quantum computing we will be dealing almost exclusively with
the case where this Hilbert space is the vector space of complex N dimensional vectors, CN and the inner product
between the vectors v = [v0 v1 · · · vN−1]T and w = [w0 w1 · · · wN−1]T (here T denotes transpose so we are writing
the vectors as “column” vectors) is given by

〈w, v〉 =
N−1∑
i=0

w∗
i vi (1)

Here I’d like to introduce you to the Dirac bra-ket notation. Generally this notation can be used form any complex
Hilbert space (and really in even more general settings, but we certainly won’t need to worry about this) but since
we will be dealing with the vector space CN and the above inner product, it is useful to introduce this notation and
show what it explicitly corresponds to in this complex Hilbert space.

Kets: Vectors in a complex Hilbert space are denoted in the bra-ket notation by kets. Let’s call our Hilbert space
H. Then we denote a vector in this space as a ket |v〉 ∈ H. When the vector space we are dealing with is CN , then
|v〉 is nothing more than an ordered n-tuple of complex numbers. In particular we will find it useful to think about
|v〉 as a column vector of N complex numbers:

|v〉 ↔


v0

v1

...
vN−1

 (2)

vi ∈ C. We can do everything with kets that we can do with vectors: we can add them |v〉 + |w〉, multiply them by
a scalar α|v〉, etc. Now there is a special vector in a vector space, the zero vector. For the zero vector we will never
write it as |0〉 (you’ll see why soon.) Instead we will always just write it as 0, so |v〉+ 0 = |v〉.

Bras: Recall that for a vector space V we can define it a dual vector space, V ∗. This is the space of linear functionals
on V : i.e. scalar-valued linear transformations on V . What does this mean? Well it means that an element of the
dual space takes a vector and turns it into a complex number (functional on V). Further this transform is linear,
meaning we can add these transforms and multiply them by a scalar. Elements of the dual vector space for a Hilbert
space H are written as “bra”s: 〈w| ∈ H∗. When we are dealing with CN and the above inner product, then bras are
nothing more than row vectors:

〈w| ↔ [w0 w1 · · · wN−1] (3)

Further for Hilbert spaces, for every ket |v〉, there is a unique bra 〈v|. In CN , the bra corresponding to a ket is
obtained by taking the conjugate transpose (and vice versa):

|v〉 =


v0

v1

...
vN−1

 ⇔ 〈v| =
[
v∗0 v∗1 · · · v∗N−1

]
(4)

Inner product: Recall that a Hilbert space has an inner product. In bra-ket notation we denote the inner product
between the vector |v〉 and the vector |w〉 by 〈v, w〉 = 〈v|w〉. Notice that when we treat bras as row vectors and kets

2

as column vectors, then this inner product is just standard matrix multiplication:

〈v|w〉 =
[
v∗0 v∗1 · · · v∗N−1

]


w0

w1

...
wN−1

 =
N−1∑
i=0

v∗i wi (5)

Notice that (〈v|w〉)∗ = 〈w|v〉.
Computational Basis: Recall that a generating set for a vector space is a finite set of vectors such that every vector

in this space can be written as a linear combination of these vectors, i.e. if {|ei〉} is a generating set for H, then every
element of H can be expressed as

∑
i vi|ei〉. A set of vectors {|ei〉} is linearly independent if

∑
i vi|ei〉 = 0 only if

vi = 0 for all i. A basis is a generating set of vectors which are all linearly independent.
In our model of an information processing machine, our memory cells had configurations chosen from some fixed

alphabet. We will always choose this alphabet to be {0, 1, . . . , N − 1}. The relevant Hilbert space for our memory
cell is the vector space CN with our standard inner product. Then a very important basis for this space is the
computational basis corresponding to being in a configuration with probability unity. The computational basis is
labelled {|0〉, |1〉, . . . , |N − 1〉}. When we translate these over to CN , these will just be column vectors with a single
nonzero element equal to 1:

|0〉 =


1
0
0
...
0

 , |1〉 =


0
1
0
...
0

 , · · · |N − 1〉 =


0
0
0
...
1

 (6)

Since this is a basis, we can express every vector as a sum over these vectors:

|v〉 =
N−1∑
i=0

vi|i〉 (7)

Notice that we have put a variable inside of the ket which is summed over the appropriate range of integers. We will
do this a lot, so it is best to get used to this: |i〉 is the ith computational basis state.

Finally we can, using the fact that every ket has a corresponding bra, also construction the computational basis for
the bras {〈0|, 〈1|, . . . , 〈N − 1|} and expand any bra in terms of this basis

〈w| =
N−1∑
i=0

wi〈i| (8)

Further we note that the computational basis is a orthonormal basis. That is each basis element is orthogonal and
each has a norm of unity. We express this as

〈i|j〉 = δi,j =
{

1 if i = j
0 otherwise (9)

Outer products: Another useful way to use bras and kets is to construct, instead of an inner product, outer products.
This is an expression like |v〉〈w|. When we port this over to CN this simply becomes a N dimensional linear operator:

|v〉〈w| =


v0

v1

...
vN−1

 [
w∗

0 w∗
1 · · · w∗

N−1

]
=


v0w0∗ v0w

∗
1 · · · v0w

∗
N−1

v1w0∗ v1w
∗
1

...
...

. . .
...

vN−1w0∗ · · · · · · vN−1w
∗
N−1

 (10)

Outer products which involve only computational basis states are especially nice to use because then the linear
operator expressed in the computational basis has just a single non-zero element equal to unity. We can thus express
any linear transform as a sum over outer product terms, i.e. as

M =
N−1∑
i,j=0

Mij |i〉〈j| (11)

3

where Mij is the matrix element in the ith row and jth column for the matrix corresponding to the linear transform
M .

Conjugate Transpose: To convert between our column kets and row bras we used the conjugate transpose operation.
This operation for the Hilbert space is the adjoint operation and is written by superscripting † to the expression of
which we wish to take the adjoint. Thus (|v〉)† = 〈v|. Similarly, we can apply this to a linear operator, i.e.N−1∑

i,j=0

Mij |i〉〈j|

†

=
N−1∑
i,j=0

M∗
ji|i〉〈j| (12)

Ordering: As you have seen the order in which we express bras and kets changes how we are using these operators,
i.e. 〈v|w〉 6= |w〉〈v|. However it is always possible to move scalars (complex numbers) through our expressions. Thus
for example |v〉〈v|w〉〈w| = (〈v|w〉)|v〉〈w| since 〈v|w〉 is just a complex number. Further we can ask what happens
to an expression in which we apply the conjugate transpose to the entire expression. In this case the entire order
of the elements is reversed and the conjugate transpose is applied separately to each element. Thus, for example,
(α|v〉〈w|M)† = (M)†(〈w|)†(|v〉)†(α)† = M†|w〉〈v|α∗ = α∗M†|w〉〈v| where in the second to last step we have used that
conjugate transposing a scalar is just complex conjugation and in the last step we have pulled the complex number
α∗ through the entire expression.

We can now see why we often express linear transforms in the outer product form. To see why this is nice, consider
the linear transform M =

∑N−1
i,j=0 Mij |i〉〈j| acting on |v〉 =

∑N−1
k=0 vk|k〉. This is

M |v〉 =
N−1∑
i,j=0

Mij |i〉〈j|
N−1∑
k=0

vk|k〉 =
N−1∑

i,j,k=0

Mijvk|i〉〈j|k〉 =
N−1∑

i,j,k=0

Mijvk|i〉δj,k =
N−1∑
i=0

N−1∑
j=0

Mijvj

 |i〉 (13)

The bra-ket notation is handy because it allows us to perform manipulations even more complicated than this is a
fairly simple manner. Of course, after a while you get to be old hat at this and it is just a second language. And
then you learn that there are even more interesting notations which you can learn (see for example the diagramatic
methods of Roger Penrose and others.)

Completeness: For completeness, it is often useful to express the identiy transform in outer product form. This is
just the simple formula

I =
N−1∑
i=0

|i〉〈i| (14)

Types of Linear Transforms: We won’t review all of linear algebra here, but it is useful to recall the different types of
linear transforms. In particular we will focus on linear transforms from a vector space to itself (i.e. the corresponding
matrix representation is a square matrix.) First recall that a transform M is “hermitian” if M† = M . A transform
is “normal” if M†M = MM†. Notice that hermitian transforms are always normal. A transform whose inverse is its
adjoint, U†U = I, is a “unitary” transform. Unitary transforms are normal. A transform whose square is equal to
itself, M2 = M is a “projector”.

Eigensystems: Recall that if M |v〉 = λv|v〉, then |v〉, nonzero, is an eigenvector of M with eigenvalue λv (which
is just a complex number.) Sometimes it is possible to find dim(M) eigenvectors which form a basis for H. In this
case, we say that M is diagonalizable. If {|φi〉} is such a basis with |φi〉 being an eigenvector with eigenvalue λi,
then we can express M as M =

∑N−1
i=0 λi|φi〉〈φi|. A fundamental theorem of linear algebra says that an operator

is diagonalizable if and only if it is normal. This is a good time to remind you that not all linear transforms are
diagonalizable! Further recall that hermitian transforms always have real eigenvalues. In fact, when we say the word
hermitian, the next words out of our mouth are almost always “diagonalizable” and sometimes “real eigenvalues.”

What about the eigenvalues of unitary matrices? Suppose |v〉 is an eigenvector of a unitary matrix U with eigenvalue
λv. Then since U†U = I we find that 〈v|U†U |v〉 = 〈v|v〉 so 〈v|λ∗vλv|v〉 = 〈v|v〉. Thus since |v〉 is not the zero vector,
λ∗vλv = 1 or |λv|2 = 1. This implies that |λv| is a complex root of unity: λv = exp(2πiνv) for some real 0 ≤ νv < 2π.

Positive operators: A transform is positive if 〈v|M |v〉 is real and is greater than or equal to zero for all vectors |v〉.
If 〈v|M |v〉 is always greater than zero for |v〉 6= 0, then we say that the matrix is positive definite. Positive operators
are necessarily Hermitian.

Polar decomposition: It is easy to show that M†M is always positive. Thus we can diagonalize M†M : M†M =∑
i λi|φi〉〈φi|. Since λi ≥ 0 we can then define the square root of M†M by taking the square roots of these eigenvalues:√
M†M =

∑
i

√
λi|φi〉 = langleφi|. The polar decomposition theorem states that every matrix M can be expressed

as the product UP where U is a unitary matrix and P is positive and in fact is equal
√

M†M .

4

Singular valued decomposition: Using the polar decomposition theorem and the fact that positive matrices are
diagonalizable, the singular valued decomposition states that every M can be decomposed as UDV where U and V
are unitary and D is a diagonal matrix. Thus while it is not always possible to diagonalize every matrix, it is always
possible to produce a singular valued decomposition of the above form.

Tensor products: Tensor products usually give people fits when they are first learning about quantum computation.
Suppose we have two Hilbert space H1 and H2. Then we can form a new Hilbert space, which is the tensor product
of these two Hilbert spaces, H = H1 ⊗ H2. Suppose that a basis for H1 is {|i〉} and a basis for H2 is {|j〉}. Then
a basis for H = H1 ⊗ H2 is {|i〉 ⊗ |j〉. In particular a vector in H can be expanded as |v〉 =

∑
i,j vi,j |i〉 ⊗ |j〉. At

this point it is useful to note that some vectors in H can be expressed as |v〉 ⊗ |w〉, but that not all vectors can be
expressed in this manner. For example if H1 = H2 with the relevant vector space spanned by |0〉 and |1〉, then the
vector |0〉 ⊗ |0〉+ |1〉 ⊗ |1〉 cannot be expressed as |v〉 ⊗ |w〉.

Since H = H1 ⊗ H2 is a new Hilbert space, we can consider all of the things we normally consider on this new
Hilbert space. For example we can talk about linear transform on this Hilbert space. Just as sometimes we can
think of vectors in H as one vector in H1 tensored with one vector in H2, some of the linear transforms on H can be
expressed as A⊗B. Note that A⊗B|v〉 ⊗ |w〉 = (A|v〉)⊗ (B|w〉).

Commutator and Anticommutator: The commutator of two matrices A and B is denoted [A,B] and is equal to
AB −BA. The anticommutator of two matrices A and B is denoted {A,B} and is equal to AB + BA.

Trace: The trace of a matrix M is defined to be the sum of its diagonal elements Tr(M) =
∑

i Mii. The trace
satisfies Tr(A + B) = Tr(A) + Tr(B) and Tr(AB) = Tr(BA). It is also useful to note that Tr(A|v〉〈v|) = 〈v|A|v〉.

