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Case Study 2: Document Retrieval 

Document Retrieval 

©Emily Fox 2013 2 

n  Goal: Retrieve documents of interest  
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Task 1: Find Similar Documents 
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n  Setup 
¨  Input: Query article  
¨ Output: Set of k similar articles 

k-Nearest Neighbor 
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n  Articles 

n  Query:  

n  k-NN 
¨  Goal:  

¨  Formulation: 

X = {x1
, . . . , x

N}, x

i 2 Rd

x 2 Rd
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Nearest Neighbor with KD Trees 
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n  Traverse the tree looking for the nearest neighbor of the 
query point. 

©Emily Fox 2013 

Task 2: Cluster Documents 
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n  Setup 
¨  Input: Corpus of documents 
¨ Output: Topic assignment per document 
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A Generative Model 
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n  Documents: 
n  Associated topics:   
n  Parameters: 
n  Generative model: 

✓ = {⇡,�}
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Inference 
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n  Two tasks 
¨ Point estimation:  

n  Expectation-Maximization (EM) 
¨ Characterize posterior: 

n  Gibbs sampling 
n  Variational methods 
n  Stochastic variational inference 
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n  Initial guess: 
n  Estimate at iteration t:  
 
n  E-Step 
 

 Compute 

n  M-Step 
 

 Compute  
 
 
 

EM Algorithm 

U(✓,

ˆ

✓

(t)
) = E[log p(y | ✓) | x, ˆ✓(t)]

ˆ✓(t+1)
= argmax

✓
U(✓, ˆ✓(t))

✓̂(0)

✓̂(t)
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n  Collapsed sampler  

Collapsed Gibbs Sampling 

zi ⇠ ⇡
x

i | zi ⇠ N(xi;µzi
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n  Setup: Document may belong to multiple clusters 

EDUCATION 

FINANCE 

TECHNOLOGY 

Task 3: Mixed Membership Model 
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Latent Dirichlet Allocation (LDA) 
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Variational Methods 
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n  Recall task: Characterize the posterior 

n  Turn posterior inference into an optimization task 
n  Introduce a “tractable” family of distributions over parameters 

and latent variables 
¨  Family is indexed by a set of “free parameters” 
¨  Find member of the family closest to: 

n  Questions: 
¨  How do we measure “closeness”? 
¨  If the posterior is intractable, how can we approximate something we do 

not have to begin with? 

Variational Methods 
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n  Similarity measure: 

n  Evidence lower bound (ELBO) 

n  Therefore, minimizing KL is equivalent to maximizing a lower bound on the 
marginal likelihood: 
¨  Max   = min              = max lower bound of    L(q) D(q||p) log p(x)
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Task 2: Cluster Documents 
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n  Setup 
¨  Input: Corpus of documents 
¨ Output: Topic assignment per document 

New Approach: Spectral Clustering 
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n  Goal: Cluster observations 
n  Method:  

¨  Use similarity metric between observations 
¨  Form a similarity graph 
¨  Use standard linear algebra and optimization techniques to cut 

graph into connected components (clusters) 



9 

Setup 

n  Data: 
n  Similarity metric: 

n  Similarity graph 
¨  Nodes 
¨  Edge weights 

n  Problem: Want to partition graph such that edges 
between groups have low weights 
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x

1
, . . . , x

N

G = {V, E} 

Types of Graphs 

n  ε-neighborhood: 
¨  Only include edges with distances < ε 
¨  Treat as unweighted 

n  k-NN:  
¨  Connect vi and vj if vj is a k-NN of vi  
¨  Weighted by similarity sij 

¨  Directed à undirected 

n  Mutual k-NN: 
¨  Same as k-NN, but only include mutual k-NN 
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Issues with Choosing Graph 

n  Choosing graph construction techniques and parameters 
is non-trivial 
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Figure 3: Di↵erent similarity graphs, see text for details.

three clusters: two “moons” and a Gaussian. The density of the bottom moon is chosen to be larger
than the one of the top moon. The upper left panel in Figure 3 shows a sample drawn from this
distribution. The next three panels show the di↵erent similarity graphs on this sample.

In the "-neighborhood graph, we can see that it is di�cult to choose a useful parameter ". With
" = 0.3 as in the figure, the points on the middle moon are already very tightly connected, while the
points in the Gaussian are barely connected. This problem always occurs if we have data “on di↵erent
scales”, that is the distances between data points are di↵erent in di↵erent regions of the space.

The k-nearest neighbor graph, on the other hand, can connect points “on di↵erent scales”. We can
see that points in the low-density Gaussian are connected with points in the high-density moon. This
is a general property of k-nearest neighbor graphs which can be very useful. We can also see that the
k-nearest neighbor graph can break into several disconnected components if there are high density re-
gions which are reasonably far away from each other. This is the case for the two moons in this example.

The mutual k-nearest neighbor graph has the property that it tends to connect points within regions
of constant density, but does not connect regions of di↵erent densities with each other. So the mutual
k-nearest neighbor graph can be considered as being “in between” the "-neighborhood graph and the
k-nearest neighbor graph. It is able to act on di↵erent scales, but does not mix those scales with each
other. Hence, the mutual k-nearest neighbor graph seems particularly well-suited if we want to detect
clusters of di↵erent densities.

The fully connected graph is very often used in connection with the Gaussian similarity function
s(xi, xj) = exp(�kxi � xjk2/(2�2)). Here the parameter � plays a similar role as the parameter " in
the "-neighborhood graph. Points in local neighborhoods are connected with relatively high weights,
while edges between far away points have positive, but negligible weights. However, the resulting
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Graph Terminology I 

n  Weighted adjacency matrix 
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Graph Cuts 

n  Problem: Partition graph such that edges between 
groups have low weights 

n  Define: 
 
n  MinCut problem: 

 

n  Trivial to solve for k=2 
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W (A,B) =
X

i2A,j2B

wij

Issues with MinCut 

n  MinCut favors isolated clusters 
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Cuts Accounting for Size 

n  Ratio cuts (RatioCut) 
n  Normalized cuts (Ncut) 
n  Lead to “balanced” clusters 

n  First need more graph terminology… 
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Graph Terminology II 

n  Two measures of size of a subset 
¨ Cardinality:  
 
|A| 
 
¨ Volume:  
 
vol(A) 
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A 
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Cuts Accounting for Size 

n  Ratio cuts (RatioCut) 
¨  k=2 

¨  General k 
 
 
n  Normalized cuts (Ncut) 

¨  k=2 

¨  General k 
 
 
n  Problem is NP-hard!  Look at relaxation. 
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Graph Terminology III 

n  Degree 

n  Degree matrix 
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Restating Cut Metric 
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A A 

- = 

- = 

Restating Cut Metric 
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W x

= 

x

T
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Restating Cut Metric 
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Restating Cut Metric 
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Graph Laplacian 

n  Definition: 
 
n  Facts: 

¨  Symmetric, positive semi-definite 
¨  Eigenvalues 

¨  Invariance to self-edges 

¨  Inner product in L space 
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Relationship to Identifying 
Connected Components 
n  Proposition:  

¨  The multiplicity k of eigenvalue 0 of L is equal to the 
number of connected components 
 

n  Proof: Assume graph is connected (k=1) 
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Relationship to Identifying 
Connected Components 
n  Proposition:  

¨  The multiplicity k of eigenvalue 0 of L is equal to the 
number of connected components 

n  Proof: Assume k connected components 
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Example – Mixture of Gaussians 
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Figure 1: Toy example for spectral clustering where the data points have been drawn from a mixture of
four Gaussians on . Left upper corner: histogram of the data. First and second row: eigenvalues and
eigenvectors of L

rw

and L based on the k-nearest neighbor graph. Third and fourth row: eigenvalues
and eigenvectors of L

rw

and L based on the fully connected graph. For all plots, we used the Gaussian
kernel with � = 1 as similarity function. See text for more details.

text books, for example in Hastie, Tibshirani, and Friedman (2001).

Before we dive into the theory of spectral clustering, we would like to illustrate its principle on a very
simple toy example. This example will be used at several places in this tutorial, and we chose it because
it is so simple that the relevant quantities can easily be plotted. This toy data set consists of a random
sample of 200 points x

1

, . . . , x
200

2 drawn according to a mixture of four Gaussians. The first row
of Figure 1 shows the histogram of a sample drawn from this distribution (the x-axis represents the
one-dimensional data space). As similarity function on this data set we choose the Gaussian similarity
function s(xi, xj) = exp(�|xi � xj |2/(2�2)) with � = 1. As similarity graph we consider both the
fully connected graph and the 10-nearest neighbor graph. In Figure 1 we show the first eigenvalues
and eigenvectors of the unnormalized Laplacian L and the normalized Laplacian L

rw

. That is, in the
eigenvalue plot we plot i vs. �i (for the moment ignore the dashed line and the di↵erent shapes of the
eigenvalues in the plots for the unnormalized case; their meaning will be discussed in Section 8.5). In
the eigenvector plots of an eigenvector u = (u

1

, . . . , u
200

)0 we plot xi vs. ui (note that in the example
chosen xi is simply a real number, hence we can depict it on the x-axis). The first two rows of Figure
1 show the results based on the 10-nearest neighbor graph. We can see that the first four eigenvalues
are 0, and the corresponding eigenvectors are cluster indicator vectors. The reason is that the clusters
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Graph Laplacians and Ratio Cuts 

n  Ratio cuts for k=2 
n  Define cluster indicator variables: 

n  Properties: 
 
 
n  RatioCut 
 
n  Reformulating RatioCut problem 
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Relaxation to Formulation 

n  Let f be arbitrary continuous vector 

 
 

n  Rayleigh-Ritz Theorem 
¨  Which vector maximizes objective subject to constraint that 

the vector is orthogonal to the first eigenvector and has 
bounded norm? 
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Mapping Back to Partition 

n  To obtain partition, transform continuous f to a discrete 
indicator 

n  Cluster coordinates 

 
 
n  Return 
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Ratio Cuts for General k 

n  Define cluster indicator variables: 

 
n  RatioCut 
 

n  Reformulating RatioCut problem 

n  Relaxation  
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Fij =

⇢
1/

p
|Aj |

0
F 0
AFA = I

RatioCut(A1, . . . , Ak) =

kX

i=1

f 0
AiLfAi = Tr(F 0

ALFA)

min
A1,...,Ak

Tr(F 0
ALFA)

min
F2RN⇥k

Tr(F 0LF )
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Ratio Cuts for General k 

n  Relaxation: 

 
n  Solution: 
 

n  To obtain partition: 
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min
F2RN⇥k

Tr(F 0LF ) s.t. F 0F = I

Graph Laplacians and Norm. Cuts 

n  Normalized cuts for k=2 
n  Define cluster indicator variables: 

n  Properties: 

n  Ncut 
 
n  Reformulating Ncut problem 
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Relaxation to Formulation 

n  Let f be arbitrary continuous vector 

 
 
 

n  Rayleigh-Ritz Theorem 
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Normalized Cuts for General k 

n  Define cluster indicator variables: 
 

n  Reformulating RatioCut problem 

n  Relaxation  

 
n  Solution:  

¨  H is matrix of first k eigenvectors of Lsym, which is equivalent to 
the approximate F being the first k eigenvectors of Lrw 
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F 0
AFA = I

min
A1,...,Ak

Tr(F 0
ALFA)

Fij =

⇢
1/

p
vol(Aj) vi 2 Aj

0 ow F 0
ADFA = I

s.t. F 0
ADFA = I

min
H2RN⇥k

Tr(H 0D�1/2LD�1/2H) s.t. H 0H = I
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Random Walks on Graphs 

n  Stochastic process with random jumps from vi to vj  wp: 

n  Transition matrix: 

n  Connection to graph Laplacian: 

n  Intuitively, want to partition graph s.t. random walk stays in 
cluster for a while and rarely jumps between clusters 
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Random Walks on Graphs 

n  Assume that stationary distribution exists and is unique. Then, 

n  Proposition: 
 
n  Proof:  

n  Minimizing normalized cuts is equivalent to minimizing the 
probability of transitioning between clusters 
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Ncut(A, Ā) = P (A | Ā) + P (Ā | A)
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Notes 

n  No guarantee to quality of approximation 

n  Sensitive to choice of similarity graph (see earlier) 

n  Which graph Laplacian to use? 
¨  If degrees in graph vary significantly, then Laplacians are quite different 
¨  In general, Lrw behaves the best 
¨  Volume gives better measure of within-cluster similarity than cardinality 
¨  Normalized cuts has consistency results, Ratio cuts does not 
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Notes 

n  Choosing the number of clusters k can be hard 
¨  Easy when clusters are well-separated 

 

n  k-means to return partition from solution to relaxation is an 
approach, but not the only 
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Figure 4: Three data sets, and the smallest 10 eigenvalues of L
rw

. See text for more details.

Braun, and Buhmann, 2004; Ben-David, von Luxburg, and Pál, 2006). Of course all those methods can
also be used for spectral clustering. Additionally, one tool which is particularly designed for spectral
clustering is the eigengap heuristic, which can be used for all three graph Laplacians. Here the goal
is to choose the number k such that all eigenvalues �

1

, . . . ,�k are very small, but �k+1

is relatively
large. There are several justifications for this procedure. The first one is based on perturbation theory,
where we observe that in the ideal case of k completely disconnected clusters, the eigenvalue 0 has
multiplicity k, and then there is a gap to the (k + 1)th eigenvalue �k+1

> 0. Other explanations can
be given by spectral graph theory. Here, many geometric invariants of the graph can be expressed or
bounded with the help of the first eigenvalues of the graph Laplacian. In particular, the sizes of cuts
are closely related to the size of the first eigenvalues. For more details on this topic we refer to Bolla
(1991), Mohar (1997) and Chung (1997).

We would like to illustrate the eigengap heuristic on our toy example introduced in Section 4. For
this purpose we consider similar data sets as in Section 4, but to vary the di�culty of clustering we
consider the Gaussians with increasing variance. The first row of Figure 4 shows the histograms of
the three samples. We construct the 10-nearest neighbor graph as described in Section 4, and plot the
eigenvalues of the normalized Laplacian L

rw

on the di↵erent samples (the results for the unnormalized
Laplacian are similar). The first data set consists of four well separated clusters, and we can see that
the first 4 eigenvalues are approximately 0. Then there is a gap between the 4th and 5th eigenvalue,
that is |�

5

��
4

| is relatively large. According to the eigengap heuristic, this gap indicates that the data
set contains 4 clusters. The same behavior can also be observed for the results of the fully connected
graph (already plotted in Figure 1). So we can see that the heuristic works well if the clusters in
the data are very well pronounced. However, the more noisy or overlapping the clusters are, the less
e↵ective is this heuristic. We can see that for the second data set where the clusters are more “blurry”,
there is still a gap between the 4th and 5th eigenvalue, but it is not as clear to detect as in the case
before. Finally, in the last data set, there is no well-defined gap, the di↵erences between all eigenvalues
are approximately the same. But on the other hand, the clusters in this data set overlap so much that
many non-parametric algorithms will have di�culties to detect the clusters, unless they make strong
assumptions on the underlying model. In this particular example, even for a human looking at the
histogram it is not obvious what the correct number of clusters should be. This illustrates that, as
most methods for choosing the number of clusters, the eigengap heuristic usually works well if the data
contains very well pronounced clusters, but in ambiguous cases it also returns ambiguous results.
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