


# Nearest Neighbor with KD Trees | Ook at dist | From banding to box of box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at dist | From banding to box of look at lo

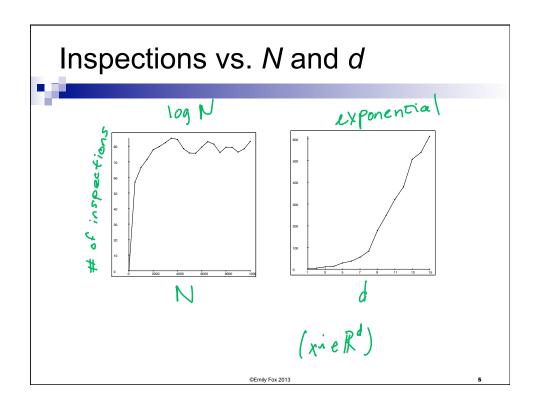
# Nearest Neighbor with KD Trees

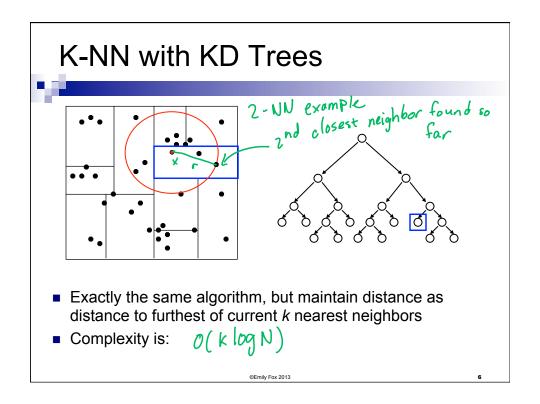




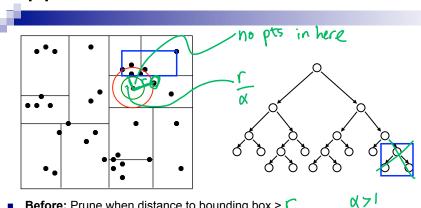
- Using the distance bound and bounding box of each node:
  - □ Prune parts of the tree that could NOT include the nearest neighbor

# Complexity





- For (nearly) balanced, binary trees...
- Construction
  - □ Size: 2N-1

  - Depth:  $O(\log N)$ Median + send points left right: O(N) at every tree level


    Construction time:  $O(N \log N)$  (smart)
- 1-NN query

  - □ Traverse down tree to starting point:  $O(\log N)$ □ Maximum backtrack and traverse: O(N) worst case
  - □ Complexity range: O((og N) → O(N)
- Under some assumptions on distribution of points, we get O(log*N*) but exponential in *d* (see citations in reading)





# Approximate K-NN with KD Trees



- **Before:** Prune when distance to bounding box > \( \bigcirc
- **Now:** Prune when distance to bounding box > \( \frac{1}{2} \)
  Will prune more than allowed, but can guarantee that if we return a neighbor at distance r, then there is no neighbor closer than  $r/\alpha$ .
- In practice this bound is loose...Can be closer to optimal.
- Saves lots of search time at little cost in quality of nearest neighbor.

# Wrapping Up – Important Points



#### kd-trees

- Tons of variants
  - □ On construction of trees (heuristics for splitting, stopping, representing branches...)
  - □ Other representational data structures for fast NN search (e.g., ball trees,...)

#### **Nearest Neighbor Search**

Distance metric and data representation are crucial to answer returned



- High dimensional spaces are hard!
- □ Number of kd-tree searches can be exponential in dimension
  - Rule of thumb... N >> 2<sup>d</sup>... Typically useless.
- □ Distances are sensitive to irrelevant features
  - Most dimensions are just noise → Everything equidistant (i.e., everything is far away)
  - Need technique to learn what features are important for your task

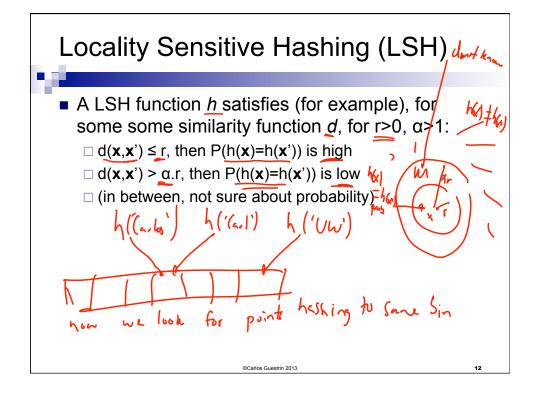
# What you need to know

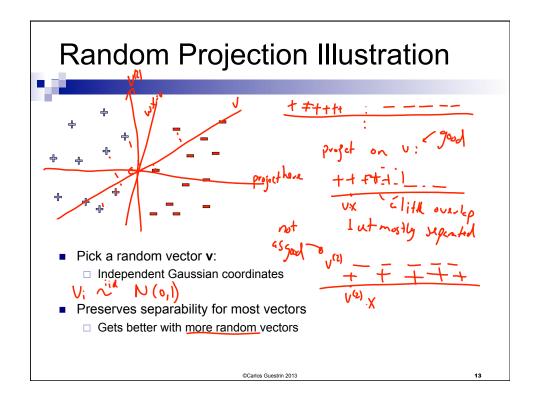


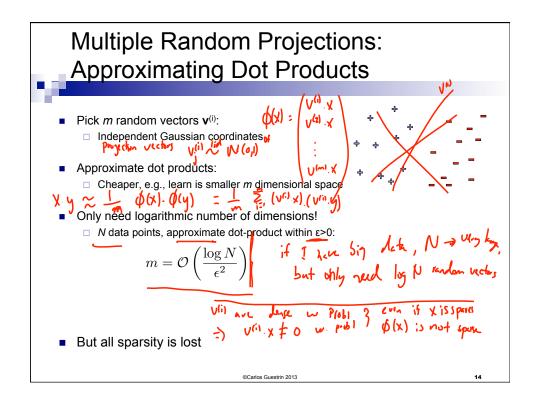
- Document retrieval task
  - □ Document representation (bag of words)
  - □ tf-idf
- Nearest neighbor search
  - □ Formulation
  - □ Different distance metrics and sensitivity to choice
  - □ Challenges with large N
- kd-trees for nearest neighbor search
  - Construction of tree
  - □ NN search algorithm using tree
  - □ Complexity of construction and query
  - □ Challenges with large d

©Emily Fox 2013

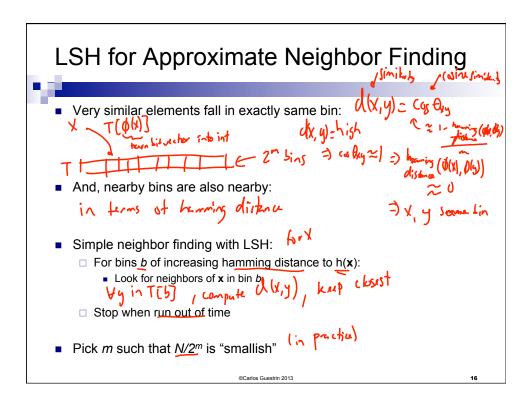
.

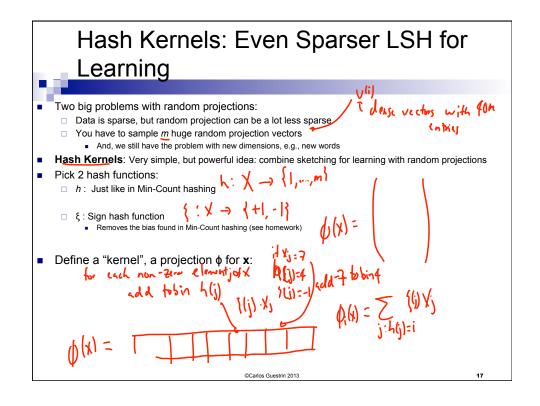

# Locality-Sensitive Hashing Hash Kernels Multi-task Learning

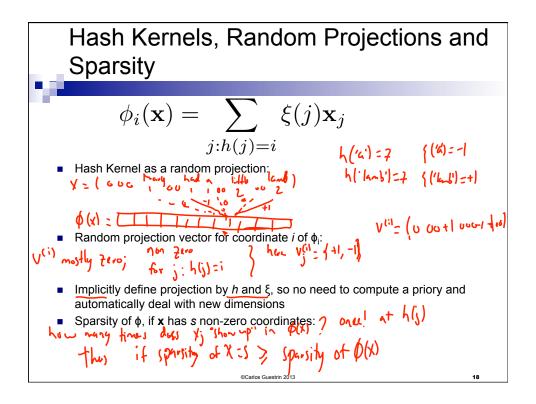

Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Carlos Guestrin January 24th, 2013


©Carlos Guestrin 2013

0


# Using Hashing to Find Neighbors - KD-trees are cool, but... - Non-trivial to implement efficiently - Problems with high-dimensional data - Approximate neighbor finding... - Don't find exact neighbor, but that's OK for many apps, especially with Big Data - What if we could use hash functions: - Hash elements into buckets: - ('('\( \frac{1}{2} \) \) \) \( \frac{1}{2} \)






LSH Example: Sparser Random Projection for Dot products 
$$v(x)$$
  $v(y)$   $v(y)$ 







### 11x-411; = 12+52-2x.4

## Hash Kernels Preserve Dot Products



Hash kernels provide unbiased estimate of dot-products!

- Variance decreases as O(1/m) ← gets better with more dins
- Choosing m? For  $\epsilon>0$ , if  $m = \mathcal{O}\left(\frac{\log \frac{N}{\delta}}{\epsilon^2}\right)$ 
  - □ Under certain conditions...
  - □ Then, with probability at least 1-δ:

$$(1 - \epsilon)||\mathbf{x} - \mathbf{x}'||_2^2 \le ||\phi(\mathbf{x}) - \phi(\mathbf{x}')||_2^2 \le (1 + \epsilon)||\mathbf{x} - \mathbf{x}'||_2^2$$

©Carlos Guestrin 2013

19

# Learning With Hash Kernels



- Given hash kernel of dimension *m*, specified by *h* and ξ
  □ Learn *m* dimensional weight vector
- Observe data point x
  - □ Dimension does not need to be specified a priori!
- Compute φ(x):
  - □ Initialize φ(x) : ○
  - □ For non-zero entries j of  $\mathbf{x}_j$ :

• Use normal update as if observation were  $\phi(\mathbf{x})$ , e.g., for LR using SGD:

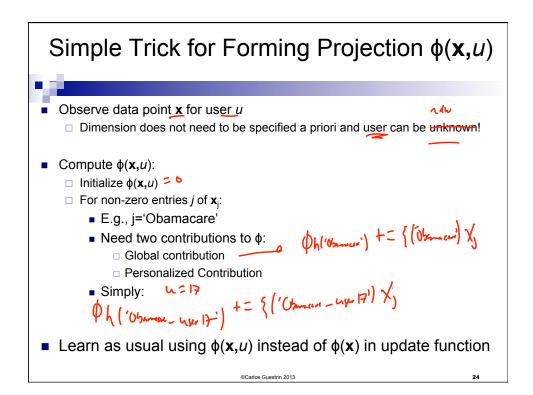
$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + \underbrace{\phi_i(\mathbf{x}^{(t)})}_{}[y^{(t)} - P(Y = 1 | \phi(\mathbf{x}^{(t)}), \mathbf{w}^{(t)})] \right\}$$

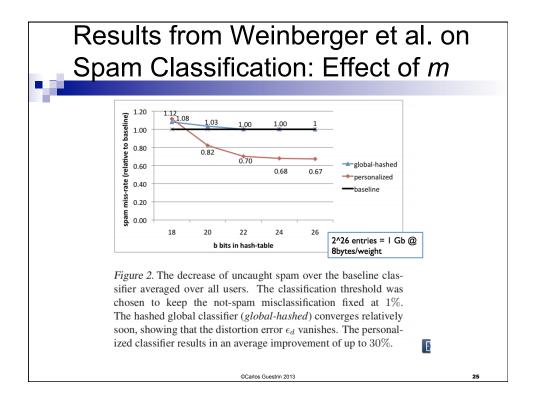
$$P(Y = 1 | \phi(\mathbf{x}^{(t)}), \mathbf{w}^{(t)}) = \frac{\exp(\phi(\mathbf{x}^{(t)}) \cdot \mathbf{w}^{(t)})}{1 + \exp(\phi(\mathbf{x}^{(t)}) \cdot \mathbf{w}^{(t)})}$$

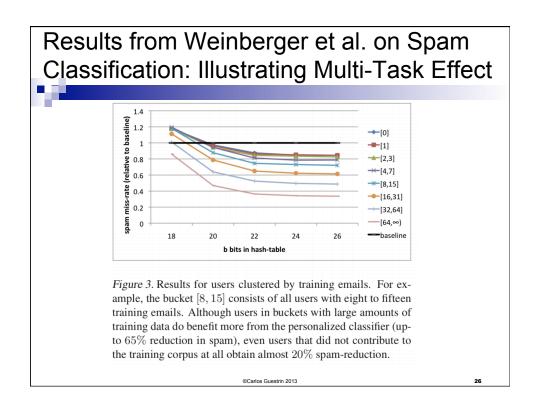
Carlos Guestrin 2013

| Interesting Application of Hash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Kernels: Multi-Task Learning exp(x · w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .)            |
| Personalized click estimation for many users: $1 + \exp(\mathbf{x} \cdot \mathbf{x})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathbf{w})$ |
| □ One global click prediction vector w: Privice wsing W·X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
| ■ But ρeepk = e writz  □ A click prediction vector w <sub>u</sub> per user u:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |
| predict with wax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| But people are larger  Multi-task learning: Simultaneously solve multiple learning related problems:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |
| □ Use information from one learning problem to inform the others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| ■ In our simple example, learn both a global w and one wu per user:  □ Prediction for user u: ( \( \mathcal{W} + \mathcal{W}_n \) \( \mathcal{X} = \mathcal{W} - \mathcal{X} + \mathcal{W}_n \) \( \mathcal{X} = \mathcal{X} \) \( \mathcal{X} = \mathcal{W}_n \) \( \mathcal{X} = \mathcal{X} \) \( X |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
| If we know little about user u: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
| Sky State Configuration of Jan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
| ©Carlos Guestrin 2013 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |

## Problems with Simple Multi-Task Learning





- Dealing with new user annoying, just like dealing with new words in vocabulary
- Dimensionality of joint parameter space is HUGE, e.g. personalized email spam classification from Weinberger et al.:
  - □ 3.2M emails
  - □ 40M unique tokens in vocabulary
  - □ 430K users
  - □ 16T parameters needed for personalized classification!


©Carlos Guestrin 2013

22

### 







# What you need to know



- Locality-Sensitive Hashing (LSH): nearby points hash to the same or nearby bins
- LSH use random projections
  - Only O(log N/ε²) vectors needed
  - But vectors and results are not sparse
- Use LSH for nearest neighbors by mapping elements into bins
  - □ Bin index is defined by bit vector from LSH
  - □ Find nearest neighbors by going through bins
- Hash kernels:
  - □ Sparse representation for feature vectors
  - □ Very simple, use two hash function
    - $\bullet$  Can even use one hash function, and take least significant bit to define  $\xi$
  - Quickly generate projection φ(x)
  - □ Learn in projected space
- Multi-task learning:
  - □ Solve many related learning problems simultaneously
  - □ Very easy to implement with hash kernels
  - □ Significantly improve accuracy in some problems
    - if there is enough data from individual users

©Carlos Guestrin 2013