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Case Study 3: fMRI Prediction 

fMRI Prediction Task 

©Emily Fox 2013 2 

n  Goal: Predict word stimulus from fMRI image 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 
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Typical Stimuli 
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Typical stimuli 

Each stimulus 

repeated several 

times 

Zero-Shot Classification 
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n  Goal: Classify words not in the training set 
n  Challenges:  

¨  Cost of fMRI recordings is high 
¨  Can’t get recordings for every word in the vocabulary 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 
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Semantic Features 
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Semantic feature values: “celery” 

 0.8368, eat  

 0.3461, taste 

 0.3153, fill 

 0.2430, see  

 0.1145, clean 

 0.0600, open 

 0.0586, smell 

 0.0286, touch 

 … 

 … 

 0.0000, drive 

 0.0000, wear 

 0.0000, lift 

 0.0000, break 

 0.0000, ride 

Semantic feature values: “airplane” 

 0.8673, ride 

 0.2891, see 

 0.2851, say 

 0.1689, near   

 0.1228, open 

 0.0883, hear 

 0.0771, run 

 0.0749, lift 

 … 

 … 

 0.0049, smell 

 0.0010, wear 

 0.0000, taste 

 0.0000, rub 

 0.0000, manipulate 

Zero-Shot Classification 
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n  From training data, learn two mappings: 
¨  S: input image à semantic features 
¨  L: semantic features à word 

n  Can use “cheap” co-occurrence data to help learn L 

Features 
of word 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 



4 

fMRI Prediction Subtask 
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n  Goal: Predict semantic features from fMRI image 

Features 
of word 

Ridge Regression 

©Emily Fox 2013 8 

n  Ameliorating issues with overfitting:  

n  New objective: 

¨  Reformulate: 

¨  Set gradient = 0 
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Variable Selection 
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n  Ridge regression: Penalizes large weights 
 

n  What if we want to perform “feature selection”? 
¨  E.g., Which regions of the brain are important for word prediction? 
¨  Can’t simply choose predictors with largest coefficients in ridge solution 
¨  Computationally impossible to perform “all subsets” regression 

¨  Stepwise procedures are sensitive to data perturbations and often include 
features with negligible improvement in fit  

n  Try new penalty: Penalize non-zero weights 
¨  Penalty: 

¨  Leads to sparse solutions 
¨  Just like ridge regression, solution is indexed by a continuous param λ 

LASSO Regression 

©Emily Fox 2013 10 

n  LASSO: least absolute shrinkage and selection operator 

n  New objective: 
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Geometric Intuition for Sparsity 
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4

Picture of Lasso and Ridge regression

β̂ β̂2
. .β

1

β 2

β
1

β

Lasso Ridge Regression

Soft Threshholding  

n  To see why LASSO results in sparse solutions, look at 
conditions that must hold at optimum 

n  L1 penalty            is not differentiable whenever  

n  Look at subgradient… 

©Emily Fox 2013 12 

�j = 0||�||1
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Subgradients of Convex Functions 

n  Gradients lower bound convex functions: 

n  Gradients are unique at x if function differentiable at x 

n  Subgradients: Generalize gradients to non-differentiable points: 
¨  Any plane that lower bounds function: 

©Carlos Guestrin 2013 13 

Soft Threshholding  

n  Gradient of RSS term: 

n  Subgradient of full objective: 

©Emily Fox 2013 14 
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Soft Threshholding  

n  Set subgradient = 0: 

n  The value of              constrains 
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cj = 2
NX

i=1

x

i
j(y

i � �

0
�jx

i
�j) �j

@�jF (�) =

8
<

:

aj�j � cj � � �j < 0
[� cj � �,�cj + �] �j = 0

aj�j � cj + � �j > 0

Soft Threshholding  
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�̂j =

8
<

:

(cj + �)/aj cj < ��
0 cj 2 [��,�]

(cj � �)/aj cj > �

From  
Kevin Murphy 
textbook 
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Recall: Ridge Coefficient Path 

n  Typical approach: select λ using cross validation 

©Emily Fox 2013 17 

From  
Kevin Murphy 
textbook 

Now: LASSO Coefficient Path  

©Emily Fox 2013 18 

From  
Kevin Murphy 
textbook 
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LASSO Example  
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6

Estimated coefficients

Term Least Squares Ridge Lasso

Intercept 2.465 2.452 2.468

lcavol 0.680 0.420 0.533

lweight 0.263 0.238 0.169

age −0.141 −0.046

lbph 0.210 0.162 0.002

svi 0.305 0.227 0.094

lcp −0.288 0.000

gleason −0.021 0.040

pgg45 0.267 0.133

Debiasing 

©Emily Fox 2013 20 

From Kevin Murphy textbook 
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Sparsistency 

n  Typical Statistical Consistency Analysis:  
¨  Holding model size (p) fixed, as number of samples (N) goes to 

infinity, estimated parameter goes to true parameter 

n  Here we want to examine p >> N domains 
n  Let both model size p and sample size N go to infinity! 

¨  Hard case: N = k log p 

©Emily Fox 2013 21 

Sparsistency 

n  Rescale LASSO objective by N: 

n  Theorem (Wainwright 2008, Zhao and Yu 2006, …): 
¨  Under some constraints on the design matrix X, if we solve the LASSO 

regression using 

     
     Then for some c1>0, the following holds with at least probability 
 
 
•  The LASSO problem has a unique solution with support contained 

within the true support 
•  If        for some c2>0, then  

©Emily Fox 2013 22 

min
j2S(�⇤)

|�⇤
j | > c2�n S(�̂) = S(�⇤)
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LASSO Algorithms  

©Emily Fox 2013 23 

n  Standard convex optimizer 
n  Least angle regression (LAR) 

¨  Efron et al. 2004 
¨  Computes entire path of solutions  
¨  State-of-the-art until 2008 

n  Pathwise coordinate descent – new 
n  More on these “shooting” algorithms next time… 

LARS – Efron et al. 2004 
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n  LAR is an efficient stepwise variable selection algorithm 
¨  “useful and less greedy version of traditional forward selection methods” 

n  Can be modified to compute regularization path of LASSO 
¨  à LARS (Least angle regression and shrinkage) 

 
n  Increasing upper bound B, coefficients gradually “turn on” 

¨  Few critical values of B where support changes  
¨  Non-zero coefficients increase or decrease linearly between critical points 
¨  Can solve for critical values analytically 

n  Complexity:  
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LASSO Coefficient Path  
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LARS – Algorithm 
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n  Assumptions: 
¨  Response has 0 mean 

 
¨  Covariates are normalized 



14 

LARS – Algorithm Overview 

©Emily Fox 2013 27 

n  Start with all coefficient estimates 

n  Let       be the “active set” of covariates most correlated with the 
“current” residual 

n  Initially,    for some covariate 

n  Take the largest possible step in the direction of         until another 
covariate        enters  

n  Continue in the direction equiangular between         and        until a third 
covariate        enters 

n  Continue in the direction equiangular between       ,       ,        until a 
fourth covariate        enters  

n  This procedure continues until all covariates are added at which point    

A

xj1
A

xj1A = {xj1}

xj2

xj1 xj2
xj3 A

xj1 xj2 xj3
xj4 A

LARS – Illustration for p=2 covariates 
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LASSO Penalised Regression LARS algorithm Comments NP complete problems

Illustration of the Algorithm for m = 2 Covariates

x1

x2

˜

Y

I ˜

Y projection of Y onto the plane spanned by x1, x2.

I µ̂j estimate after j-th step.

Axel Gandy LASSO and related algorithms 34
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LASSO Penalised Regression LARS algorithm Comments NP complete problems

Illustration of the Algorithm for m = 2 Covariates
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LASSO Penalised Regression LARS algorithm Comments NP complete problems
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Illustration of the Algorithm for m = 2 Covariates
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LARS-LASSO Relationship 

©Emily Fox 2013 33 

n  Let      with  
 
 

n  One can show that for active covariate j:  

n            changes sign at 

n  1st sign change occurs at           for covariate 
 

n  If     occurs before    , then next LARS step is not a LASSO solution 
n  LASSO modification:    

µ(�) = X�(�)

sign(�̂j) = sign(x0
j(y � µ̂))

�j(�)

�̃ = min
�j>0

{�j}

�̃ �̂

LASSO Coefficient Path  

©Emily Fox 2013 34 
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Comments 

©Emily Fox 2013 35 

n  LARS increases     , but LASSO allows it to decrease 

n  Only involves a single index at a time 
 
n  If p > N, LASSO returns at most N variables 

n  If group of variables are highly correlated, LASSO tends to 
choose one to include rather arbitrarily 
¨  Straightforward to observe from LARS algorithm….Sensitive to noise. 

 
 
 

A

Comments 

©Emily Fox 2013 36 

n  In general, can’t solve analytically for GLM (e.g., logistic reg.) 
¨  Gradually decrease λ and use efficiency of computing            from 

= warm-start strategy  
¨  See Friedman et al. 2010 for coordinate ascent + warm-starting strategy 

n  If N > p, but variables are correlated, ridge regression tends  
to have better predictive performance than LASSO  
(Zou & Hastie 2005) 
¨  Elastic net is hybrid between LASSO and ridge regression 

 
 

�̂(�k) �̂(�k�1)
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Fused LASSO 

©Emily Fox 2013 37 

n  Might want coefficients of neighboring  
voxels to be similar 

n  How to modify LASSO penalty to account for this? 

n  Graph-guided fused LASSO 
¨  Assume a 2d lattice graph connecting neighboring pixels in the fMRI image 
¨  Penalty: 

Generalized LASSO 
n  Assume a structured linear regression model: 

n  If D is invertible, then get a new LASSO problem if we substitute 

n  Otherwise, not equivalent 

n  For solution path, see  
Ryan Tibshirani and Jonathan Taylor, “The Solution Path of the 
Generalized Lasso.” Annals of Statistics, 2011. 

©Emily Fox 2013 38 
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Generalized LASSO 

©Emily Fox 2013 39 

The fused lasso

ˆ�� = argmin

�2Rn

1

2

ky � �k22 + �kD�k1

Let D =

2

664

�1 1 0 0 . . .
0 �1 1 0 . . .
0 0 �1 1 . . .
...

3

775. This is the 1d fused lasso.
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The fused lasso

ˆ�� = argmin

�2Rn

1

2

ky � �k22 + �kD�k1

Suppose D gives “adjacent” di↵erences in �:

Di = (0, 0, . . .� 1, . . . , 1, . . . 0),

where adjacency is defined according to a graph G. For a 2d grid,
this is the 2d fused lasso.

Generalized LASSO 

©Emily Fox 2013 40 
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Trend filtering

ˆ�� = argmin

�2Rn

1

2

ky � �k22 + �kD�k1

Let D =

2

664

�1 2 �1 0 . . .
0 �1 2 �1 . . .
0 0 �1 2 . . .
...

3

775. This is linear trend filtering.
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Generalized LASSO 
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Generalized LASSO 
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Trend filtering

ˆ�� = argmin

�2Rn

1

2

ky � �k22 + �kD�k1

Let D =

2

664

�1 3 �3 1 . . .
0 �1 3 �3 . . .
0 0 �1 3 . . .
...

3

775. Get quadratic trend filtering.
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Generalized LASSO 

©Emily Fox 2013 43 

n  Tracing out the fits as a function of the regularization parameter 
Visualization of the path

We can choose D to get a piecewise quadratic fit.
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fMRI Prediction Results 
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n  Palatucci et al., “Zero-Shot Learning with Semantic Output Codes”, 
NIPS 2009 

n  fMRI dataset: 
¨  9 participants 
¨  60 words (e.g., bear, dog, cat, truck, car, train, …) 
¨  6 scans per word 
¨  Preprocess by creating 1 “time-average” image per word 

n  Knowledge bases 
¨  Corpus5000 – semantic co-occurrence features with 5000 most frequent words 

       in Google Trillion Word Corpus 
¨  human218 – Mechanical Turk (Amazon.com) 

    218 semantic features (“is it manmade?”, “can you hold it?”,…) 
    Scale of 1 to 5 
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fMRI Prediction Results 

©Emily Fox 2013 45 

n  First stage: Learn mapping from images to semantic features 

n  Ridge regression 

 
n  Second stage: 1-NN classification using knowledge base 

fMRI Prediction Results 
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n  Leave-two-out-cross-validation 
¨  Learn ridge coefficients using 58 fMRI images 
¨  Predict semantic features of 1st heldout image 
¨  Compare whether semantic features of 1st or 2nd heldout image are closer 

Table 1: Percent accuracies for leave-two-out-cross-validation for 9 fMRI participants (labeled P1-
P9). The values represent classifier percentage accuracy over 3,540 trials when discriminating be-
tween two fMRI images, both of which were omitted from the training set.

P1 P2 P3 P4 P5 P6 P7 P8 P9 Mean

corpus5000 79.6 67.0 69.5 56.2 77.7 65.5 71.2 72.9 67.9 69.7
human218 90.3 82.9 86.6 71.9 89.5 75.3 78.0 77.7 76.2 80.9

Bear & Dog Prediction Match

-0.10
-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08
0.10

Is it an
animal?

Is it man-
made?

Do you see
it daily?

Is it
helpful?

Can you
hold it?

Would you
find it in a
house?

Do you
love it?

Does it
stand on
two legs?

Is it wild? Does it
provide

protection?

A
ns

w
er

Bear Predicted
Bear Target
Dog Target
Dog Predicted

Figure 1: Ten semantic features from the human218 knowledge base for the words bear and dog.
The true encoding is shown along with the predicted encoding when fMRI images for bear and dog
were left out of the training set.

2. How is the classifier able to discriminate between closely related novel classes?

Figure 1 shows ten semantic questions (features) from the human218 dataset. The graph shows the
true values along with the predicted feature values for both bear and dog when trained on the other
58 words. We see the model is able to learn to predict many of the key features that bears and dogs
have in common such as is it an animal? as well as those that differentiate between the two, such as
do you see it daily? and can you hold it? For both of these novel words, the features predicted from
the neural data were closest to the true word.

3. Can we decode the word from a large set of possible words?

Given the success of the semantic output code classifier at discriminating between the brain images
for two novel words, we now consider the much harder problem of discriminating a novel word from
a large set of candidate words. To test this ability, we performed a leave-one-out-cross-validation,
where we trained using Equation 3 on images and semantic features for 59 words. We then pre-
dicted the features for the held-out image of the 60th word, and then performed a 1-nearest neighbor
classification in a large set of candidate words.

We tested two different word sets. The first was mri60 which is the collection of all 60 concrete
nouns for which we collected fMRI data, including the 59 training words and the single held out
word. The second set was noun940, a collection of 940 English nouns with high familiarity,
concreteness and imagineability, compiled from Wilson (1988) and Snodgrass (1980). For this set
of words, we added the true held-out word to the set of 940 on each cross-validation iteration. We
performed this experiment using both the corpus5000 and human218 feature sets. The rank
accuracy results (over 60 cross-validation iterations) of the four experiments are shown in Figure 2.

The human218 features again significantly outperform corpus5000 on both mean and median
rank accuracy measures, and both feature sets perform well above chance. On 12 of 540 total
presentations of the mri60 words (60 presentations for each of nine participants), the human218
features predicted the single held-out word above all 59 other words in its training set. While just
a bit above chance level (9/540), the fact that the model ever chooses the held-out word over all
the training words is noteworthy since the model is undoubtedly biased towards predicting feature
values similar to the words on which it was trained. On the noun940 words, the model predicted
the correct word from the set of 941 alternatives a total of 26 times for the human218 features and
22 times for the corpus5000 features. For some subjects, the model correctly picked the right
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n  Leave-one-out-cross-validation 
¨  Learn ridge coefficients using 59 fMRI images 
¨  Predict semantic features of heldout image 
¨  Compare whether very large set of possible other words 
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Figure 2: The mean and median rank accuracies across nine participants for two different semantic
feature sets. Both the original 60 fMRI words and a set of 940 nouns were considered.

Table 2: The top five predicted words for a novel fMRI image taken for the word in bold (all fMRI
images taken from participant P1). The number in the parentheses contains the rank of the correct
word selected from 941 concrete nouns in English.

Bear Foot Screwdriver Train Truck Celery House Pants
(1) (1) (1) (1) (2) (5) (6) (21)
bear foot screwdriver train jeep beet supermarket clothing
fox feet pin jet truck artichoke hotel vest
wolf ankle nail jail minivan grape theater t-shirt
yak knee wrench factory bus cabbage school clothes
gorilla face dagger bus sedan celery factory panties

word from the set of 941 more than 10% of the time. The chance accuracy of predicting a word
correctly is only 0.1%, meaning we would expect less than one correct prediction across all 540
presentations.

As Figure 2 shows, the median rank accuracies are often significantly higher than the mean rank
accuracies. Using the human218 features on the noun940 words, the median rank accuracy is
above 90% for each participant while the mean is typically about 10% lower. This is due to the fact
that several words are consistently predicted poorly. The prediction of words in the categories ani-
mals, body parts, foods, tools, and vehicles typically perform well, while the words in the categories
furniture, man-made items, and insects often perform poorly.

Even when the correct word is not the closest match, the words that best match the predicted features
are often very similar to the held-out word. Table 2 shows the top five predicted words for eight
different held-out fMRI images for participant P1 (i.e. the 5 closest words in the set of 941 to the
predicted vector of semantic features).

5 Conclusion
We presented a formalism for a zero-shot learning algorithm known as the semantic output code
classifier. This classifier can predict novel classes that were omitted from a training set by leveraging
a semantic knowledge base that encodes features common to both the novel classes and the training
set. We also proved the first formal guarantee that shows conditions under which this classifier will
predict novel classes.

We demonstrated this semantic output code classifier on the task of neural decoding using semantic
knowledge bases derived from both human labeling and corpus statistics. We showed this classifier
can predict the word a person is thinking about from a recorded fMRI image of that person’s neural
activity with accuracy much higher than chance, even when training examples for that particular
word were omitted from the training set and the classifier was forced to pick the word from among
nearly 1,000 alternatives.

We have shown that training images of brain activity are not required for every word we would like
a classifier to recognize. These results significantly advance the state-of-the-art in neural decoding
and are a promising step towards a large vocabulary brain-computer interface.
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