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Case Study 1: Estimating Click Probabilities 

What is the Perceptron Doing??? 

n  When we discussed logistic regression: 
¨ Started from maximizing conditional log-likelihood 

n  When we discussed the Perceptron: 
¨ Started from description of an algorithm 

n  What is the Perceptron optimizing???? 
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Perceptron & Stochastic Gradient descent 

n  Perceptron update: 

 
 

n  Batch hinge minimization update: 
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Stochastic Gradient Descent: 
general case 

n  Given a stochastic function of parameters: 
¨  Want to find minimum 

n  Start from w(0) 
n  Repeat until convergence: 

¨  Get a sample data point x(t) 
¨  Update parameters: 

n  Works on the online learning setting! 
n  Complexity of gradient computation is constant in number of 

examples! 
n  In general, step size changes with iterations 
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Stochastic Gradient Ascent for 
Logistic Regression 

n  Logistic loss as a stochastic function: 

n  Batch gradient ascent updates: 

n  Stochastic gradient ascent updates: 
¨  Online setting: 
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Convergence rate of SGD 

n  Theorem:  
¨  (see Nemirovski et al ‘09 from readings) 
¨  Let f be a strongly convex stochastic function 
¨  Assume gradient of f is Lipschitz continuous and bounded 

¨  Then, for step sizes: 

¨  The expected loss decreases as O(1/t): 
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Convergence rates for gradient 
descent/ascent versus SGD 

n  Number of Iterations to get to accuracy 

n  Gradient descent: 
¨  If func is strongly convex: O(ln(1/ϵ)) iterations 
 

n  Stochastic gradient descent: 
¨  If func is strongly convex: O(1/ϵ) iterations 

n  Seems exponentially worse, but much more subtle: 
¨  Total running time, e.g., for logistic regression: 

n  Gradient descent: 
n  SGD: 
n  SGD can win when we have a lot of data 

¨  And, when analyzing true error, situation even more subtle… expected 
running time about the same, see readings 
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What you need to know 
n  Perceptron is optimizing hinge loss 
n  Subgradients and hinge loss 
n  (Sub)gradient decent for hinge objective 
n  Objective functions in ML as expectations 
n  Gradient estimation, rather than objective estimation 
n  Stochastic gradient descent -> estimate gradient from single training 

example 
¨  Mini-batches possible and useful 

n  Stochastic gradient ascent for logistic regression 
n  Analysis of stochastic gradient descent 

¨  Decreasing step size fundamental here 

n  Comparing analysis of stochastic gradient descent with gradient 
descent 
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Case Study 1: Estimating Click Probabilities 

Problem1: Complexity of Update 
Rules for LR and Perceptron 
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n  Perceptron update: 
 
 

n  Logistic regression update: 

n  Complexity of updates: 
¨  Constant in number of data points  
¨  In number of features? 

n  Problem both in terms of computational complexity and sample complexity 

n  What can we with very high dimensional feature spaces?  
¨  Kernels not always appropriate, or scalable 
¨  What else? 
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Problem 2: Unknown Number of Features 

n  For example, bag-of-words features for text data: 
¨  “Mary had a little lamb, little lamb…” 

n  What’s the dimensionality of x? 
n  What if we see new word that was not in our vocabulary?  

¨  Obamacare 

¨  Theoretically, just keep going in your learning, and initialize wObamacare = 0 
¨  In practice, need to re-allocate memory, fix indices,… A big problem for Big Data 
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What Next? 
n  Hashing & Sketching! 

¨  Addresses both dimensionality issues and new features in one approach! 

n  Let’s start with a much simpler problem: Is a string in our vocabulary? 
¨  Membership query 

n  How do we keep track? 
¨  Explicit list of strings 

n  Very slow 

¨  Fancy Trees and Tries 
n  Hard to implement and maintain 

¨  Hash tables? 
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Hash Functions and Hash Tables 
n  Hash functions map keys to integers (bins): 

¨  Keys can be integers, strings, objects,… 

n  Simple example: mod 
¨  h(i) = (a.i + b) % m 

¨  Random choice of (a,b) (usually primes) 
¨  If inputs are uniform, bins are uniformly used 
¨  From two results can recover (a,b), so not pairwise independent -> Typically use fancier 

hash functions 
n  Hash table: 

¨  Store list of objects in each bin 
¨  Exact, but storage still linear in size of object ids, which can be very long 

n  E.g., hashing very long strings, entire documents 
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Hash Bit-Vector Table-based 
Membership Query 

n  Approximate queries with one-sided error: Accept false positives only 
¨  If we say no, element is not in set 
¨  If we say yes, element is very to be likely in set 

 
n  Given hash function, keep binary bit vector v of length m: 

n  Query Q(i): Element i in set? 
¨    
¨    

n  Collisions: 

n  Guarantee: One-sided errors, but may make many mistakes 
¨  How can we improve probability of correct answer? 
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Bloom Filter: Multiple Hash Tables 

n  Single hash table -> Many false positives 

n  Multiple hash tables with independent hash functions 
¨  Apply h1(i),…, hd(i), set all bits to 1 

n  Query Q(i)?   

n  Significantly decrease probability of false positives 
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Analysis of Bloom Filter 

n  Want to keep track of n elements with false positive 
probability of δ>0… how large m & d? 

n  Simple analysis yields: 
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Sketching Counts 

n  Bloom Filter is super cool, but not what we need… 
¨  We don’t just care about whether a feature existed before, but to keep 

track of counts of occurrences of features! 

n  Recall Perceptron update: 

 
n  Must keep track of counts of each feature (weighed by y(t)): 

¨  E.g., with sparse data, for each non-zero dimension i in x(t): 

 

n  Can we generalize the Bloom Filter? 
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Count-Min Sketch: single vector 
n  Simpler problem: Count how many times you see each string 
n  Single hash function:  

¨  Keep Count vector of length m 
¨  every time see string i: 

   
  

 
 
¨  Again, collisions could be a problem: 

n  ai is the count of element i: 
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Count-Min Sketch: general case 
n  Keep d by m Count matrix  

n  d hash functions:  
¨  Just like in Bloom Filter, decrease errors with multiple hashes 
¨  Every time see string i: 
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8j 2 {1, . . . , d} : Count[j, h(i)] Count[j, h(i)] + 1

Querying the Count-Min Sketch 

n  Query Q(i)?  
¨  What is in Count[j,k]? 

¨  Thus: 

¨  Return: 
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Analysis of Count-Min Sketch 

n  Set: 

n  Then, after seeing n elements: 

n  With probability at least 1-δ  
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Proof of Count-Min for Point Query with 
Positive Counts: Part 1 – Expected Bound 

n  Ii,j,k = indicator that i & k collide on hash j: 

n  Bounding expected value: 
 
 
n  Xi,j = total colliding mass on estimate of count of i in hash j: 

n  Bounding colliding mass: 

n  Thus, estimate from each hash function is close in expectation 
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Proof of Count-Min for Point Query with Positive 
Counts: Part 2 – High Probability Bounds 

n  What we know: 
 
n  Markov inequality: For z1,…,zk positive iid random variables 

n  Applying to the Count-Min sketch: 
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But Our Updates may be positive or 
Negative 

n  Count-Min sketch for positive & negative case 
¨  ai no longer necessarily positive 

n  Update the same: Observe change Δi to element i: 

¨  Each Count[j,h(i)] no longer an upper bound on ai 

n  How do we make a prediction? 

n  Bound: 
¨  With probability at least 1-δ1/4, where ||a|| = Σi |ai|   
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Finally, Sketching for Perceptron 

n  Never need to know size of vocabulary! 
n  Make a mistake, update Count-Min matrix: 

n  Making a prediction: 

n  Scales to huge problems, great practical implications… More next time 
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What you need to know 
n  Update rules for perceptron and SGD problematic in high 

dimensions: 
¨  Complexity linear in number of features 
¨  What if we have a new feature? 

n  Hash functions 

n  Bloom filter 
¨  Test membership with some false positives, but very small number of bits per element 

n  Count-Min sketch 

¨  Positive counts: upper bound with nice rates of convergence 
¨  General case 

n  Application to Perceptron Learning and Prediction 
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