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Case Study 4: Collaborative Filtering 

Interpreting Low-Rank Matrix Completion 
(aka Matrix Factorization) 
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Stochastic Gradient Descent 

n  Observe one rating at a time ruv  

n  Gradient observing ruv: 

n  Updates: 
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What’s Matrix Factorization Optimizing??? 

n  A generative process: 
¨  Pick user factors 
¨  Pick movie factors 
¨  For each (user,movie) pair observed: 

n  Pick rating as LuRv + noise 
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Maximum A Posteriori for Matrix Completion 
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MAP versus Regularized Least-Squares 
for Matrix Completion 

n  MAP under Gaussian Model: 

 
n  Least-squares matrix completion with L2 regularization: 

 

n  Understanding as a probabilistic models is very useful! E.g., 
¨  Change priors 

¨  Incorporate other sources of information or dependencies 
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Cold-Start Problem 

n  Challenge: Cold-start problem (new movie or user) 
n  Methods: use features of movie/user 
 

IN THEATERS 
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Cold-Start More Formally 
n  No observations about a particular user: 

n  A simpler model for collaborative filtering: 
¨  Observe ratings: 
 
¨  Given features of a movie: 

¨  Fit linear model:  

¨  Minimize: 
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Personalization 
n  If we don’t have any observations about a user, use wisdom of the crowd 

¨  Address cold-start problem 

n  But, as we gain more information about the user, forget the crowd: 

n  Graphically: 
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User Features… 
n  In addition to movie features, may have information user: 

n  Combine with features of movie: 

n  Unified linear model: 
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Feature-based Approach versus Matrix 
Factorization 

n  Feature-based approach:  
¨  Feature representation of user and movies fixed 
¨  Can address cold-start 

n  Matrix factorization approach: 
¨  Suffers from cold-start problem 
¨  User & movie features are learned from data 

 
n  Unified model: 

©Carlos Guestrin 2013 11 

MAP for Unified Collaborative Filtering via SGD 

n  Gradient step observing ruv 
¨  For L,R  

¨  For w and wu: 
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What you need to know… 

n  Probabilistic model for collaborative filtering 
¨ Models, choice of priors 
¨ MAP equivalent to optimization for matrix completion 

n  Cold-start problem 

n  Feature-based methods for collaborative filtering 
¨ Help address cold-start problem 

n  Unified approach 
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