
1

1

Stochastic Gradient
Descent (continued)

Machine Learning/Statistics for Big Data
CSE599C1/STAT592, University of Washington

Carlos Guestrin
January 17th, 2013

©Carlos Guestrin 2013

Case Study 1: Estimating Click Probabilities

What is the Perceptron Doing???

n  When we discussed logistic regression:
¨ Started from maximizing conditional log-likelihood

n  When we discussed the Perceptron:
¨ Started from description of an algorithm

n  What is the Perceptron optimizing????

©Carlos Guestrin 2013 2

2

Perceptron & Stochastic Gradient descent

n  Perceptron update:

n  Batch hinge minimization update:

©Carlos Guestrin 2013 3

w

(t+1) w

(t) +
h
y(t)(w(t) · x(t)) 0

i
y(t)x(t)

w

(t+1) w

(t) + ⌘
1

N

N
X

i=1

n h

y(i)(w(t) · x(i)) 0
i

y(i)x(i)
o

Stochastic Gradient Descent:
general case

n  Given a stochastic function of parameters:
¨  Want to find minimum

n  Start from w(0)
n  Repeat until convergence:

¨  Get a sample data point x(t)
¨  Update parameters:

n  Works on the online learning setting!
n  Complexity of gradient computation is constant in number of

examples!
n  In general, step size changes with iterations

©Carlos Guestrin 2013 4

3

Stochastic Gradient Ascent for
Logistic Regression

n  Logistic loss as a stochastic function:

n  Batch gradient ascent updates:

n  Stochastic gradient ascent updates:
¨  Online setting:

©Carlos Guestrin 2013 5

E
x

[`(w,x)] = E
x

⇥
lnP (y|x,w)� �||w||22

⇤

w

(t+1)
i w

(t)
i + ⌘

8
<

:��w
(t)
i +

1

N

NX

j=1

x

(j)
i [y(j) � P (Y = 1|x(j)

,w

(t))]

9
=

;

w

(t+1)
i w

(t)
i + ⌘t

n

��w(t)
i + x

(t)
i [y(t) � P (Y = 1|x(t)

,w

(t))]
o

Convergence rate of SGD

n  Theorem:
¨  (see Nemirovski et al ‘09 from readings)
¨  Let f be a strongly convex stochastic function
¨  Assume gradient of f is Lipschitz continuous and bounded

¨  Then, for step sizes:

¨  The expected loss decreases as O(1/t):

©Carlos Guestrin 2013 6

4

Convergence rates for gradient
descent/ascent versus SGD

n  Number of Iterations to get to accuracy

n  Gradient descent:
¨  If func is strongly convex: O(ln(1/ϵ)) iterations

n  Stochastic gradient descent:
¨  If func is strongly convex: O(1/ϵ) iterations

n  Seems exponentially worse, but much more subtle:
¨  Total running time, e.g., for logistic regression:

n  Gradient descent:
n  SGD:
n  SGD can win when we have a lot of data

¨  And, when analyzing true error, situation even more subtle… expected
running time about the same, see readings

©Carlos Guestrin 2013 7

`(w⇤)� `(w) ✏

What you need to know
n  Perceptron is optimizing hinge loss
n  Subgradients and hinge loss
n  (Sub)gradient decent for hinge objective
n  Objective functions in ML as expectations
n  Gradient estimation, rather than objective estimation
n  Stochastic gradient descent -> estimate gradient from single training

example
¨  Mini-batches possible and useful

n  Stochastic gradient ascent for logistic regression
n  Analysis of stochastic gradient descent

¨  Decreasing step size fundamental here

n  Comparing analysis of stochastic gradient descent with gradient
descent

©Carlos Guestrin 2013 8

5

9

Tackling an Unknown
Number of Features with
Sketching

Machine Learning/Statistics for Big Data
CSE599C1/STAT592, University of Washington

Carlos Guestrin
January 17th, 2013

©Carlos Guestrin 2013

Case Study 1: Estimating Click Probabilities

Problem1: Complexity of Update
Rules for LR and Perceptron

©Carlos Guestrin 2013 10

n  Perceptron update:

n  Logistic regression update:

n  Complexity of updates:
¨  Constant in number of data points
¨  In number of features?

n  Problem both in terms of computational complexity and sample complexity

n  What can we with very high dimensional feature spaces?
¨  Kernels not always appropriate, or scalable
¨  What else?

w

(t+1) w

(t) +
h
y(t)(w(t) · x(t)) 0

i
y(t)x(t)

w

(t+1)
i w

(t)
i + ⌘t

n

��w(t)
i + x

(t)
i [y(t) � P (Y = 1|x(t)

,w

(t))]
o

6

Problem 2: Unknown Number of Features

n  For example, bag-of-words features for text data:
¨  “Mary had a little lamb, little lamb…”

n  What’s the dimensionality of x?
n  What if we see new word that was not in our vocabulary?

¨  Obamacare

¨  Theoretically, just keep going in your learning, and initialize wObamacare = 0
¨  In practice, need to re-allocate memory, fix indices,… A big problem for Big Data

©Carlos Guestrin 2013 11

What Next?
n  Hashing & Sketching!

¨  Addresses both dimensionality issues and new features in one approach!

n  Let’s start with a much simpler problem: Is a string in our vocabulary?
¨  Membership query

n  How do we keep track?
¨  Explicit list of strings

n  Very slow

¨  Fancy Trees and Tries
n  Hard to implement and maintain

¨  Hash tables?

©Carlos Guestrin 2013 12

7

Hash Functions and Hash Tables
n  Hash functions map keys to integers (bins):

¨  Keys can be integers, strings, objects,…

n  Simple example: mod
¨  h(i) = (a.i + b) % m

¨  Random choice of (a,b) (usually primes)
¨  If inputs are uniform, bins are uniformly used
¨  From two results can recover (a,b), so not pairwise independent -> Typically use fancier

hash functions
n  Hash table:

¨  Store list of objects in each bin
¨  Exact, but storage still linear in size of object ids, which can be very long

n  E.g., hashing very long strings, entire documents

©Carlos Guestrin 2013 13

Hash Bit-Vector Table-based
Membership Query

n  Approximate queries with one-sided error: Accept false positives only
¨  If we say no, element is not in set
¨  If we say yes, element is very to be likely in set

n  Given hash function, keep binary bit vector v of length m:

n  Query Q(i): Element i in set?
¨ 
¨ 

n  Collisions:

n  Guarantee: One-sided errors, but may make many mistakes
¨  How can we improve probability of correct answer?

©Carlos Guestrin 2013 14

8

Bloom Filter: Multiple Hash Tables

n  Single hash table -> Many false positives

n  Multiple hash tables with independent hash functions
¨  Apply h1(i),…, hd(i), set all bits to 1

n  Query Q(i)?

n  Significantly decrease probability of false positives
©Carlos Guestrin 2013 15

Analysis of Bloom Filter

n  Want to keep track of n elements with false positive
probability of δ>0… how large m & d?

n  Simple analysis yields:

©Carlos Guestrin 2013 16

m =

n log2
1
�

ln 2

⇡ 1.5n log2
1

�

d = log2
1

�

9

Sketching Counts

n  Bloom Filter is super cool, but not what we need…
¨  We don’t just care about whether a feature existed before, but to keep

track of counts of occurrences of features!

n  Recall Perceptron update:

n  Must keep track of counts of each feature (weighed by y(t)):

¨  E.g., with sparse data, for each non-zero dimension i in x(t):

n  Can we generalize the Bloom Filter?
©Carlos Guestrin 2013 17

w

(t+1) w

(t) +
h
y(t)(w(t) · x(t)) 0

i
y(t)x(t)

Count-Min Sketch: single vector
n  Simpler problem: Count how many times you see each string
n  Single hash function:

¨  Keep Count vector of length m
¨  every time see string i:

¨  Again, collisions could be a problem:

n  ai is the count of element i:

©Carlos Guestrin 2013 18

Count[h(i)] Count[h(i)] + 1

10

Count-Min Sketch: general case
n  Keep d by m Count matrix

n  d hash functions:
¨  Just like in Bloom Filter, decrease errors with multiple hashes
¨  Every time see string i:

©Carlos Guestrin 2013 19

8j 2 {1, . . . , d} : Count[j, h(i)] Count[j, h(i)] + 1

Querying the Count-Min Sketch

n  Query Q(i)?
¨  What is in Count[j,k]?

¨  Thus:

¨  Return:

©Carlos Guestrin 2013 20

8j 2 {1, . . . , d} : Count[j, h(i)] Count[j, h(i)] + 1

11

Analysis of Count-Min Sketch

n  Set:

n  Then, after seeing n elements:

n  With probability at least 1-δ

©Carlos Guestrin 2013 21

âi = min
j

Count[j, h(i)] � ai

m =
le
✏

m
d =

⇠
ln

1

�

⇡

âi ai + ✏n

Proof of Count-Min for Point Query with
Positive Counts: Part 1 – Expected Bound

n  Ii,j,k = indicator that i & k collide on hash j:

n  Bounding expected value:

n  Xi,j = total colliding mass on estimate of count of i in hash j:

n  Bounding colliding mass:

n  Thus, estimate from each hash function is close in expectation
©Carlos Guestrin 2013 22

12

Proof of Count-Min for Point Query with Positive
Counts: Part 2 – High Probability Bounds

n  What we know:

n  Markov inequality: For z1,…,zk positive iid random variables

n  Applying to the Count-Min sketch:

©Carlos Guestrin 2013 23

Count[j, h(i)] = ai +Xi,j E[Xi,j]
✏

e
n

P (8zi : zi > ↵E[zi]) < ↵�k

But Our Updates may be positive or
Negative

n  Count-Min sketch for positive & negative case
¨  ai no longer necessarily positive

n  Update the same: Observe change Δi to element i:

¨  Each Count[j,h(i)] no longer an upper bound on ai

n  How do we make a prediction?

n  Bound:
¨  With probability at least 1-δ1/4, where ||a|| = Σi |ai|

©Carlos Guestrin 2013 24

w

(t+1) w

(t) +
h
y(t)(w(t) · x(t)) 0

i
y(t)x(t)

8j 2 {1, . . . , d} : Count[j, h(i)] Count[j, h(i)] +�i

|âi � ai| 3✏||a||1

13

Finally, Sketching for Perceptron

n  Never need to know size of vocabulary!
n  Make a mistake, update Count-Min matrix:

n  Making a prediction:

n  Scales to huge problems, great practical implications… More next time
©Carlos Guestrin 2013 25

w

(t+1) w

(t) +
h
y(t)(w(t) · x(t)) 0

i
y(t)x(t)

What you need to know
n  Update rules for perceptron and SGD problematic in high

dimensions:
¨  Complexity linear in number of features
¨  What if we have a new feature?

n  Hash functions

n  Bloom filter
¨  Test membership with some false positives, but very small number of bits per element

n  Count-Min sketch

¨  Positive counts: upper bound with nice rates of convergence
¨  General case

n  Application to Perceptron Learning and Prediction

©Carlos Guestrin 2013 26

