
CSE 599d - Quantum Computing
Stabilizer Quantum Error Correcting Codes

Dave Bacon
Department of Computer Science & Engineering, University of Washington

In the last lecture we learned of the quantum error correcting criteria and we discussed how it was possible for us to
digitize quantum errors. But we didn’t talk about any concrete codes, the talk was in many ways very existential on
these things called quantum error correcting codes. Of course we saw in Shor’s code that such codes could exist for
single qubit errors. In this lecture we will introduce a very handy set of tools for describing a class of quantum error
correcting codes. This formalism is called the stabilizer formalism. Further with stabilizer codes we can also begin
to discuss an important topic, which is not just doing quantum error correction, but also we can begin to discuss
quantum gates on these codes and this will eventually lead us to the issues of fault-tolerant quantum computation.

I. ANTICOMMUTING

Suppose that we have a set of states |ψi〉 which are +1 eigenstate of a hermitian operator S, S|ψi〉 = |ψi〉. Further
suppose that T is an operator which anticommutes with S, ST = −TS (T is not zero.) Then it is easy to see that
S(T |ψi〉) = −TS|ψi〉 = −(T |ψi〉). Thus the states T |ψ〉 are −1 eigenstates of S. Since the main idea of quantum
error correction is to detect when an error has occurred on a code space, such pairs of operators S and T can be used
in such a manner: if we are in the +1 eigenvalue subspace of S then an error of T on these subspaces vectors will
move to a −1 eigenvalue subspace of S: we can detect that this error has occurred.

In fact, we have already seen an example of this in the bit flip code. Recall that we noted that the code subspace
for this code was spanned by |000〉 and |111〉 and that these two operators are +1 eigenstates of both S1 = Z ⊗Z ⊗ I
and S2 = Z ⊗ I ⊗Z. Further note that (X ⊗ I ⊗ I)S1 = −S1(X ⊗ I ⊗ I) and (X ⊗ I ⊗ I)S1 = −S2(X ⊗ I ⊗ I). Thus
if we start out in the +1 eigenvalue subspace of both S1 and S2 (like the bit flip code), then if a single bit flip occurs
on the first qubit, we will now have a state which is in the −1 eigenvalue subspace of both S1 and S2. This at least
fulfills our requirement that our errors should take us to orthogonal subspaces.

More generally, considering the following situation. Suppose that we have a set of operators Si such that our code
space is defined by Si|ψ〉 = |ψ〉 for |ψ〉 in the code subspace. Now suppose that we have errors Ei such that the
products E†

kEl always anti-commutes with at least one Si. Recall the quantum error correcting criteria was

〈φi|E†
kEl|φj〉 = Cklδij (1)

Since the codewords are +1 eigenvalue eigenstates of Si, we find that

〈φi|E†
kEl|φj〉 = 〈φi|E†

kElSi|φj〉 (2)

Suppose that Si is one of the particular Sis that anticommute with E†
kEl. Then this is equal to

〈φi|E†
kEl|φj〉 = 〈φi|E†

kElSi|φj〉 = −〈φi|SiE
†
kEl|φj〉 (3)

But, since Si acts as +1 on the codespace, this is just

〈φi|E†
kEl|φj〉 = 〈φi|E†

kElSi|φj〉 = −〈φi|SiE
†
kEl|φj〉 = −〈φiE

†
kEl|φj〉 (4)

This implies that

〈φi|E†
kEl|φj〉 = 0 (5)

Thus we have shown that, given the Si and E†
kEl which properly anticommute with these Si, the set of errors {Ek}

satisfies the quantum error correcting criteria and therefore the code space is a valid quantum error correcting code
for these errors.

This trick, of defining the states as being the +1 eigenstates of some operators and then noting that if the product
of error terms anticommute then this is a valid quantum error correcting code is at the heart of the reason we use the
stabilizer formalism. But what should we use for the Sis? Well, you might already be guessing what to use, because
you recall that the Pauli group has nice commuting, anticommuting properties and eigenvalues that are ±1 (or ±i.)
Indeed this is what we will use.

2

II. THE PAULI AND STABILIZER GROUPS

A. Pauli Group

First recall the definition of a group. A group is a set of objects G along with a binary operation of multiplication
which satisfies (0) [closure] g1g2 ∈ G for all g1, g2 ∈ G, (1) [associativity] g1(g2g3) = (g1g2)g3 for all g1, g2, g3 ∈ G, (2)
[inverse] There exists an element e ∈ G such that for all g1 ∈ G, g1e = g1, (3)[inverse] for every g1 ∈ G there exists an
element g2 ∈ G such that g1g2 = e, which we call the inverse of g1, written g2 = g−1

1 . The Pauli group is a particular
group which satisfies these group axioms. Actually people in quantum computing are very sloppy and when they refer
to the Pauli group usually refer to a particular representation of the Pauli group by unitary matrices. We will slip
into this nomenclature soon enough, having learned a bad habit it is hard to go back.

What is this representation of the Pauli group, Pn? Recall that the Pauli operators on a single qubit are {I,X, Y, Z}.
The representation of the Pauli group we will deal with is the group formed by elements of the form ikP1⊗P2⊗· · ·⊗Pn

where each Pi is an element of {I,X, Y, Z}. From this representation, we see that the Pauli group is a nonabelian
group, i.e. the elements of the group do not all commute with each other. Some important properties of elements of
the Pauli group:

1. Elements of the Pauli group square to ±I: P 2 = ±I.

2. Elements of a the Pauli group either commute PQ = QP or anticommute PQ = −QP .

3. Elements of the Pauli group are unitary PP † = I

B. Stabilizer Group

Define a stabilizer group S is a subgroup of Pn which has elements which all commute with each other and which
does not contain the element −I. An example of a stabilizer group on three qubits is the group with elements
S = {III, ZZI, ZIZ, IZZ}. Notice that here we have dropped the tensor product between the elements, i.e. ZZI =
Z ⊗ Z ⊗ I. We usually don’t specify all of the elements of the stabilizer group. Instead we specify a minimal set of
generators. A set of generators of a group is a set of elements of the group such that multiplication of these generators
leads to the full group. A minimal set of such generators is a set of generators of minimal size which has this property
(there may be multiple such sets.) In the example of S = {III, ZZI, ZIZ, IZZ}, this group is generated by ZZI and
ZIZ: (ZZI)(ZIZ) = IZZ and (ZZI)2 = III. We write this fact as S = 〈ZZI, ZIZ〉. For a stabilizer S we write a
set of minimal generators as S1, S2, . . . , Sr.

Now since −I is not in a stabilizer, all elements of our stabilizer must square to +I. Operators which square to +I
must have eigenvalues +1 or −1. Since S is abelian, we can write a generic element of the stabilizer as Sa1

1 Sa2
2 · · ·Sar

k .
Since S2

i = I, ai ∈ {0, 1}. Further for each a ∈ Zr
2 the elements of the stabilizer so specified is unique. Suppose that

this was not true, that Sa1
1 Sa2

2 · · ·Sar

k = Sb1
1 S

b2
2 · · ·Sbr

k for a 6= b. Then Sa1+b1
1 Sa2+b2

2 · · ·Sar+br

k = I. But this is only
true if ai = bi.

C. Stabilizer Subspace and Error Correction

Now given a stabilizer group S, we can define a subspace on our n qubits. In particular we define this subspace as
all states |ψ〉 which satisfy S|ψ〉 = |ψ〉 for all stabilizer elements S ∈ S. Actually we don’t need all of these equations
to define the code space. All we need to do is the equations for the generators of the stabilizer: Si|ψ〉 = |ψ〉. Lets
call the subspace defined by these equations HS . Such stabilizer subspace are very nice. One reason the are nice is
that instead of specifying the states of the subspace we can just specify the generators of the stabilizer group. This
is oftentimes much easier. Further, as we shall see, it is easy to figure out the error correcting properties of stabilizer
subspaces.

In particular, suppose we have a stabilizer subspace for a code generated by S1, S2, . . . , Sr. Then suppose the Pauli
operator P anticommutes with one of these generators Si. Then, as above, for |ψi〉 a basis for HS ,

〈ψi|P |ψj〉 = 〈ψi|PSi|ψj〉 = −〈ψi|SiP |ψj〉 (6)

so

〈ψi|P |ψj〉 = 0 (7)

3

Thus, as above, if {Ea} is a set of Pauli group errors, if we consider the products E†
aEb and these anti-commute with

at least one of the generators of S, then we have satisfied the error correcting criteria for these errors:

〈ψi|E†
bEa|ψj〉 = 0 (8)

If these elements are themselves elements of the stabilizer: E†
aEb ∈ S, then

〈ψi|E†
bEa|ψj〉 = 〈ψi|S|ψj〉 = δij (9)

If for an error set {Ea} if all of the products E†
aEb either anticommute with generators of the stabilizer S1, S2, . . . , Sr

or are elements of the stabilizer, then we see the Ea satisfy the quantum error correcting criteria.
In our example where S = 〈ZZI, ZIZ〉, we can consider the set of errors {III,XII, IXI, IIX}. Then the set of

products of these errors is {III,XII, IXI, IIX,XXI,XIX, IXX}. Of these, the first of these III is in the stabilizer.
All of the others, however, anticommute with either ZZI or ZIZ. For example (XXI)(ZIZ) = −(ZIZ)(XXI).
How do we check whether two Pauli group elements commute or anticommute? Suppose these group elements are
P1 ⊗P2 ⊗ · · · ⊗Pn and Q1 ⊗Q2 ⊗ · · · ⊗Qn. Then we count the locations where Pi and Qi differ and neither Pi or Qi

is I. If this number is even, then these two Pauli group elements commute and if it is odd then they anticommute.
If a stabilizer group has a minimal number of generators which is S1, S2, . . . , Sr, what is dimension of the stabilizer

subspace? Well take the first stabilizer generator. This stabilizer generator squares to identity, so has ±1 eigenvalues.
Further this stabilizer generator has trace zero. Why? Well all of the Pauli operators are trace 0 except I which has
trace 2. Since the stabilizer generator can’t be identity (unless the stabilizer consists solely of the identity, a case we
will disregard) it is tensor product of terms, at least one of which must be a Pauli element not equal to I. Then since
Tr[A ⊗ B] = Tr[A]Tr[B], this implies that Tr[P] = 0, for all Pauli group elements. Thus if we take S1 it must have
2n−1 eigenvalues +1 and 2n−1 eigenvalues −1. So S1|ψ〉 = |ψ〉 splits the Hilbert space of our n qubits in half. What
happens when we impose S2|ψ〉 = |ψ〉? Well now, define 1

2 (I + S1). This is the projector onto the +1 eigenvalue
eigenspace of S1. We can thus use 1

2 (I + S1)S2 to understand how much of this subspace has eigenvalues of S2 which
are +1. Note that Tr[12 (I + S1)S2] = 0. Thus we see that for the 2n dimensional subspace that satisfies S1|ψ〉 = |ψ〉,
a subspace of dimension 2n−2 satisfies S2|ψ〉 = |ψ〉. Continuing inductively, we see that each Si|ψ〉 = |ψ〉 cuts the
space of the previous S1|ψ〉 = |ψ〉, . . . , Si−1|ψ〉 = |ψ〉 in half.

What does this mean? This means that the dimension of a stabilizer subspace for a stabilizer with r generators
is 2n−r. It is also useful to notice that the dimension of the subspace with a fixed set of ±1 eigenvalues of the Si

operators are also of dimension 2n−r. For our example of S1 = ZZI and S2 = ZIZ, this implies that the stabilizer
subspace is 2 dimensional, which is correct.

III. LOGICAL OPERATORS FOR STABILIZER CODES

So, given a stabilizer group S generated by r elements, we now know that this specifies a subspace of dimension
2n−r. This subspace can be used to encode k = n − r qubits. Is there a nice way to talk about this subspaces as k
qubits? Indeed there is.

The centralizer of the stabilizer group S in Pn is the set of operators P ∈ Pn which satisfy PS = SP for all
S ∈ S. Since our stabilizer group does not contain −I, it turns out that the centralizer is equal to the normalizer.
The normalizer N of a S in Pn is the set of operators P ∈ Pn such that PSP † ∈ S for all S ∈ S. Notice that the
stabilizer is automatically in the normalizer, since all of the elements of the stabilizer commute with each other and
are all unitary. An important set of operators are those which are in the normalizer N but not in the stabilizer,
N −S. Why is these elements important? Because they represent logical Pauli operators on the k encoded qubits of
our subsystem code.

Let’s see this for an example and then move on to understanding the logical operators in general. Our
example is the stabilizer group generated by S1 = ZZI and S2 = ZIZ. Then elements of N − S are
ik × {XXX,Y Y X, Y XY,XY Y,ZII, IZI, IIZ, ZZZ, Y Y Y,XXY,XY X, Y XX}. Notice that if we take the group
generated by the two operators XXX and ZII, each of these elements is equal to such a group member times an
element of the stabilizer group. What does XXX do to our code space? Well recall that the stabilizer subspace in
this example is spanned by |0L〉 = |000〉 and |1〉L = |111〉. Thus we see that XXX|0L〉 = |1L〉, XXX|1L〉 = |0L〉
and ZII|0L〉 = |0L〉, ZII|1L〉 = −|1L〉. In other words XXX acts like an encoded X operation on the subspace
and ZII acts like an encoded Z operation on the subspace. Similarly one can calculate that Y XX acts as Y on the
code subspace. Also notice that these operators preserve the code subspace. Now since all the other elements of the
normalizer are either stabilizer elements or products of stabilizer elements, they will also preserve the code subspace.

Following this example, we are motivated to define the group N/S. This is the normalizer group quotient the
stabilizer. We can write every element of N as RS where S is a stabilizer element and R is not. Then multiplication

4

of these elements is like R1S1R2S2 = (R1R2)(S1S2). This defines a multiplication rule for the Ris. This group is the
group N/S. It is possible to show that this group is equal to the Pauli group of size k = n − r. This means that
it is possible to generate this group by a set of Pauli operators X̄1, Z̄1, . . . , X̄k, Z̄k (along with a phase ikI). These
operators are the encoded Pauli operators on the subspace. (One thing to note is that this choice of division into k
different qubits is not unique. However we will rarely deal with the case where there is more than one encoded qubit,
so this won’t matter much for us.)

Elements of N represent non-trivial operations on the encoded subspace. They are, then, exactly the type of
operators whose action we cannot detect on our quantum error correcting code. Using this fact, it is possible to
give a very nice characterization of the quantum error correcting criteria. Suppose that we have a stabilizer S with
normalizer N . Let Ea denote a set of Pauli errors on the qubits. Then if E†

aEb /∈ N − S for all possible error pairs,
then Ea is a set of correctable errors. Why is this so? Well there are two cases. One is that E†

aEb is in S. Then
〈φi|E†

aEb|φj〉 = 〈φi|φj〉 = δij since E†
aEb acts trivially on the stabilizer subspace. The other case is that E†

aEb is not
in stabilizer and not in the normalizer. This implies that there must exists an element of the stabilizer S, such that
E†

aEbS 6= SE†
aEb (recall the centralizer and normalizer are the same for stabilizers.) But all elements of the Pauli

group either commute or anticommute. This implies that E†
aEbS = −SE†

aEb. By our previous argument this implies
that 〈φi|E†

aEb|φj〉 = 0.

IV. EXAMPLES OF STABILIZER CODES

Here we present some examples of stabilizer codes.

A. Three Qubit Bit Flip and Phase Flip Codes

The example we have been dealing with, which is generated by ZZI and ZIZ is able to correct a single bit flip.
This code is called the three qubit bit flip code. It’s stabilizer and logical operators are

Element Operator
S1 ZZI

S2 ZIZ

X̄ XXX

Z̄ ZII

Similarly we can construct the code which is designed to correct single phase flip errors. Recall that this code was
related to the bit flip code by a Hadamard change of basis. This implies that it’s stabilizer and logical operators are

Element Operator
S1 XXI

S2 XIX

X̄ XII

Z̄ ZZZ

Now let’s get on to codes than can correct single qubit errors. If a code can correct t errors and encodes k qubits into
n bare qubits, we call it a [n, k, 2t+1] code. We’ve already seen an example of such a single qubit error correcting code,
the Shor code. This is an example of a [9, 1, 3] quantum code. It turns out, since this code is really a concatenation
of the bit flip and phase flip codes, that the Shor code is also a stabilizer code. In fact we see that in the Shor code,
we use three three qubit bit flip codes, plus a single phase flip code on the encoded information. From this it is easy
to deduce what the stabilizer of the Shor code is.

5

Element Operator
S1 ZZIIIIIII

S2 ZIZIIIIII

S3 IIIZZIIII

S4 IIIZIZIII

S5 IIIIIIZZI

S6 IIIIIIZIZ

S7 XXXXXXIII

S8 XXXIIIXXX

X̄ XXXXXXXXX

Z̄ ZZZZZZZZZ

Notice that this is a degenerate code for single qubit errors: operators like ZZIIIIIII act as identity on the code
space even though they are products of two single qubit errors.

Now the nine qubit code that Shor came up with is a rather large code (although it has a certain beauty to it in
its simplicity.) What is the smallest code which can correct a single qubit error? This code is the five qubit quantum
error correcting code. It is specified by

Element Operator
S1 XZZXI

S2 IXZZX

S3 XIXZZ

S4 ZXIXZ

X̄ XXXXX

Z̄ ZZZZZ

Notice that this code has stabilizer generators which are related to each other by a cyclic shift of the qubits. This
makes it rather easy to remember its stabilizer. The five qubit code is notable in that it is not an example of a CSS
code (Calderbank, Shor, Steane): it is not possible to write its generators as operators which consist of all X or all
Z (and I) operators. This complicates things for this code when we look at the issue of fault-tolerance, so while this
is a nice code, it isn’t as nice as we would like. The five qubit code is a [5, 1, 3] code. It is useful to test your ability
to spot when elements of the Pauli group commute or anticommute on the five qubit code, since it has nontrivial
stabilizer elements.

Probably the most studied code and one of the easiest to work with is the Steane code. This is a [7, 1, 3] code. It
has the stabilizer

Element Operator
S1 IIIXXXX

S2 IXXIIXX

S3 XIXIXIX

S4 IIIZZZZ

S5 IZZIIZZ

S6 ZIZIZIZ

X̄ XXXXXXX

Z̄ ZZZZZZZ

The Steane code is nice since it is a CSS code. We will use it in a lot of our examples since it has some very nice
properties and is easy to discuss but not so big as to disallow us writing down statements about it in explicit form.

V. MEASUREMENT OF PAULI GROUP PROJECTORS

Now that we have defined stabilizer codes, it is useful to discuss how to use them in practice. On essential task we
will need to perform is to be able to make a projective measurement onto the +1 and −1 eigenvalue eigenspaces of a

6

general Pauli operator P which squares to identity P 2 = I. How do we do this? Well we’ve already basically see a
trick for doing this. Consider the following circuit:

P

|+〉 • H FE
(10)

What is the effect of this circuit? Well we can calculate that if our measurement obtains the result |0〉, then the
measurement operator we are measuring on the first qubit is

M0 = 〈0|BU |+〉B =
1
2
(I + P) (11)

and if the measurement outcome is |1〉 then the measurement operator is

M1 = 〈1|BU |+〉B =
1
2
(I − P) (12)

Thus we see that this circuit can be used to make a projective measurement onto the +1 and −1 eigenvalue eigenspaces
of P . This is a very useful primitive for stabilizer codes. Notice, that unlike in our introduction to error correction
codes, here in order to make a measurement we need to attach an ancilla qubit and this ancilla qubit will have
the result of the measurement in this ancilla qubit. Further note that the measurement is not destructive on the
original qubit, in the sense that while the measurement projects onto the subspaces, it leaves the resulting state in
the appropriate subspace.

VI. ERROR RECOVERY ROUTINE FOR STABILIZER CODES

Given a stabilizer code, how do perform a procedure which performs quantum error correction?
Well suppose that we have a set of Pauli errors Ea which are correctible via the error correcting routine. Now we

know that there must be a recovery routine for these errors. What is this recovery routine?
The first possibility for an error Ea is that it is in the stabilizer. In this case there is no need to perform quantum

error correction, since the effect of a stabilizer operator on our encoded quantum information is identity Ea|ψ〉 = |ψ〉.
So that case was easy! A second case is that Ea is not in the stabilizer. Now we know that Ea, since it satisfies the
error correcting criteria, must take us to an orthogonal subspace. What is this orthogonal subspace? Well suppose
that the stabilizer generators are S1, . . . , Sr. The if Ea is a correctable error not in the stabilizer, it will anticommute
with some of these generators Si. For these generators, the state Ea|ψ〉 will no longer be in the +1 eigenvalue subspace,
but will be in the −1 eigenvalue eigenspace. To see this simply note that that SiEa|ψ〉 = −EaSi|ψ〉 = −Ea|ψ〉 for
|ψ〉 ∈ HS . Further if Ea commutes with Si, then it does not change the eigenvalue of Si. Thus we see that the subspace
the error sends us to is labelled by the ±1 eigenvalues of the stabilizer operators. Thus to perform quantum error
correction on a stabilizer code, it is enough to make measurements which project onto the ±1 eigenvalue eigenspaces
of the stabilizers. From this information, one can deduce what the error was and then apply an appropriate recovery
operation. We call the values of the measured stabilizer generators the syndrome of the error. Now having diagnosed
what the error is by measuring the syndrome, one then applies the appropriate Pauli operator to reverse the error.
One interesting fact is that, for degenerate codes, there are often multiple errors corresponding to a syndrome. In
this case, however one just reverses one of these errors and, one is guaranteed that the net effect of this procedure is
to either apply I or a stabilizer element, which is the same as applying I to the code space.

Now how do we perform a measurement onto the ±1 eigenvalue eigenspace of the Si operators? Well we can
measure them using the circuit described above for measuring Pauli operators. Another important fact to note is
that, since the stabilizer generators all commute with each other, measurements which project onto their eigenstates

7

can be simultaneously performed. Here, for example, is the syndrome measurement circuit

X Z

X Z

X X Z Z

X Z

X X Z Z

X X Z Z

X X X X Z Z

|+〉 • H FE
|+〉 • H FE
|+〉 • H FE
|+〉 • H FE
|+〉 • H FE
|+〉 • H FE

(13)

The top seven qubits are the encoded qubits. The bottom six qubits are the ancilla registers which will hold the
syndrome operators.

VII. PREPARATION AND MEASUREMENT OF STABILIZER STATES

How do we prepare a stabilizer state? Well this is rather easy. For example, suppose we just prepare the |0n〉 state
for our bare, unencoded qubits. Now if we measure the syndrome, and apply the error correcting recovery procedure,
then we are guaranteed to be in the code subspace. Now if, say we have one encoded qubit, we can measure in the
encoded |0〉, |1〉 basis by measuring the eigenvalues of the Z̄ operator (using the tricks we learned above.) If this
outcome is +1 we have prepared the encoded |0〉 state. If this outcome is −1 then we have prepared the encoded |1〉
state and application of the X̄ operator will then turn this into the |0〉 state. For multiple encoded qubits a similar
procedure can be enacted. Thus we have seen how to prepare encoded stabilizer states starting in, say, the encoded
+1 eigenstates of the Z̄ operator. Similar procedures apply for preparation of eigenstates of the other encoded Pauli
operators. Thus we have seen how to prepare these simple states.

What about more general states? Well those will be harder. We will discuss some particular examples of these
preparation procedures when we talk about fault-tolerant quantum computation.

And a further note. We could also ask how to take a generic unencoded qubit and then design a circuit for encoding
into a stabilizer code. But this primitive: encoding into a code, is not a very useful one for our purposes (building a
quantum computer.) Why? Well because we really don’t ever want to work with unencoded quantum computation.
We always want to work with encoded quantum information. Every once in a while you will come across an argument
against quantum computing which discusses a decoherence mechanism which always leads to err on a single qubit.
Such arguments miss the point, simply because we don’t ever work with quantum information in a single qubit: we
always work with encoded quantum information.

Finally we can ask how do we perform measurements on our stabilizer states. In particular suppose we have k
qubits and we want to measure in the encoded computational basis. Then we can do this by performing our Pauli
measuring circuit for the encoded operators Z̄i. It is thus simple to see how to measure encoded Pauli operators on
our qubits.

So we have seen how to prepare computational basis states, and measure computational basis states for our encoded
information. The next obvious question is how do we perform quantum computation, i.e. unitary gates, on our encoded
quantum information. We will take this up in the next section.

8

VIII. GATES ON STABILIZER CODES

How do we perform unitary transforms on quantum information encoded into a stabilizer code? Well in some sense
this question is trivial: just define unitary operations which carry out the desired unitary on the encoded subspace.
On the other hand, this observation is not very useful for reasons that will become apparent when we talk about
fault-tolerant quantum computation. This here we will discuss a particularly beautiful and useful set of gates which
we can implement on our stabilizer code.

Actually we’ve already seen some encoded operations on our code: the Pauli operators on our code. These operations
were enacted on our encoded quantum information by the application of some Pauli group element. But in this section
we will go beyond these simple gates.

A. The Clifford Group

Consider our Pauli group on n qubits, Pn. This is a subgroup of the unitary group on n qubits, U(2n). An
important group, and we’ll see why in a second, is the Clifford group (in an abuse of mathematical nomenclature I
won’t even begin to try to undo.) The Clifford group is the normalizer of the Pauli group in the unitary group on n
qubits. In other words, it is the group of operators N which satisfy NPN† ∈ Pn for all P ∈ Pn. What is an example
of such an operation? Our good friend the Hadamard operator. In fact, we can easily show that

HIH† = I HXH† = Z HYH† = −Y HZH† = X (14)

Thus a Hadamard on a single qubit is an operator in the normalizer of the Pauli group in U(2n). Indeed, multiple
Hadamards are also in this normalizer. What are other examples? Well elements of Pn themselves are obviously in
the normalizer. Perhaps the first really interesting example beyond the Hadamard operator is the controlled-NOT
operation. The effect of the controlled-NOT on Pauli operators is so useful we will write the action down here:

• X •

�������� �������� =
X

X

• •
�������� X �������� =

X

(15)

• Z •

�������� �������� =
Z • •

�������� Z �������� =
Z

Z

(16)

Note that we can deduce the action of conjugating a controlled-NOT about Y operations by simply applying the X
and Z conjugations in turn. Thus we see that the controlled-NOT operation is indeed in the Clifford group.

A great question to ask is what is needed from the Clifford group on n qubits to generate the entire group. In fact,
the Clifford group on n qubits can be generated by H and the controlled-NOT, CX , and one extra gate,

S =

[
1 0
0 i

]
. (17)

Note that this gate acts as SXS† = Y , SY S† = −X, and SZS† = Z.
[insert proof of Clifford gate generation here]

B. Clifford Group Gates on Stabilizer Codes

Suppose that we have a stabilizer code generated by the stabilizer operators S1, . . . , Sr. Now we saw that elements
of the normalizer of the stabilizer group in the Pauli group were logical operators on our stabilizer code. What if we
now examine the normalizer of the stabilizer group, but now not just in the Pauli group, but now in the full unitary
group U(2n). These gates will certainly be in the Clifford group, since the stabilizer group is made up of Pauli group
operators. But now these operations might perform a nontrivial operation on our encoded qubits.

Let’s look at an example. Consider the seven qubit Steane code with generators specified above. Next consider the
operator H⊗7. This operator when conjugated about stabilizer elements will produce another stabilizer element for
the Steane code. How do we see this? Well recall that HXH = Z and vice versa. Now notice that if we conjugate

9

H⊗7 about one of the generators that is made up completely of X operations, then we obtain a new operator which is
made up completely of Z operations. But now notice that there is a symmetry of the Steane code that guarantees that
for the generators of the stabilizer made up completely of X operations, there is an equivalent generator formed by
replacing the X operations with Z operation. Thus we see that on the generators of the stabilizer code, conjugating
by H⊗7 produces a stabilizer generator. Since all stabilizer elements are made as products of stabilizer generators,
this implies that the stabilizer group is preserved under conjugation by H⊗7.

So now the question arises as to what H⊗7 does on our logical encoded qubit? Recall that the logical operators on
the Steane code are X̄ = X⊗7 and Z̄ = Z⊗7. We can then see that H⊗7X̄H⊗7 = Z̄ and H⊗7Z̄H⊗7 = X̄. Thus we
see that H⊗7 acts in the same way on the encoded quantum gates as a single H does on a single Pauli. In fact this
is enough to imply that H⊗7 is exactly the Hadamard gate on our encoded quantum information.

More generally, then, we can consider elements of the Clifford group which, when conjugated about the stabilizer
generators produce elements of the stabilizer. Such elements act to preserve the stabilizer subspace, sinceNSiN

† = Sj ,
and therefore N |ψC〉 = NSi|ψC〉 = NSiN

†N |ψC〉 = SjN |ψC〉. Thus Sj(N |ψC〉) = (N |ψC〉, so again N |ψC〉 is still
stabilized (further note that NSiN

† preserves the group multiplication rule of the stabilizer and thus NSiN
† if N is

in the normalizer are again generators of the stabilizer group.) Further these gates also act on the encoded qubits as
elements of the Clifford group on these encoded qubits.

It is important to note that when it comes to Clifford group elements, not all stabilizer codes were created equal.
In particular implementing different Clifford group elements is often much more difficult on some codes than on other
codes. This fact is one reason for choosing different stabilizer codes.

C. The Gottesman-Knill Theorem

Our discussion of the Clifford group brings out a particularly nice theorem due to Gottesman and to Knill. Suppose
that we have n qubits in the |0〉⊗n state. Now examine the operators Zi which is the Z operator on the ith qubit
tensored with I on all other qubits. Then Zi|0〉⊗n = |0〉⊗n. So if we take our stabilizer to be generated by the Zi,
then this code stabilizes a single state, the |0〉⊗n state. Notice that instead of specifying the state, we could simply
specify the list of operators Zi. Now suppose that we apply Clifford group operators to our state. We could, of course,
check how this changes our state. But then we might end up with states which have exponentially many different
amplitudes and therefore this might quickly become intractable. But notice that if we have a state stabilized by
the n stabilizer generators S1, . . . , Sn, then after the application of a Clifford group operator N , the new state will
be stabilized by a new stabilizer S′1, . . . , S

′
n where S′i = NSiN

†. Why? Well if |ψ〉 is stabilized by the S1, . . . , Sn

operators, then N |ψ〉 = NSi|ψ〉 = NSiN
†N |ψ〉 Or S′i(N |ψ〉) = (N |ψ〉) showing that the new state is stabilized bye

the S′i operators.
Now return to our circuits made up completely of Clifford group gates. Our circuit initially has the stabilizer

Si = Zi. Each Clifford group gate then changes the state to a state stabilized by a new stabilizer. If our circuit
contains small Clifford group gates, or Clifford group gates whose action we can easily update our rules on (in fact
all Clifford group elements have an efficient canonical form, but this result is beyond the scope of our time here) then
we just need to update the stabilizer instead of describing the new generic state. Thus we see that this is an example
of what we encountered when we discussed the role of entanglement in quantum speedups: we can efficiently describe
the state by given n n qubit Pauli operators. This can be done with only 2n2 + 4n bits of classical information.

This is particularly nice, since, we can use Clifford group elements to generate quite nontrivially looking entangled
quantum states. This is the root of the reason we said before that entanglement is necessary for a quantum speedup
over classical computers, but not sufficient. But we can even go beyond just describing the state at any given point
after our applications of the Clifford, we can actually describe the result of measurements in the computational basis
on these states!

How do we do this? Well suppose we want to measure the first qubit, i.e. determine the eigenvalue of Z1 and that
we currently have a state stabilized by S1, . . . , Sn. What we do is we can check whether Z1 commutes or anticommutes
with each of these stabilizer elements. Now if Z1 commutes with all of the elements of the stabilizer, then Z1 or −Z1

is, in fact, in the stabilizer. Then making a measurement of the eigenvalues of Z1 simply corresponds to outputing the
appropriate sign of this stabilizer element. Further note that this measurement does not change thes state, since the
state is an eigenstate of the observable we are measuring. What if Z1 does not commute with some of the elements of
the stabilizer. We can assume, then, that it anticommutes with one of the stabilizer generators and commutes with
the rest, since if a it anticommutes with a two stabilizer elements, Si and Sj , then it commutes with SiSj . Now in
this case, where Z1 anticommutes with one Si what are the probabilities of the outcomes corresponding to the +1
and −1 eigenvalues of Z1? Note that

Pr(+1) = 〈ψ|1
2
(I + Z1)|ψ〉 = 〈ψ|1

2
(I + Z1Si)|ψ〉 = 〈ψ|1

2
(I − SIZ1)|ψ〉 = 〈ψ|1

2
(I − Z1)|ψ〉 = Pr(−1) (18)

10

Thus the probability of the two outcomes are equal to 1
2 . How does the state change after this this outcome? Well

we can describe this new state as being stabilized by the original stabilizer elements that commuted with Z1 plus,
instead of Si, ±Z1 corresponding to the two possible outcomes for our measurement result. Similar results can be
obtained for measuring in the other computational basis elements.

Thus we’ve seen that we can efficiently simulate elements from the Clifford group, starting in the |0〉⊗n state and
then performing measurements in the computational basis. This is, as we noted above, fairly astounding, given that
the states involved in such computations can be pretty nontrivial looking states.

Acknowledgments

The diagrams in these notes were typeset using Q-circuit a latex utility written by graduate student extraordinaires
Steve Flammia and Bryan Eastin.

