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What is the Perceptron Doing???
* JEE
m WWhen we discussed logistic regression:
Started from maximizing conditional log-likelihood

m \When we discussed the Perceptron:
Started from description of an algorithm

m What is the Perceptron optimizing????
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Stochastic Gradient Ascent for

_ Loaistic Reﬁression

m Logistic loss as a stochastic function:
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Convergence rate of SGD
“ JEE
m Theorem:
(see Nemirovski et al ‘09 from readings)

Let fbe a strongly convex stochastic function
Assume gradient of fis Lipschitz continuous and bounded

Then, for step sizes:

The expected loss decreases as O(1/1):
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Convergence rates for gradient

_ _descent/ascent versus SGD
o
m  Number of lterations to get to accuracy

(w*) —Ll(w) < e

m  Gradient descent:
If func is strongly convex: O(In(1/€)) iterations

m  Stochastic gradient descent:
If func is strongly convex: O(1/e) iterations

m  Seems exponentially worse, but much more subtle:

Total running time, e.g., for logistic regression:
= Gradient descent:
= SGD:
= SGD can win when we have a lot of data

And, when analyzing true error, situation even more subtle... expected
running time about the same, see readings
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What you need to know
" JEE—

Perceptron is optimizing hinge loss
Subgradients and hinge loss
(Sub)gradient decent for hinge objective
Objective functions in ML as expectations
Gradient estimation, rather than objective estimation
Stochastic gradient descent -> estimate gradient from single training
example
Mini-batches possible and useful

Stochastic gradient ascent for logistic regression
m Analysis of stochastic gradient descent

Decreasing step size fundamental here
m Comparing analysis of stochastic gradient descent with gradient
descent
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Problem1: Complexity of Update
B} Rglﬁs for LR and Perceptron

m Perceptron update:

wttD) L w® 1 [yu) (w® . x®) < 0} y %)

m Logistic regression update:

wi™ — w® 4o, {_)‘wgt) +2P[y" - P(Y = 1|X(t)’w(t))]}

m Complexity of updates:
Constant in number of data points

In number of features?
= Problem both in terms of computational complexity and sample complexity

m What can we with very high dimensional feature spaces?
Kernels not always appropriate, or scalable
What else?




Problem 2: Unknown Number of Features
" SN

m For example, bag-of-words features for text data:
“Mary had a little lamb, little lamb...”

m What's the dimensionality of x?
m What if we see new word that was not in our vocabulary?
Obamacare

Theoretically, just keep going in your learning, and initialize Wopamacare = 0
In practice, need to re-allocate memory, fix indices,... A big problem for Big Data
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What Next?
= JEEE

m Hashing & Sketching!
Addresses both dimensionality issues and new features in one approach!

m Let’s start with a much simpler problem: Is a string in our vocabulary?
Membership query

m How do we keep track?

Explicit list of strings
= Very slow

Fancy Trees and Tries
= Hard to implement and maintain

Hash tables?
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Hash Functions and Hash Tables
= JEE

Hash functions map keys to integers (bins):
Keys can be integers, strings, objects,...

Simple example: mod
h(i) = (a.i + b) % m

Random choice of (a,b) (usually primes)
If inputs are uniform, bins are uniformly used
From two results can recover (a,b), so not pairwise independent -> Typically use fancier
hash functions
Hash table:
Store list of objects in each bin

Exact, but storage still linear in size of object ids, which can be very long
= E.g., hashing very long strings, entire documents
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Hash Bit-Vector Table-based
Membership Query
JE—

Approximate queries with one-sided error: Accept false positives only
If we say no, element is not in set
If we say yes, element is very to be likely in set

Given hash function, keep binary bit vector v of length m:

Query Q(i): Element i in set?

Collisions:

Guarantee: One-sided errors, but may make many mistakes
How can we improve probability of correct answer?
©Carlos Guestrin 2013 14




Bloom Filter: Multiple Hash Tables
* JE

m Single hash table -> Many false positives

m Multiple hash tables with independent hash functions
Apply hy(i),..., hy(i), set all bits to 1

m Query Q(i)?

m Significantly decrease probability of false positives
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Analysis of Bloom Filter
" JEE——
m Want to keep track of n elements with false positive
probability of >0... how large m & d?

m Simple analysis yields:

nlog, %

m=——>% = 1.5nlog,

1
In 2 )

©Carlos Guestrin 2013 16




Sketching Counts
* JE
Bloom Filter is super cool, but not what we need...

We don't just care about whether a feature existed before, but to keep
track of counts of occurrences of features!

Recall Perceptron update:

wttD) w® 1 [yu) (w® . x®) < 0} yOx®)

Must keep track of counts of each feature (weighed by y®):
E.g., with sparse data, for each non-zero dimension i in x®:

Can we generalize the Bloom Filter?
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Count-Min Sketch: single vector
" JEE——

m  Simpler problem: Count how many times you see each string
m Single hash function:

Keep Count vector of length m

every time see string /:

Count[h(i)] < Count[h(7)] + 1

Again, collisions could be a problem:
= g is the count of element i:
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Count-Min Sketch: general case
* JEE

m Keep d by m Count matrix

m d hash functions:
Just like in Bloom Filter, decrease errors with multiple hashes
Every time see string /:

Vjie{l,...,d}: Count[j, h(i)] < Count[j, h(i)] + 1

Querying the Count-Min Sketch
" S
Vi e{l,...,d}: Count[j, h(i)] < Count[j, h(i)] + 1

m Query Q(i)?
What is in Count[j,k]?

Thus:

Return:
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Analysis of Count-Min Sketch

" JEE
a; = min Countl[j, h(i)] > a;
j

el e

m Then, after seeing n elements:
a; < a;+en

m With probability at least 1-0
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Proof of Count-Min for Point Query with

Positive Counts: Part 1 — Expected Bound
" JEE

m |, = indicator that i & k collide on hash j:

Bounding expected value:

X;; = total colliding mass on estimate of count of i in hash j:

Bounding colliding mass:

Thus, estimate from each hash function is close in expectation
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Proof of Count-Min for Point Query with Positive
Counts: Part 2 — High Probability Bounds
" JEE

m What we know: Count[j, h(i)] = a; + X, ; E[)(2 j] < -n

™

m Markov inequality: For z,,...,z, positive iid random variables

P(Vz : 2z > aE[z]) < a™*

m Applying to the Count-Min sketch:
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But Our Updates may be positive or

_ Neﬂative

wttD) L w® 1 [yu) (w® . x®) < 0] y %)

m  Count-Min sketch for positive & negative case
a; no longer necessarily positive

m Update the same: Observe change A, to element i:

Vi eA{l,...,d} : Count[j, h(i)] < Count[j, h(i)] + A,

Each Countfj,h(i)] no longer an upper bound on a;
m How do we make a prediction?

= Bound: |&z — ai| < 3€Ha||1
With probability at least 1-5'4, where ||a|| = Z; |a|
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Finally, Sketching for Perceptron
" S
w(ttD)  w® 41 [y®(w® . x0)) < ] yOx®

Never need to know size of vocabulary!
Make a mistake, update Count-Min matrix:

Making a prediction:

Scales to huge problems, great practical implications... More next time
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What you need to know
* JEE—

m Update rules for perceptron and SGD problematic in high
dimensions:
Complexity linear in number of features
What if we have a new feature?

Hash functions
Bloom filter

Test membership with some false positives, but very small number of bits per element

Count-Min sketch

Positive counts: upper bound with nice rates of convergence
General case

Application to Perceptron Learning and Prediction
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