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fMRI Prediction Task
= JEE

m Goal: Predict word stimulus from fMRI image
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or

(logistic regression,
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Typical Stimuli

Each stimulus
repeated several
times
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X hammer
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Zero-Shot Classification
" JEE
m Goal: Classify words not in the training set

m Challenges:
Cost of fMRI recordings is high
Can’t get recordings for every word in the vocabulary

Never showed "”)i/‘ﬂ«ffe,'/ I Seanner

Classifier HEPMER

(logistic regression, or
kNN, ...) HOUSE
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0.0286, touch

0.0000, drive

Semantic Features corpus
" JEE

Semantic feature values: “ﬁgl_e_r_v_” Semantic feature values: “airplane”
0.8368, cat - 0.8673, ride -
0.3461, taste 0.2891, see

0.3153, fill 0.2851, say

0.2430, see 0.1689, near

0.1145, clean 0.1228, open

0.0600, open 0.0883, hear

0.0586, smell 0.0771, run

0.0749, lift

0.0049, smell

0.0000, wear 0.0010, wear
0.0000, lift 0.0000, taste
0.0000, break 0.0000, rub
0.0000, ride 0.0000, manipulate
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Zero-Shot Classification
" JEE
. . Y ucl b

m From training data, learn two mappings: , 09)

S: input image - semantic features Lo

L: semantic features > word B‘ % I] - udooug

n®  many b
S0

m Can use “cheap” co-occwnce data to help learn L
Traini mﬁ: 7 W'—_) [ — "c‘ﬂ@” ? N em\mPles .. N Sma”

use bath A+ R

o Classifier ~ HAMMER
m (logistic regression, or
kNN, ...) HOUSE
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fMRI Prediction Subtask

m Goal: Predict semantic features from fMRI image
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Ridge Regression
" J—
m Ameliorating issues with overfitting: ?cn cli Zason of w:.ijk’cg

n
m New objectlve
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Variable Selection
" p——

sens™¥
m Ridge regression: Penalizes large weights 5‘@. C"«'E’:/{"!‘- h
40 wwe Moétl
m What if we want to perform “feature selection™?
E.g., Which regions of the brain are important for word prediction?
Can’t simply choose predictors with largest coefficients in ridge solution

Computationally impossible to perform “all subsets” regression
. IR s .
drsv® 2? Subsets of P"Ifé'cbrs v, Con’E do fLu_S

Stepwise procedures are sensitive to data perturbations and often include
features with negligible improvement in fit — ay’l-l Y, bu %

m Try new penalty: Penalize non-zero weights
Penalty:

1l 3Z|53\

Leads to sparse soll.ftions
Just like ridge regression, solution is indexed by a continuous param A
R ——— e
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LASSO Regression
" JEE—

m LASSO: least absolute shrinkage and selection operator

m New objective:
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Geometric Intuition for Sparsity

Lasso Ridge Regression
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Soft Threshholding
* JEE—
m To see why LASSO results in sparse solutions, look at
conditions that must hold at optimum

= L1 penalty ||5]|1 is not differentiable whenever 3; = 0

m Look at subgradient...
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Subgradients of Convex Functions
"

m Gradients lower bound convex functions:

) 2 40+ (y)

m Gradients are‘uniq ";t x if function differentiable at x

m Subgradients: Generalize gradients to non-differentiable points:

?ny plane that lower bounds function: Ve (Dﬂj) S“\L‘y"t”J

{ly i
{7, {6 + v (4-X)

[S =—=e~
Q

Soft Threshholding

= JEE
m Gradient of RSS term:

m Subgradient of full objective:




Soft Threshholding

® JE—
m Set subgradient = 0: ajfj—ci=X  B; <0
85]}7‘(5): [*Cj*)y*Cj‘F)\} ﬁJ:O
CLij-Cj—F)\ 5j>0

N
= Thevalue of ¢; =2) aj(y' — B 2" ;) constrains J;
i=1
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Soft Threshholding
" J

(Cj + )\)/G;j ¢ < —A

Bj = 0 ¢j € [_)‘7 >‘]
(cj—)\)/aj Cj>)\

/ From
Ck Kevin Murphy
/ textbook
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Recall: Ridge Coefficient Path
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m Typical approach: select A using cross validation [0V>
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Now: LASSO Coefficient Path
" S
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LASSO Example
"

Term Least Squares  Ridge Lasso

Intercept 2.465 2,452  2.468

lcavol 0.680 0.420 0.533

lweight 0.263 0.238  0.169
age —0.141 —0.046

lbph 0.210 0.162  0.002

svi 0.305 0.227  0.094
lcp —0.288 0.000
gleason —0.021 0.040
pgg4b 0.267 0.133
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Debiasing
S

Original (D = 4096, number of nonzeros = 160)

0 ﬁn Il LI ‘ ||| Iﬂtﬂ
L [ ] [T 1L
0 1000 2000 3000 4000
L1 reconstruction (KO = 1024, lambda = 0.0516, MSE = 0.0027

1’ T T ™
[T
LU Wﬁ%ﬁﬁ%ﬂﬁ%ﬁ

0 1000 2000 3000 4000
Debiased (MSE = 3.26e-005)

1 T T T
¢

0 1000 2000 3000 4000
Minimum norm solution (MSE = 0,0292)

0.5 ; ‘ : :
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0 1000 2000 3000 4000

From Kevin Murphy textbook
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Sparsistency
* JEE—

m Typical Statistical Consistency Analysis:

Holding model size (p) fixed, as number of samples (N) goes to
infinity, estimated parameter goes to true parameter

m Here we want to examine p >> N domains

m Let both model size p and sample size N go to infinity!
Hard case: N = klog p
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Sparsistency
* JEE——

m Rescale LASSO objective by N:

m Theorem (Wainwright 2008, Zhao and Yu 2006, ...):
Under some constraints on the design matrix X, if we solve the LASSO
regression using

Then for some ¢,>0, the following holds with at least probability

The LASSO problem has a unique solution with support contained
within the true support
B7| > caA, for some c,>0, then S(5) = S(8*)

If min
JES(B*)
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LASSO Algorithms
* JEEE
m Standard convex optimizer

m Least angle regression (LAR)
Efron et al. 2004
Computes entire path of solutions
State-of-the-art until 2008

m Pathwise coordinate descent — new
m More on these “shooting” algorithms next time...
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LARS — Efron et al. 2004
" JEE

m LAR is an efficient stepwise variable selection algorithm
“useful and less greedy version of traditional forward selection methods”

m Can be modified to compute regularization path of LASSO
- LARS (Least angle regression and shrinkage)

m Increasing upper bound B, coefficients gradually “turn on”
Few critical values of B where support changes
Non-zero coefficients increase or decrease linearly between critical points
Can solve for critical values analytically

m Complexity:
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LASSO Coefficient Path
= JEE

LAR

A\
\
;
\
b X @
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LARS — Algorithm
" JEE—
m Assumptions:
Response has 0 mean

Covariates are normalized

ooooooooooooo
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LARS — Algorithm Overview
* JE—

Start with all coefficient estimates

Let A be the “active set” of covariates most correlated with the
“current” residual

Initially, A = {z;, } for some covariate x,

Take the largest possible step in the direction of X, until another
covariate X j, enters 4

Continue in the direction equiangular between ;, and Zj, until a third
covariate I j, enters 4

Continue in the direction equiangular between Ly, Ly, Ty until a
fourth covariate x ;, enters A4

This procedure continues until all covariates are added at which point
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LARS — lllustration for p=2 covariates
- o S M “

] ~J —
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LARS - lllustration for p=2 covariates

<2
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LARS — lllustration for p=2 covariates

g = .
=
i B ,445
i :
3
H N
§

<2

frg iy X1
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LARS - lllustration for p=2 covariates

<2
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LARS — lllustration for p=2 covariates
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LARS-LASSO Relationship
* JEE
m Let pu(y) = XB(7) with

= One can show that for active covariate j: sign(3;) = sign (s (y — 1))

m [3;(y) changes sign at
m 1stsign change occurs at Y = mi>%{’yj} for covariate
Vi
m If Y occurs before 7, then next LARS step is not a LASSO solution
m LASSO modification:

©Emily Fox 2013
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LASSO Coefficient Path
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Comments
" JEE
m LARS increases A, but LASSO allows it to decrease

m Only involves a single index at a time
m If p> N, LASSO returns at most N variables

m If group of variables are highly correlated, LASSO tends to
choose one to include rather arbitrarily
Straightforward to observe from LARS algorithm....Sensitive to noise.
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Comments
= JEEE

m In general, can’t solve analytically for GLM (e.g., logistic reg.)

Gradually decrease A and use efficiency of computing B(Ak) from B(/\k_l)
= warm-start strategy

See Friedman et al. 2010 for coordinate ascent + warm-starting strategy

m If N > p, but variables are correlated, ridge regression tends
to have better predictive performance than LASSO
(Zou & Hastie 2005)

Elastic net is hybrid between LASSO and ridge regression
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Fused LASSO
= JEE

m  Might want coefficients of neighboring
voxels to be similar

m How to modify LASSO penalty to account for this?

m Graph-guided fused LASSO
Assume a 2d lattice graph connecting neighboring pixels in the fMRI image
Penalty:
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Generalized LASSO
" S

m  Assume a structured linear regression model:

m If Dis invertible, then get a new LASSO problem if we substitute

m Otherwise, not equivalent

m For solution path, see
Ryan Tibshirani and Jonathan Taylor, “The Solution Path of the
Generalized Lasso.” Annals of Statistics, 2011.
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Generalized LASSO
= JEE

. 1
By = argmin §||y = BlI5 + DB
BER™

-1 1 0 0 ...
0 -1 10 ...
Let D = 0 0 -1 1 . This is the 1d fused lasso.

T
0 20 40 60 80 100
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Generalized LASSO
" JEEE

~ . 1
B = argmin _|ly — Bll5 + AIDB|
BER™

Suppose D gives “adjacent” differences in 3:

where adjacency is defined according to a graph G. For a 2d grid,
this is the 2d fused lasso.
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Generalized LASSO
= JEE

~ 1
Br = argmin Zly — B3+ AIDBI:
BeR™

-1 2 -1 0 ...
0 -1 2 -1 .. o _
Let D = 0 0 —1 2 ... |- Thisis linear trend filtering.
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Generalized LASSO
" S

~ 1
i = argmin < lly = 13 + A1 DAL
BER™

-1 3 =3 1 ...
0 -1 3 -3 ... _ o
Let D = 0 0 -1 3 ... |- Getquadratic trend filtering.

60
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Generalized LASSO
= JEE

m Tracing out the fits as a function of the regularization parameter

By for A =25 By for A € [0, 00]
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fMRI Prediction Results
= JEEE

m Palatucci et al., “Zero-Shot Learning with Semantic Output Codes”,
NIPS 2009

m fMRI dataset:
9 participants
60 words (e.g., bear, dog, cat, truck, car, train, ...)
6 scans per word
Preprocess by creating 1 “time-average” image per word

m Knowledge bases
Corpus5000 — semantic co-occurrence features with 5000 most frequent words
in Google Trillion Word Corpus
human218 — Mechanical Turk (Amazon.com)

218 semantic features (“is it manmade?”, “can you hold it?”,...)
Scale of 1t0 5
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fMRI Prediction Results
= JEE

m First stage: Learn mapping from images to semantic features

m Ridge regression

m Second stage: 1-NN classification using knowledge base
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fMRI Prediction Results
" JE
m Leave-two-out-cross-validation
Learn ridge coefficients using 58 fMRI images

Predict semantic features of 15t heldout image
Compare whether semantic features of 15t or 2" heldout image are closer

Table 1: Percent ies for leave-t t-cross-validation for 9 fMRI participants (labeled P1-
P9). The values represent classifier percentage accuracy over 3,540 trials when discriminating be-
tween two fMRI images, both of which were omitted from the training set.

P1 P2 P3 P4 P5 P6 P7 P8 P9 Mean
corpus5000 79.6 67.0 695 562 777 655 712 729 679 69.7
human218  90.3 829 866 719 895 753 780 777 762 809

Bear & Dog Prediction Match DBear Predicted

@Bear Target
W Dog Target
ODog Predicted

Isitan |Is itman- Do you see Canyou |Would you | Doyou | Doesit |Isitwild? | Doesit
animal? itdaily? |helpful? | holdit? !finditina [loveit? | stand on provide
house? two legs? protection?

Figure 1: Ten semantic features from the human218 knowledge base for the words bear and dog.
The true encoding is shown along with the predicted encoding when fMRI images for bear and dog
were left out of the training set.
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fMRI Prediction Results

" JEE
m Leave-one-out-cross-validation

Learn ridge coefficients using 59 fMRI images
Predict semantic features of heldout image

Compare whether very large set of possible other words

Rank Accuracy
100% &
%0%
2 8o%
g
3 1w
8
< 0%
50% {— Chance
0%
corpus000  human218 corpuss000  human218
mrié0 Word Set noun940 Word Set

Figure 2: The mean and median rank accuracies across nine participants for two different semantic

feature sets. Both the original 60 fMRI words and a set of 940 nouns were considered.

im
word selected from 941 concrete nouns in English.

Table 2: The top five predicted words for a novel fMRI image taken for the word in bold (all fMRI
ima aken from participant P1). The number in the parentheses contains the rank of the correct

Bear  Foot Screwdriver Train  Truck Celery House Pants
@ (] @ @) 2) &) ©6) @
bear foot screwdriver  train jeep beet supermarket  clothing
fox feet pin jet truck artichoke  hotel vest
wolf ankle nail Jjail minivan ~ grape theater t-shirt
yak  knee wrench factory  bus cabbage  school clothes
gorilla face  dagger bus sedan  celery factory panties
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m Some material in this lecture was based on slides
provided by:
Tom Mitchell — fMRI
Rob Tibshirani — LASSO
Ryan Tibshirani — Fused LASSO
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