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So far we have been dealing with quantum states which are what are known as pure quantum states. Here pure refers
to the fact that our description of the system is entirely quantum mechanical. But we saw when we were discussing
our information processing machines, that there were these equally valid probabilistic machines that had their own
equally valid formulation. Is there a way to include the latter within the confines of the former and in particular
to mix quantum descriptions with classical descriptions? This leads us to what are known as mixed quantum states
which we will discuss in this lecture.

Another reason to care about mixed quantum states is to deal with the case where we have only part of a quantum
system. Thus, for instance, we may have the entangle two qubit state 1√

2
(|00〉+ |11〉). Now of course we can always

figure out what quantum theory predict for our half of this quantum system by just acknowledging that this is the
true description of the quantum system. But often it is convenient to discuss just one half of this quantum state,
i.e. we are looking for a description of one of the two qubits for this state. It is important to realize that we must
always use such descriptions appropriately: just because our description of one half is different than that of the whole
does not mean that the state has changed in any way! It will turn out that the appropriate way to discuss quantum
systems like this is to again consider mixed quantum states.

I. MIXED STATES AND DENSITY OPERATORS

Suppose I set up the following situation. With probability p I prepare a quantum system into a state with the
description |ψ0〉 and with probability 1− p I prepare a quantum system into a state with the description |ψ1〉. Now
of course we could always keep around the above words describing this situation. But this seems like a lot of work.
Is there a better way to keep track of all future predictions we can make on such a system? More generally suppose
that I prepare state |ψi〉 with probability pi. Certainly I could keep those words as my description of the quantum
system, but there is a better way. We call a setting where we prepare state |ψi〉 with probability pi an ensemble of
pure states. Such ensembles are described by density operator (often called a density operator.) In particular for the
above ensemble, the density operator is given by

ρ =
∑

i

pi|ψi〉〈ψi| (1)

where pi ≥ 0 and
∑

i pi = 1. Notice that if we have a single pure state, |ψ〉, then ρ = |ψ〉〈ψ| is just a projector onto
this state. Further note that ρ is Hermitian and is also positive. Finally we note that the trace of ρ is unity:

Tr[ρ] =
∑

x

〈x|ρ|x〉 =
∑

x

〈x|
∑

i

pi|ψi〉〈ψi||x〉 =
∑

i

pi

∑
x

|〈ψi|x〉|2 =
∑

i

pi = 1 (2)

In fact we can show that any matrix which is positive (and hence necessarily hermitian) and has trace unity represents
and ensemble of pure states. To see this note that since such a density matrix is positive, there is a basis where it is
diagonal and

∑
i λi|ψi〉〈ψi| with λi ≥ 0. But since the trace of this matrix is 1, this implies that

∑
i λi = 1. Thus for

such a density matrix we can associate the ensemble which has state |ψi〉 with probability λi.
Notice that there is also an ambiguity in what ensemble actually corresponds to a particular density matrix. For

example if we have the density matrix for a qubit which corresponds to |0〉 with 1/2 probability and |1〉 with 1/2
probability, then this is the same as the density matrix which corresponds to |+〉 = 1√

2
(|0〉+ |1〉) with probability 1/2

and |−〉 = 1√
2
(|0〉 − |1〉) with probability 1/2. In the first case we calculate,

ρ =
1
2
|0〉〈0|+ 1

2
|1〉〈1|, (3)

and in the second case we calculate

σ =
1
2
|+〉〈+|+ 1

2
|−〉〈−| = 1

2
|0〉〈0|+ 1

2
|1〉〈1| (4)
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How do we interpret this ambiguity? Well we will see that for two ensembles which give the same density matrix,
then when we use these density matrices will make the same predictions about the future evolution of the quantum
system, assuming that no information about which ensemble was being used, is involved in the future evolution. This
means that we have to be careful about the situation where information about the ensemble becomes involved in the
our protocols, but if this doesn’t happen, then the density matrix is all that we will need.

Rule 1 Mixed State Version: (Configuration Description) Our quantum information processing machine again
has a finite set of configurations, described by elements from some alphabet Σ. But now instead of our description
being a unit vector of complex numbers of size |Σ|, our description is given by a positive trace one operator on C|Σ|,
which we call a density operator or density matrix.

Okay so we’ve redefined Rule 1. How do the other rules change? By the end of all of this we will have gone through
even more versions of the following rules. But now let’s look at Rule 2. In Rule 2 for pure states, we said that
evolution was described by a unitary matrix U such that if the initial description was the pure state |ψ〉, then the
description after this evolution was given by U |ψ〉. So how do we modify this for mixed states. Well if we have an
ensemble {pi, |ψi〉}, then certainly each |ψi〉 will evolve according to Rule 2. So this means that if the initial ensemble
is {pi, |ψi〉} then the ensemble after such unitary evolution will be {pi, U |ψi〉}. This means that the initial mixed state
is ρ =

∑
i pi|ψi〉〈ψi| and the mixed state after evolution is ρ′ =

∑
i piU |ψi〉〈ψi|U†. Or in other words, ρ′ = UρU†.

Thus we have the following modified Rule 2:
Rule 2 Mixed State Version: (Evolution) Evolution of the N configuration system is described by a N × N

unitary matrix. If the initial mixed state before the unitary evolution was ρ, then the mixed state after the evolution
is given by

ρ′ = UρU† (5)

Next onward to Rule 3, measurement. Recall that our latest version of the measurement rule for pure states says that
a measurement on a N configuration systems is described by N orthogonal projectors Pj . The probability of obtaining
outcome j given that the state is |ψ〉 was then Pr(j) = 〈ψ|Pj |ψ〉 and the new state was |ψ′〉 = Pj |ψ〉/

√
Pr(j). How

will this change for our mixed states? Well the probability that we observe outcome j is given by the probability that
we observe outcome j given that the pure state was |ψi〉 times the probability that the pure state we had was |ψi〉.
Or, in equationese,

Pr(j) =
∑

i

pi〈ψi|Pj |ψi〉 (6)

Now if we insert an identity operator I =
∑N−1

k=0 |k〉〈k| into this expression at the write point, we can rewrite this as

Pr(j) =
∑

i

pi〈ψi|Pj

N−1∑
k=0

|k〉〈k|ψi〉 =
∑

i

pi

N−1∑
k=0

〈k|ψi〉〈ψi|Pj |k〉 =
N−1∑
k=0

〈k|
∑

i

pi|ψi〉〈ψi|Pj |k〉 =
N−1∑
k=0

〈k|ρPj |k〉 (7)

or, recalling that the trace is the sum of the diagonal elements of a matrix:

Pr(j) = Tr[ρPj ] (8)

The trace is cyclic, Tr[AB] = Tr[BA], so this is also equal to Tr[Pjρ].
How does the state change? Well, given each state |ψi〉 changes to Pj |ψi〉/

√
Pr[j], we can express the new density

matrix after the measurement, given outcome j as

ρ′ =
∑

i

pi
Pj |ψi〉√
Pr[j]

〈ψi|P †
j√

Pr[j]
=
Pj

∑
i pi|ψi〉〈ψi|Pj

Pr[j]
=
PjρPj

Pr[j]
(9)

Rule 3 Mixed State Version: A measurement is described by a set of orthogonal projectors Pj . The probability
of observing outcome j given that the initial state is the mixed state ρ is Tr[Pjρ]. Given that we observe outcome j,
the new mixed state is given by

ρ′ =
PjρPj

Pr[j]
(10)

Finally we can ask about what happens when we combine two systems together. This rule isn’t much changed: now
instead of the new pure state living in CN × CM , it is a matrix which operates on CN × CM . This isn’t so different,
so we won’t formally express it and hopefully by now you are getting very used to tensor products.
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II. HALF AN ENTANGLED STATE

Okay so we have defined our new rules for mixed states. What else do we need mixed states for? In this section we
will describe another reason, and perhaps the most interesting reason, to use mixed states.

Suppose that we have two qubits which have the quantum state |ψ〉 = 1√
2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉). As we’ve explained

before, there is no way to express this as |ψ〉 = |a〉 ⊗ |b〉 where |a〉 is the quantum state for the first qubit and |b〉 is
the quantum state for the second qubit. Okay, fine, we need to keep around this whole description if we want to be
sure that everything that is done to both qubits can be predicted.

But now consider the following situation. Suppose that there are two qubits in the entangled quantum state
|ψ〉 = α|0〉 ⊗ |0〉+ β|1〉 ⊗ |1〉. Now suppose that we measure the first qubit with the projection operators P0 and P1.
Then the probability of getting outcome 0 is

Pr(0) = 〈ψ|P0 ⊗ I|ψ〉 = (α∗〈0| ⊗ 〈0|+ β∗〈0| ⊗ 〈0|)P0 ⊗ I(α|0〉 ⊗ |0〉+ β|1〉 ⊗ |1〉)
= |α|2〈0|P0|0〉+ |β|2〈1|P0|1〉, (11)

and the probability of getting outcome 1 is likewise

Pr(1) = |α|2〈0|P1|0〉+ |β|2〈1|P1|1〉. (12)

Notice, however that if we set

ρ = |α|2|0〉〈0|+ |β|2|1〉〈1| (13)

then this would also yield the correct expressions:

Pr(0) = Tr[P0ρ], P r(1) = Tr[P1ρ]. (14)

Suppose that a unitary UA was applied to the first qubit before this rotation, then the probability of getting outcome
0 is

Pr(0) = 〈ψ|(U†
A ⊗ I)P0 ⊗ I(UA ⊗ I)|ψ〉 = (α∗〈0| ⊗ 〈0|+ β∗〈0| ⊗ 〈0|)(U†

AP0UA)⊗ I(α|0〉 ⊗ |0〉+ β|1〉 ⊗ |1〉)
= |α|2〈0|U†

AP0UA|0〉+ |β|2〈1|U†
AP0UA|1〉 = Tr[UAρU

†
AP0], (15)

Thus we see that unitary evolution of the first qubit corresponds to unitary evolution of the ρ. Further we can
show that whatever we do to the second qubit, all our predictions (measurement probabilities, new states) will be
unaffected.

Now let’s generalize this and give it a name. Suppose that we have a bipartite quantum system with Hibert space
H = HA ⊗ HB . Suppose the state of this full bipartite quantum system is |ψ〉 ∈ H. Then this corresponds to the
density matrix on this full space of ρ = |ψ〉〈ψ|. We then define the reduced density matrix for system A as

ρA = TrB [ρ] =
dimHB∑

i=1

〈φi|Bρ|φi〉B (16)

where this summation is over a basis for HB , |φi〉B . It is important to realize that 〈φi|ρ|φi〉 is not a scalar but is instead
a dimHA dimensional density matrix. As an example, consider two qubits in the state |ψ〉 = 1

2 |0〉 ⊗ |0〉+
√

3
2 |1〉 ⊗ |1〉.

Then

ρA =
1∑

x=0

〈0|B (|ψ〉〈ψ|) |0〉B (17)

Now 〈0|B |ψ〉 = 〈0|B
(

1
2 |0〉 ⊗ |0〉+

√
3

2 |1〉 ⊗ |1〉
)

= 1
2 |0〉〈0|0〉+

√
3

2 |1〉〈0|1〉 = 1
2 |0〉. Similar expressions lead us to

ρA =
1
4
|0〉〈0|+ 3

4
|1〉〈1| (18)

It is also useful to note that if we take the partial trace of a separable pure state |ψ〉 ⊗ |φ〉, then this just gives us
the mixed state representation corresponding to the appropriate subsystem’s pure state: ρA = |ψ〉〈ψ|.
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The reduced trace operation is a very useful tool: it allows us to discuss half of an entangled state. Just as long
as we don’t know things like measurement outcomes on the other half of the entangled state, or evolution on the full
entangled state, then the reduced density matrix contains everything we’ll ever need.

Notice also that we have moved into a new realm here. Now, no longer are we dealing with single isolated quan-
tum system, but we are obtaining tools for talking about quantum subsystems which interact with other quantum
subsystems but we only have access to one of the subsystems (or are only interested in it’s dynamics.) The study of
such open quantum systems is of vital importance in real world physics because most quantum systems do interact
strongly with other quantum systems and are hard to isolate. We’ll have more to say about this latter.

III. PURIFICATIONS

In the previous section we saw that half of an entangled state could be represented by a mixed state. A natural
question to ask is whether all mixed states can be represented as a pure state on a larger system. The answer to this
question is yes. Let’s see how to do this. Suppose that have the mixed state ρ which we can spectrally decompose as
ρ =

∑dimH
i=1 pi|ψi〉〈ψi| for some orthogonal |ψ〉 (some of the pi may be zero.) Now append a second subsystem which

has a Hilbert space the same dimension the original subsystem, dimHB = dimH. Then consider the following state

|ψ〉 =
dimH∑
i=1

√
pi|ψi〉 ⊗ |φi〉 (19)

where |φi〉 is some basis for HB . Then we can calculate the reduced density matrix for this state:

TrB [|ψ〉〈ψ|] = TrB

dimH∑
i=1

√
pi|ψi〉 ⊗ |φi〉

dimH∑
j=1

√
pj〈ψj | ⊗ 〈φj |


=

dimH∑
i,j=1

√
pipj |ψi〉〈ψj |Tr[|φi〉〈φi|]

=
dimH∑
i,j=1

√
pipj |ψi〉〈ψj |δij =

dimH∑
i=1

pi|ψi〉〈ψi| (20)

which is just ρ. Thus we see that we have constructed a purification of ρ.
Actually what we’ve done is we have provided a purification of a particular ensemble interpretation of a density

matrix ρ. More generally, consider the density matrix which corresponds to an ensemble of state |ψi〉 drawn with
probability pi. Now append a subsystem which, instead of being the dimension of the original space, has a dimension
equal to the number of different states in the ensemble. Then it is easy to check that the state we constructed above,
will again be a pure state, which, when traced over the extra subsystem, yields the density matrix corresponding to
this ensemble.

Our construction was totally generic, so every mixed state can be thought of as an pure state on a larger Hilbert
space. Notice also that our purification was not necessarily unique. We’ll return to this in a bit. Purification is an
important tool. Why? Because proving things about pure states is often much easier than proving things about mixed
states. So in quantum information theory, for example, one constructs purifications all the time, so that one doesn’t
need to worry about the complications that arise when thinking about mixed states.

IV. WHEN DENSITY MATRICES ARE THE SAME

We saw above an example where two ensembles gave rise to the same density matrix. An interesting question to
ask is when this is possible.

Suppose that we purify ρ by the state

|ψ〉 =
dimH∑
i=1

√
pi|ψi〉 ⊗ |φi〉 (21)

Suppose that we measure the extra subsystem in the |φi〉 basis. Then it is easy to calculate that the probability that
we observe outcome i is pi and the resulting state is |ψi〉 ⊗ |φi〉. Thus we see that by measuring in this basis we have
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realized the ensemble corresponding to choosing |ψi〉 with probability pi. For a different density matrix σ we can
purify by a different state (but living in the same Hilbert space),

|ψ〉 =
dimH∑
i=1

√
qi|ψ̃i〉 ⊗ |φ̃i〉 (22)

Measuring in the |φ̃i〉 basis will them realize an ensemble corresponding to choosing |ψ̃i〉 with probability qi.
Now what if these density matrices ρ and σ are equal? Suppose we pad the purifications in such a way that the

dimension of the extra subsystems are the same and take the appropriate pi and qi equal to zero. Now there will be a
unitary transform between the two states |φi〉 and |φ̃i〉. Thus we see that if we take our first purification and measure
in the |φi〉 basis, then we will obtain the ensemble {pi, |ψi〉}, but if we measure in the basis U |φi〉, then we will obtain
the ensemble {qi, |ψ̃i〉}. Applying this unitary rotation, we see that we can write the second purification as

|ψ〉 =
dimH∑
i=1

√
qi|ψ̃i〉 ⊗ U |φi〉 (23)

Express this unitary in the |φi〉 basis, we obtain

U |φi〉 =
d∑

j=1

Uji|φj〉 (24)

where d is the larger of the dimensions we choose above. Then

|ψ〉 =
d∑

j=1

dimH∑
i=1

Uji
√
qi|ψ̃i〉 ⊗ |φj〉 (25)

From this expression we see that the the two ensembles {pi, |ψi〉} and {qi, |ψ̃i〉} represent the same density matrix if

√
pi|ψi〉 =

d∑
j=1

√
qjUij |ψ̃j〉 (26)

This is known as the unitary degree of freedom in an ensemble.

V. THE BLOCH BALL

When we first encountered qubits, we encountered the Bloch sphere. There every pure state, modulo a global phase
choice, could be represented by a point on the unit sphere. There is a useful generalization of this concept for mixed
states of a single qubit. This is the notion of the Bloch Ball. Actually it is often called the Bloch sphere as well,
because physicists are always messing up the difference between a sphere and ball and mathematicians are always
making this discussion (which is one of the reasons they get picked on more during recess.)

A density matrix for a single qubit will be a positive trace one hermitian matrix of size 2× 2. We can expand any
Hermitian operator on a single qubit as

sII + sXX + syY + szZ ==
[
sI + sZ sX + isY

sX − isY sI − sZ

]
(27)

Since the trace of this matrix is 1, and hence the sum of the eigenvalues of this matrix is 1, the only way this matrix
can have a negative eigenvalue is if one of these two eigenvalues is negative. This can only happen if the determinant
of the matrix is negative. Thus a necessary and sufficient condition for this trace one matrix to be positive is that it’s
determinant must be positive. The determinant is easily calculated to be

(sI + sZ)(sI − sZ)− (sX + isY )(sX − isY ) = s2I − s2Z − s2X − s2Y (28)

The requirement that the trace of this matrix is 1 implies that sI = 1
2 . Thus the requirement that the determinant

be positive implies that

1
4
− s2X − s2Y − s2Z ≥ 0 ⇒ s2X − s2Y − s2Z ≤ 1

4
(29)
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Thus we see that a positive trace one hermitian matrix can be represented by a vector of length less than one, ~n,
|~n| ≤ 1, such that

ρ =
1
2
(I + ~n · σ) (30)

This representation of the ρ is called the Bloch ball representation of a mixed single qubit state.
Where do the pure states lie on the Bloch ball? Recall that the pure states Bloch sphere representation was

|ψ〉 = cos
(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 (31)

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π. These pure states have mixed state denisty matrix of

ρ =
[
cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉

] [
cos

(
θ

2

)
〈0|+ e−iφ sin

(
θ

2

)
〈1|

]
= cos2

(
θ

2

)
|0〉〈0|+ sin2

(
θ

2

)
|1〉〈1|+ cos

(
θ

2

)
sin

(
θ

2

) [
eiφ|1〉〈0|+ e−iφ|0〉〈1|

]
=

1
2

[I + cos θZ + sin θ cosφX + sin θ sinφY ] =
1
2
(I + n̂ · ~σ) (32)

where n̂ = (sin θ cosφ, sin θ sinφ, cos θ) is the unit direction pointing in the same direction the state pointed on the
unit sphere (and ~σ = (X,Y, Z) is the vector of Pauli matrices.) Thus we see that the pure states all lie on the surface
of the Bloch ball, i.e. this is just the Bloch sphere!

Actually this situation, where density matrices form a convex set and the pure states lie on the boundary of this set
is true in general. That is it is clear that every convex combination of density matrices, ρ1 and ρ2, i.e. pρ1 +(1−p)ρ2,
0 ≤ p ≤ 1 is a valid density matrix. Thus it is clear that the set of density matrices for a convex set. Elements of
a convex set which cannot be expressed as a convex combination of different elements of the set are called extremal
points in this set. The pure states are the extremal points of the set of density matrices. To see this, assume the
opposite: assume that there are two density matrices ρ1 and ρ2 which and can be combined to produce the state
ρ = |ψ〉〈ψ| and that ρ1 and ρ2 are not equal to ρ. Then ρ = pρ1 + (1 − p)ρ2. Take a state orthogonal to ρ, |φ〉.
Then 〈φ|ρ|φ〉 = 0. But this implies p〈φ|ρ1|φ〉 + (1 − p)〈φ|ρ2|φ〉 = 0. Assume p 6= 0 or 1. Then this is a sum of two
nonnegative terms and these terms are positive, so these terms must be zero. That is 〈φ|ρi|φ〉 = 0. But this must be
true for all |φ〉, so in fact ρ = ρ1 = ρ2. In the case where p is 0 or 1, the only way the equation is true is if state is
a convex combination of itself and nothing else. Thus we’ve shown that pure states cannot be expressed as a convex
combination of other elements of the set of mixed states. Thus the pure states are the extremal points in the set of
density matrices.

VI. OPEN QUANTUM SYSTEM EVOLUTION

Now we have figured out ways to deal with one half of an entangled quantum state, we can also begin to ask about
how we deal with one half of a unitary evolution on a bipartite system. For example, suppose that we have a single
qubit in some state |ψ〉 and a second qubit in the state |0〉. Then we evolve these two qubits according to a two qubit
unitary U like a controlled-NOT. This evolution will, in general, result in an entangled state of the two qubits. If we
take the partial trace, we can then calculate a reduced density operator for the first qubit. How do we describe this
evolution, if we wish to do it solely from the perspective of the first qubit?

We’ll work in a fairly general setting. Suppose that we have a bipartite quantum system (made of two subsystems,
A and B) which is initially in the state ρ = ρA ⊗ ρB , i.e we have assume that the initial state is separable between
the two subsystems. Then we evolve the system with the unitary evolution U . The new density matrix will be UρU†.
Let’s derive a nice expression for this evolution, solely from the perspective of the A subsystem. The new density
matrix after this evolution for the A subsystem is

ρ′A = TrB [UρU†] = TrB [U(ρA ⊗ ρB)U†] (33)

Now diagonalize the system B density matrix: ρB =
∑

i pi|ψi〉〈ψi| and evaluate the partial trace:

ρ′A = TrB [U(ρA ⊗
∑

i

pi|ψi〉B〈ψi|B)U†] =
∑

k

〈k|BU(ρA)⊗
∑

i

pi|ψi〉B〈ψi|B)U†|k〉 (34)
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Then if we define

Ak,i =
√
pi〈k|U |ψi〉 (35)

then the new density matrix is given by

ρ′A =
∑

i

∑
k

Ak,iρAA
†
k,i (36)

The two sums over i and k are usually written as one sum, so that the evolution is given by

ρ′A =
∑

s

AsρAA
†
s (37)

This representation of the evolution is known as the Kraus representation or the operator sum representation. The
operators As are sometimes called Kraus operators.

The Kraus operators satisfy a nice relation due to the unitarity of U :∑
s

A†
sAs =

∑
i

∑
k

√
pi(〈k|BU |ψi〉B)†

√
pi〈k|BU |ψi〉B =

∑
i

∑
k

pi〈ψi|BU |k〉B〈k|BU |ψi〉B (38)

∑
s

A†
sAs =

∑
i

pi〈ψi|BU†U |ψi〉B =
∑

i

pi〈ψi|BIAB |ψi〉B =
∑

i

piIA = IA (39)

where IA is the identity operator on subsystem A and IAB is the identity operator on subsystems A and B. Thus we
have shown that ∑

s

A†
sAs = I (40)

We have shown that evolutions which begin in separable states and which then proceed via unitary evolution on
the bipartite system can all be expressed in the operator sum representation given above. Is the opposite true? Is it
true that whenever we have evolution which can be described by the operator sum form, with the proper condition
given above, then there will be a unitary evolution and a properly prepared initial state which corresponds to this
evolution? The answer is yes!

In fact this motivates us to define our most general evolution description:
Rule 2 Open Quantum Systems Version (Evolution) The evolution of an open quantum system, given that

it is initial separable with the other subsystems it is interacting with, has an evolution described the operators As

which satisfy
∑

sA
†
sAs = I. This evolution on a density matrix ρ results in the new density matrix

ρ′ =
∑

k

AkρA
†
k (41)

In fact, this should be the defining rule for evolution in quantum theory in a pragmatic sense. Why? Because,
while we think that the evolution of our physical theories is unitary (okay we need to be careful here when discussing
quantum field theory, but that withstanding) but in the real world we never observe isolated quantum system which
do not interact with any external subsystems. In the real world evolution is always described by Kraus operators.
Of course these Kraus operators may be so indistinguishable from unitary evolution that for all effective purposes we
have unitary evolution. This is one of the dangers of mixing philosophy and physics. We started out by taking the
position that all quantum systems are open quantum systems and so unitary evolution never occurs, but then argued
that often times this doesn’t matter because this open quantum system evolution looks almost identical to unitary
evolution, i.e. that some quantum systems behave for all effective purposes like closed quantum systems. This is the
danger, of course of mixing a pragmatic physics with a dewy eyed rigor: we end up running circular arguments into
silly places.

VII. GENERALIZED MEASUREMENTS AND POVMS

Now that we have generalized evolutions to open quantum systems, we can ask about generalizing the idea of
measurements to open quantum systems (okay this is the last time we’ll generalize measurements!) Suppose we
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perform the following measurement: we take our quantum system, attach an ancilla quantum subsystem in a pure
state |0〉, and the measure the ancilla subsystem projectively in a fixed basis. What will this look like from the
perspective of the original quantum system? Well looking over our derivation of the superoperator derivation, we see
that if we measure the system in the |k〉B basis, then the probability of getting outcome k is

Pr(k) = Tr
[
(I ⊗ |k〉B〈k|B)U(ρA ⊗ |0〉〈0|)U†] (42)

Expanding this trace, we obtain

Pr(k) =
∑

i

∑
j

〈i|A ⊗ 〈j|B(I ⊗ |k〉B〈k|B)U(ρA ⊗ |0〉〈0|)U†|i〉A ⊗ |j〉B (43)

which evaluating the inner products over B yeilds

Pr(k) =
∑

i

〈i|A(〈k|B)U(ρA ⊗ |0〉〈0|)U†|k〈B |i〉A (44)

Expressing this in terms of our As = Aki operators (and noting that we only have one term in our spectral decompo-
sition of ρB ,) we find

Pr(k) =
∑

i

〈i|AAk0ρA
†
k0|i〉A = Tr[Ak0ρAA

†
k0] (45)

or using the cyclic property of the trace, and labelling Mk = Ak0,

Pr(k) = Tr[ρAM
†
kMk] (46)

What is the state of the first subsystem after we get measurement outcome k? Well this state is

ρ′A =
(I ⊗ |k〉B〈k|B)(ρA ⊗ |0〉〈0|)(I ⊗ |k〉B〈k|B)√

Pr[k]
(47)

But this is just the kth term in our partial trace sum, so we see, following that derivation, that this just

ρ′A =
Ak0ρAA

†
k0

Pr[k]
(48)

or, expressed in our Mk operators:

ρ′A =
MkρAM

†
k

(Tr[ρAM
†
kMk])

1
2

(49)

Thus we can now define our new, general measurement rule.
Rule 3 Open Quantum Systems Version (Measurement) A measurement on a quantum system ρ is described

by a set of measurement operators Mk where
∑

k M
†
kMk = I. The probability of obtaining outcome k is then given

by

Pr[k] = Tr[ρM†
kMk] (50)

Given that outcome k has occurred, the new density matrix is given by

ρ′ =
MkρM

†
k√

Pr[k]
(51)

Notice that projective measurements which we have described before occur when the Mk are themselves projectors.
Projective measurements are a subset of generalized measurements.

Now often times we are only concerned with the probability of a particular generalized measurement and not with
how the state changes. In that case it is convenient to work with what are called positive operator valued measurement
(POVMs.) This name is a bet heavy handed in our case of a finite dimensional Hilbert space, but it has stuck, so
we will continue to use it. Given a generalized measurement with measurement operator Mk, we can construct the
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following elements Ek = M†
kMk. Now the Ek must be positive and further they must sum to unity

∑
k Ek = I. The

probability of observing outcome k is then Pr[k] = Tr[ρEk]. Thus in order to describe the measurement probabilities
we only need to worry about the POVM elements Ek (these elements are sometimes called “effects.”) Since often
we are interested in only the probabilities, often we only write down the POVM elements and not the measurement
operators.

In fact, we can show that any set of positive Ek which sum to identity can be implemented as a measurement
operator. To see this note that because Ek is positive, we can define the square root of this operator (if M is positive,
then we can express it as M =

∑
i λi|ψi〉〈ψi|, λi ≥ 0 and then

√
M =

∑
i

√
λi|ψi〉〈ψi|.) Then if we define Mk =

√
Ek,

we see that this is a valid measurement operator:
∑

k M
†
kMk =

∑
k

√
Ek

†√
Ek =

∑
k Ek = I. Thus we see that every

set of positive operators which sum to identity can be implemented as a measurement operator.

VIII. COHERENCE AND INTERFERENCE

Finally let’s remark about why we are studying open quantum systems. A natural question to ask is what is the
difference between the pure state 1√

2
(|0〉 + |1〉) and the mixed state 1

2 |0〉〈0| +
1
2 |1〉〈1| = 1

2I. Well suppose we apply
our friend the Hadamard H to either of these states. In the first case we obtain

H
1√
2
(|0〉+ |1〉) = |0〉. (52)

In the second case we obtain

H
1
2
IH =

1
2
H2 =

1
2
I. (53)

Thus in the first case these amplitudes can interfere and produce the state |0〉 whereas in the second case the states
cannot interfere, because they are in an incoherent mixture of the two states.

And this is why we are interested in open quantum systems. Open quantum systems can produce evolution which
starts out in a pure state and evolves into a mixed state. Such evolution can destroy our quantum computation. In
coming lectures we will discuss such effects, known as decoherence, and this will eventually lead us to the second great
discovery of the age of quantum information: quantum error correction (well second for us in this course, at least.)


