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Now that we have seen that quantum error correction is possible, it is interesting to try to formalize a criteria for
why it was possible. In particular we are interested in understanding when it is possible to encode into a subspace
such that, for certain errors on the quantum information, we can fix the quantum information from this error. One
thing to note that is in the first lecture we discussed encoding quantum information from a bare, unencoded qubit,
into a qubit encoded over the subspace. In practice we really want to never do this but instead we want to be able to
prepare an encoded quantum state. We therefore won’t spend much time discussing encoding into a quantum error
correcting code.

I. THE QUANTUM ERROR CORRECTING CRITERIA

Suppose that we have a quantum system which evolves according to some error process which we will represent by
the superoperator D. Now we will assume that this superoperator is given by some operator sum representation

D[·] =
∑

k

Ak[·]A†
k (1)

Now, in general, our codes will not be able to reverse the effect of all errors on our system: the goal of quantum error
correction is to make the probability of error so small that it is effectively zero, not to eliminate the possibility of
error completely (although philosophers will argue about the difference between this two: I’m talking to you Henry
James (easy to pick on a dead guy.)) It is therefore useful to assume that the Kraus operators in the expansion for D
are made up of some errors Ei = Ai, i ∈ S which we wish to correct. This will be a good assumption because the real
error process will contain these terms, which we will then be certain we have fixed, plus the errors which we might
not fix. Thus we may think about D as have Kraus operators, some of which are error Ek and some of which are not.
Define E as the operator,

E [·] =
∑

i

Ei[·]E†
i (2)

Notice that E will not necessarily preserve the trace of a density matrix. This won’t stop us from considering reversing
it’s operation.

Okay, so given E with some Kraus operators Ak we can ask, under what conditions is it possible to design a quantum
code and a recovery operations R such that

R ◦ E [ρC ] ∝ ρC (3)

for ρC with support over the code subspace, HC ⊆ H? Why do we use ∝ here instead of =? Well because E is not
trace preserving now. This means that there may be processes which are occurring in the full D which occur with
some probability and we do not need to preserve ρ on these errors.

Lets call a basis for the code subspace |φi〉. HC = span{|φi〉}. al We will show that a necessary and sufficient
condition for the recovery operations to preserve the subspace is that

〈φi|E†
kEl|φj〉 = Cklδij (4)

where Ckl is a hermitian matrix. This equation is called the quantum error correcting criteria. It tells us when our
encoding into a subspace can protect us from quantum errors Ek. As such it is a very important criteria for the theory
of quantum error correction. Let’s show that this is a necessary and sufficient condition.

A. Sufficiency

Let’s begin with showing that if this criteria is satisfied, we can construct a recovery operation R with the desired
properties.



2

The first thing to do is to change the error operators. Instead of discussing the error operators Ek, define a new
set of error operators Fm =

∑
k umkEk where ulk is a unitary matrix. We saw in a previous lecture that this means

that Fl represents the same superoperator. Now we see that since the Ei satisfy the error correcting criteria,

〈φi|F †
mFn|φj〉 =

∑
k,l

〈φi|u∗
mkE†

kunlEl|φj〉 =
∑
k,l

u∗
mkCklunlδij (5)

Since Ckl is hermitian, it is always possible to choose uij such that it diagonalizes this matrix,

〈φi|F †
mFn|φj〉 = dmδm,nδi,j (6)

with dm ∈ R. Now define the following operators for dk 6= 0

Rk =
1√
dk

∑
i

|φi〉〈φi|F †
k (7)

and if dk = 0 then let Rk = 0. Now we want to show that a recovery superoperator with Rk as it’s Kraus operators
will correctly recover our erred quantum information:∑

k

Rk

∑
l

(
FlρCF †

l

)
R†

k =
∑

k|dk 6=0

1√
dk

∑
i

|φi〉〈φi|F †
k

∑
l

(
FlρCF †

l

) 1√
dk

∑
j

Fk|φj〉〈φj | (8)

If we can show that for ρC = |φm〉〈φn| this produces something proportional to ρC , then we will have shown that the
recovery correctly restores in information in the subspace. Substituting this ρC in, we obtain∑

k|dk 6=0

1
dk

∑
i

|φi〉〈φi|F †
k

∑
l

(
Fl|φm〉〈φn|F †

l

)∑
j

Fk|φj〉〈φj | (9)

Using the quantum error correcting criteria, this becomes∑
k|dk 6=0

1
dk

∑
ilj

|φi〉dkδlkδimdkδlkδjn〈φj | =
∑

k

dk|φm〉〈φn| =

(∑
k

dk

)
ρC (10)

Thus we see that indeed the recovery produces a sate proportional to ρC . Notice that if E is trace preserving, then∑
k dk = 1 and then we recover exactly ρC , as desired.
Now we need to check that Rk forms a valid superoperator. Check,

R =
∑

k

R†
kRk =

∑
k|dk 6=0

1
dk

∑
i,j

Fk|φi〉〈φi||φj〉〈φj |F †
k =

∑
k|dk 6=0

1
dk

∑
i

Fk|φi〉〈φi|F †
k (11)

Now notice, using the quantum error correcting criteria, that this operator is a projector:

R2 =
∑

k|dk 6=0

1
dk

∑
i

Fk|φi〉〈φi|F †
k

∑
k′|dk′ 6=0

1
dk′

∑
i′

Fk′ |φi′〉〈φi′ |F †
k′

=
∑

k|dk 6=0

1
dk

∑
i

Fk|φi〉
∑

k′|dk′ 6=0

1
dk′

∑
i′

dkδk,k′δi,i′〈φi′ |F †
k′ =

∑
k|dk 6=0

1
dk

∑
i

Fk|φi〉〈φi|F †
k = R (12)

Thus if we add one extra (if necessary) projector to the Rk’s which is has support on the space orthogonal to this
projector, I−

∑
k R†

kRk, then we will obtain a complete set of Kraus operators which satisfy the proper normalization
condition for the Kraus operators. Thus we have seen that we have a valid recovery operator which does the proper
recovery and that this valid recovery operator, with addition of possibly one extra Kraus operator, is indeed a valid
superoperator.

B. Necessity

Now let’s show necessity of the quantum error correcting criteria. Errors followed by recovery produces the following
evolution on an encoded state ∑

k

Rk

(∑
i

EiρCE†
i

)
R†

k = cρC (13)



3

We want to show that this implies the error correcting criteria. Note that ρC by itself is equivalent to a superoperator
in which no evolution has taken place. If we express the above as∑

k,l

(RkEi)ρC(E†
i R

†
k) = cIρCI (14)

Now let PC be a projector onto the code subspace, PC =
∑

i |φi〉〈φi|. Then the above criteria is that, for all ρ,∑
k,l

(RkEiPC)ρ(PCE†
i R

†
k) = cPCρPC (15)

Thus by the unitary freedom of the operator sum representation, there must exists an orthogonal vector with with
coefficients uki such that

RkEiPC = ukicPC (16)

Taking the conjugate transpose of this equation and setting i = j, yeilds

PCE†
j R

†
k = u∗

kjc
∗PC (17)

Multiplying this equation on the left of the original equation yields

PCE†
j R

†
kR†

kEiPC = u∗
kjuki|c|2PC (18)

Summing this equation and using the fact that R must be a trace preserving operator

PCE†
i EjPC =

∑
k

u∗
kjuki|c|2PC (19)

Defining Cij =
∑

k u∗
kjuki|c|2, this is just

PCE†
i EjPC = CijPC (20)

where we see that Cij is hermitian. Taking matrix elements of this equation and relabeling i and j as k and l, then
yields,

〈φi|E†
kEl|φj〉 = Cklδij (21)

Thus we have established the necessity and sufficiency of the quantum error correcting criteria.

II. CONTENT OF THE QUANTUM ERROR CORRECTING CRITERIA AND THE QUANTUM
HAMMING BOUND

What is the content of the quantum error correcting criteria?

〈φi|E†
kEl|φj〉 = Cklδij (22)

Well first look at the δij . This implies that orthogonal codewords after the error El to the codewords after the error
Ek. If l = k this implies that the code words are not distorted by the effect of error Ek. They may be rotated,
but the inner product between all codewords will be the same before as after (up to a full normalization factor.)
In our example of quantum error correcting codes for the bit flip code, we saw that each possible error could act
to take the error to an orthogonal subspace. If every such error acts this way for a code, then the code is said to
be non-degenerate. In this case, Ckl will be diagonal. Some codes, however, do not posses this property: there are
multiple errors which can produce the same syndrome, but the recovery procedure works in spite of this.

For non-degenerate codes there is a nice bound on the size of the codes. Suppose that we wish to encode k qubits
into n bare qubits in a quantum error correcting code which corrects errors on t or fewer qubits (we call such a code
a [n, k, 2t + 1] code.) Now in the next section we will discuss how if we can correct any t or less qubit Pauli error (i.e.
an error which acts from the set {X, Y, Z} on t qubits and is identity on the other qubits), then we can correct all t
qubit errors. Now in order for a non-degenerate quantum error correcting code to correct all of these errors, for each
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error there must be an orthogonal subspace. There are
(
n
j

)
places where j errors can occur. And in each of these

places there are 3 different nontrivial Pauli errors. Thus the total number of errors for such a code we’ve described is

t∑
j=0

(
n

j

)
3j (23)

Now for each of these errors, there must be a subspace as big as the size of the encoded space, 2k and these subspaces
must be orthogonal. Thus each subspace must fit into the full space of n qubit. Thus we obtain the bound

t∑
j=0

(
n

j

)
3j2k ≤ 2n. (24)

This is called the quantum Hamming bound. Suppose that we want a code that corrects t = 1 error and encodes
k = 1 qubit. Then we obtain the inequality (1 + 3n)2 ≤ 2n. This inequality cannot be satisfied for n ≤ 4. Thus for
non-degenerate codes, the smallest code which can correct a single error and encodes a single qubit has n = 5. Indeed
we will find that just such a code exists (such codes which saturate this bound are called perfect codes.) Further there
is the question of what about degenerate codes. Well for the k = t = 1 case there is another bound, the Quantum
Singleton bound which implies that even in this case n = 5 qubits are needed.

III. DIGITIZING QUANTUM NOISE

Suppose that we have an error correcting code which corrects a set of errors {Ek}. What other errors will this code
correct? It turns out that this code will correct any linear combination of these errors. To do this, work with the
errors which satisfy the diagonal error correcting criteria, like in the sufficiency construction above (the Fl’s). Now
suppose that the actual Fls are written as a sum over the Fls we can correct: Gl =

∑
p flpFp. Then using the recovery

operation we defined in the sufficiency proof, we obtain that the action of recovery after the error is∑
k

Rk

∑
l

(
GlρCG†

l

)
R†

k =
∑

k|dk 6=0

1√
dk

∑
i

|φi〉〈φi|F †
k

∑
l

(
GlρCG†

l

) 1√
dk

∑
j

Fk|φj〉〈φj | (25)

We wish to show that if we operator on ρC = |φm〉〈φn|, that we will again obtain something proportional to ρC . Thus
we obtain ∑

k|dk 6=0

1
dk

∑
i

|φi〉〈φi|F †
k

∑
l

(
Gl|φm〉〈φn|G†

l

)∑
j

Fk|φj〉〈φj | (26)

Substituting in our expression for Gl as a sum Fk’s yields∑
k|dk 6=0

1
dk

∑
i

|φi〉〈φi|F †
k

∑
l

(∑
p

flpFp|φm〉〈φn|
∑

q

f∗
lqF

†
q

)∑
j

Fk|φj〉〈φj | (27)

Using the quantum error correcting criteria, we see that this becomes∑
k|dk 6=0

1
dk

∑
iljpq

|φi〉dkδpkδimdkδqkflpf
∗
lqδjn〈φj | =

∑
kl

dkflkf∗
lk|φm〉〈φn| =

(∑
kl

dkflkf∗
lk

)
ρC (28)

So even for this linear sum of errors, we correctly restore the coded subspace.
What have we done? We have shown that even though we have designed a code to correct Ek operators, it can

in fact correct any linear sum of these operators. This is great! Why? Because, for example if we want to correct a
superoperator which has one qubit which has been arbitrarily erred (and only one qubit), then we need only consider
a code which corrects X, Y , and Z errors, since every single qubit error operator can be written as a sum of these
errors (plus identity, which we, by default almost always include in our possible errors.) This is what is known as
make the errors discrete or digital. This discovery, that a code which was designed to correct a discrete set of errors
can also correct a continuous set of errors, is one of the worst understood properties of quantum error correction
among certain skeptics who shall remain nameless. The reason for this property is that quantum theory is linear.
This linearity has a lot to do with why we can treat amplitudes like fancy probabilities and indeed when we view
quantum theory this way, we aren’t quite as surprised as if we thought about the components of a wave function as
being some parameters with a reality all their own.


