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Case Study 1: Estimating Click Probabilities 

Sketching Counts 

 Bloom Filter is super cool, but not what we need… 

 We don’t just care about whether a feature existed before, but to keep 

track of counts of occurrences of features! 

 Recall Perceptron update: 

 

 

 Must keep track of counts of each feature (weighed by y(t)): 

 E.g., with sparse data, for each non-zero dimension i in x(t): 

 

 

 

 Can we generalize the Bloom Filter? 
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Count-Min Sketch: single vector 

 Simpler problem: Count how many times you see each string 

 Single hash function:  

 Keep Count vector of length m 

 every time see string i: 

 

   

  

 

 

 Again, collisions could be a problem: 

 ai is the count of element i: 
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Count-Min Sketch: general case 

 Keep d by m Count matrix  

 

 

 

 

 d hash functions:  

 Just like in Bloom Filter, decrease errors with multiple hashes 

 Every time see string i: 
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Querying the Count-Min Sketch 

 Query Q(i)?  

 What is in Count[j,k]? 

 

 

 Thus: 

 

 

 

 Return: 

 

 

©Carlos Guestrin 2013 5 

Analysis of Count-Min Sketch 

 Set: 

 

 

 

 Then, after seeing n elements: 

 

 

 With probability at least 1-δ  
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Proof of Count-Min for Point Query with 

Positive Counts: Part 1 – Expected Bound 

 Ii,j,k = indicator that i & k collide on hash j: 

 

 

 Bounding expected value: 

 

 

 Xi,j = total colliding mass on estimate of count of i in hash j: 
 

 
 

 Bounding colliding mass: 

 

 

 

 Thus, estimate from each hash function is close in expectation 
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Proof of Count-Min for Point Query with Positive 

Counts: Part 2 – High Probability Bounds 

 What we know: 

 

 Markov inequality: For z1,…,zk positive iid random variables 

 

 

 

 

 

 Applying to the Count-Min sketch: 
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But Our Updates may be positive or 

Negative 

 Count-Min sketch for positive & negative case 

 ai no longer necessarily positive 

 Update the same: Observe change Δi to element i: 

 

 

 Each Count[j,h(i)] no longer an upper bound on ai 

 How do we make a prediction? 

 

 

 Bound: 

 With probability at least 1-δ1/4, where ||a|| = Σi |ai|   
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Finally, Sketching for Perceptron 

 Never need to know size of vocabulary! 

 Make a mistake, update Count-Min matrix: 

 

 

 

 

 Making a prediction: 

 

 

 

 

 Scales to huge problems, great practical implications… More next time 
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What you need to know 

 Hash functions 

 Bloom filter 
 Test membership with some false positives, but very small number of bits per element 

 Count-Min sketch 
 Positive counts: upper bound with nice rates of convergence 

 General case 

 Application to Perceptron Learning and Prediction 
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Document Retrieval 
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 Goal: Retrieve documents of interest  

 Challenges:  

 Tons of articles out there 

 How should we measure similarity? 

Task 1: Find Similar Documents 
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 To begin… 

 Input: Query article  

 Output: Set of k similar articles 
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Document Representation 
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 Bag of words model 

1-Nearest Neighbor 
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 Articles 

 

 Query:  

 

 1-NN 

 Goal:  

 

 Formulation: 
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k-Nearest Neighbor 
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 Articles 

 

 Query:  

 

 k-NN 

 Goal:  

 

 Formulation: 

Distance Metrics – Euclidean  
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Other Metrics… 

 Mahalanobis, Rank-based, Correlation-based, cosine similarity…  

where 

Or, more generally, 

Equivalently, 



10 

©Emily Fox 2013 19 

Notable Distance Metrics (and their level sets) 

L1 norm (absolute) 

L1 (max) norm 

Scaled Euclidian (L2) 

Mahalanobis           

(S is general sym pos def matrix, 

on previous slide = diagonal) 

 Recall distance metric  

 

 

 

 What if each document were      times longer? 

 Scale word count vectors 

 

 What happens to measure of similarity?  

 

 

 Good to normalize vectors 

Euclidean Distance + Document Retrieval 
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Issues with Document Representation 
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 Words counts are bad for standard similarity metrics 

 

 

 

 

 

 

 

 Term Frequency – Inverse Document Frequency (tf-idf) 

 Increase importance of rare words 

TF-IDF 
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 Term frequency: 

 

 
 

 

 Could also use  

 Inverse document frequency: 

 

 

 

 

 tf-idf: 
 

 

 High for document d with high frequency of term t (high “term frequency”) and few 
documents containing term t in the corpus (high “inverse doc frequency”) 



12 

 Naïve approach:  

Brute force search 
 Given a query point 

 Scan through each point 

 O(N) distance computations 

per 1-NN query! 

 O(Nlogk) per k-NN query! 

 

 

 What if N is huge??? 

(and many queries) 

 

Issues with Search Techniques 
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33 Distance Computations 

 Smarter approach: kd-trees 

 Structured organization of 

documents 

 Recursively partitions points into axis 

aligned boxes. 

 Enables more efficient pruning of 

search space 

 Examine nearby points first. 

 Ignore any points that are further than 

the nearest point found so far. 

 kd-trees work “well” in “low-

medium” dimensions 

 We’ll get back to this… 

KD-Trees 
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KD-Tree Construction 

Pt X Y 

1 0.00 0.00 

2 1.00 4.31 

3 0.13 2.85 

… … … 

 Start with a list of d-dimensional points. 
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KD-Tree Construction 

Pt X Y 

1 0.00 0.00 

3 0.13 2.85 

… … … 

X>.5 

Pt X Y 

2 1.00 4.31 

… … … 

YES NO 

 Split the points into 2 groups by: 

 Choosing dimension dj and value V (methods to be discussed…) 

 Separating the points into       > V and      <= V. 
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KD-Tree Construction 

X>.5 

Pt X Y 

2 1.00 4.31 

… … … 

YES NO 

 Consider each group separately and possibly split again 

(along same/different dimension). 
 Stopping criterion to be discussed… 

Pt X Y 

1 0.00 0.00 

3 0.13 2.85 

… … … 
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KD-Tree Construction 

Pt X Y 

3 0.13 2.85 

… … … 

X>.5 

Pt X Y 

2 1.00 4.31 

… … … 

YES NO 

Pt X Y 

1 0.00 0.00 

… … … 

Y>.1 

NO 
YES 

 Consider each group separately and possibly split again 

(along same/different dimension). 
 Stopping criterion to be discussed… 
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KD-Tree Construction 

 Continue splitting points in each set  

 creates a binary tree structure 

 Each leaf node contains a list of points 
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KD-Tree Construction 

 Keep one additional piece of information at each node: 

  The (tight) bounds of the points at or below this node. 
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KD-Tree Construction 

Use heuristics to make splitting decisions: 

 Which dimension do we split along?  

 

 Which value do we split at?   

 

 When do we stop?    
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Many heuristics… 

32 

median heuristic center-of-range heuristic 
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Nearest Neighbor with KD 

Trees 

33 

 Traverse the tree looking for the nearest neighbor of the 

query point. 
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Nearest Neighbor with KD 

Trees 

34 

 Examine nearby points first:  

 Explore branch of tree closest to the query point first. 
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Nearest Neighbor with KD 

Trees 

35 

 Examine nearby points first:  

 Explore branch of tree closest to the query point first. 
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Nearest Neighbor with KD 

Trees 

36 

 When we reach a leaf node:  

 Compute the distance to each point in the node. 
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Nearest Neighbor with KD 

Trees 

37 

 When we reach a leaf node:  

 Compute the distance to each point in the node. 
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Nearest Neighbor with KD 

Trees 

38 

 Then backtrack and try the other branch at each node 

visited 
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Nearest Neighbor with KD 

Trees 

39 

 Each time a new closest node is found, update the 

distance bound 
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Nearest Neighbor with KD 

Trees 

40 

 Using the distance bound and bounding box of each node: 

 Prune parts of the tree that could NOT include the nearest neighbor 

©Emily Fox 2013 
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Nearest Neighbor with KD 

Trees 

41 

 Using the distance bound and bounding box of each node: 

 Prune parts of the tree that could NOT include the nearest neighbor 
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Nearest Neighbor with KD 

Trees 

42 

 Using the distance bound and bounding box of each node: 

 Prune parts of the tree that could NOT include the nearest neighbor 
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 For (nearly) balanced, binary trees... 

 Construction 

 Size: 

 Depth:  

 Median + send points left right: 

 Construction time:  

 1-NN query 

 Traverse down tree to starting point: 

 Maximum backtrack and traverse: 

 Complexity range: 

 

 Under some assumptions on distribution of points, we get 

O(logN) but exponential in d (see citations in reading) 

43 

Complexity 
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Complexity 

©Emily Fox 2013 
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 Ask for nearest neighbor to each document 

 

 Brute force 1-NN: 

 

 kd-trees: 

45 

Complexity for N Queries 
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Inspections vs. N and d 
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K-NN with KD Trees 

47 

 Exactly the same algorithm, but maintain distance as 

distance to furthest of current k nearest neighbors 

 Complexity is: 
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Approximate K-NN with KD Trees 

 Before: Prune when distance to bounding box >  

 Now: Prune when distance to bounding box >  

 Will prune more than allowed, but can guarantee that if we return a neighbor 

at distance   , then there is no neighbor closer than         . 

 In practice this bound is loose…Can be closer to optimal. 

 Saves lots of search time at little cost in quality of nearest neighbor. 
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Wrapping Up – Important Points 
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kd-trees 

 Tons of variants 

 On construction of trees (heuristics for splitting, stopping, representing branches…) 

 Other representational data structures for fast NN search (e.g., ball trees,…) 

 

Nearest Neighbor Search 

 Distance metric and data representation are crucial to answer returned 

 

For both… 

 High dimensional spaces are hard! 

 Number of kd-tree searches can be exponential in dimension 
 Rule of thumb…  N >> 2d… Typically useless. 

 Distances are sensitive to irrelevant features  
 Most dimensions are just noise  Everything equidistant (i.e., everything is far away) 

 Need technique to learn what features are important for your task 
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What you need to know 

 Document retrieval task 
 Document representation (bag of words) 

 tf-idf 

 Nearest neighbor search 
 Formulation 

 Different distance metrics and sensitivity to choice 

 Challenges with large N 

 kd-trees for nearest neighbor search 
 Construction of tree 

 NN search algorithm using tree 

 Complexity of construction and query 

 Challenges with large d 
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