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Case Study 2: Document Retrieval 

New Approach: Spectral Clustering 
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n  Goal: Cluster observations 
n  Method:  

¨  Use similarity metric between observations 
¨  Form a similarity graph 
¨  Use standard linear algebra and optimization techniques to cut 

graph into connected components (clusters) 
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Setup 

n  Data: 
n  Similarity metric: 

n  Similarity graph 
¨  Nodes 
¨  Edge weights 

n  Problem: Want to partition graph such that edges 
between groups have low weights 
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Graph Terminology I 

n  Weighted adjacency matrix 
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Issues with MinCut 

n  MinCut favors isolated clusters 

©Emily Fox 2013 5 

Cuts Accounting for Size 

n  Ratio cuts (RatioCut) 
n  Normalized cuts (Ncut) 
n  Lead to “balanced” clusters 
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Restating Cut Metric 
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Ratio Cuts for General k 

n  Define cluster indicator variables: 

 
n  RatioCut 
 

n  Reformulating RatioCut problem 

n  Relaxation  
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Normalized Cuts for General k 

n  Define cluster indicator variables: 
 

n  Reformulating RatioCut problem 

n  Relaxation  

 
n  Solution:  

¨  H is matrix of first k eigenvectors of Lsym, which is equivalent to 
the approximate F being the first k eigenvectors of Lrw 
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Random Walks on Graphs 

n  Stochastic process with random jumps from vi to vj  wp: 

n  Transition matrix: 

n  Connection to graph Laplacian: 

n  Intuitively, want to partition graph s.t. random walk stays in 
cluster for a while and rarely jumps between clusters 

©Emily Fox 2013 10 



6 

Random Walks on Graphs 

n  Assume that stationary distribution exists and is unique. Then, 

n  Proposition: 
 
n  Proof:  

n  Minimizing normalized cuts is equivalent to minimizing the 
probability of transitioning between clusters 
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Ncut(A, Ā) = P (A | Ā) + P (Ā | A)
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Case Study 3: fMRI Prediction 
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fMRI Prediction Task 
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n  Goal: Predict word stimulus from fMRI image 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 

fMRI 
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Functional MRI 
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fMRI 
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functional Magnetic Resonance Imaging (fMRI) 

~1 mm resolution 

~1 image per sec. 

20,000 voxels/image 

safe, non-invasive 

measures Blood 

Oxygen Level 

Dependent (BOLD) 

response 

Typical fMRI 

response to 

impulse of 

neural activity 

10 sec 

Typical Stimuli 
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Typical stimuli 

Each stimulus 

repeated several 

times 
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fMRI Activation 
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fMRI activation for “bottle”: 

Mean activation averaged over 60 different stimuli: 

“bottle” minus mean activation: 

fMRI 

activation  

high 

below 

average 

average 

bottle 

fMRI Prediction Task 
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n  Goal: Predict word stimulus from fMRI image 
n  Challenges:  

¨  p >> N (feature dimension >> sample size) 
¨  Cost of fMRI recordings is high 
¨  Only have a few training examples for each word 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 
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Zero-Shot Classification 
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n  Goal: Classify words not in the training set 
n  Challenges:  

¨  Cost of fMRI recordings is high 
¨  Can’t get recordings for every word in the vocabulary 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 

Zero-Shot Classification 

©Emily Fox 2013 20 

n  Goal: Classify words not in the training set 
n  Challenges:  

¨  Cost of fMRI recordings is high 
¨  Can’t get recordings for every word in the vocabulary 

n  We don’t have many brain images, but we have a lot of info 
about the words and how they relate (co-occurrence, etc.) 

n  How do we utilize this “cheap” information? 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 
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Semantic Features 
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Semantic feature values: “celery” 

 0.8368, eat  

 0.3461, taste 

 0.3153, fill 

 0.2430, see  

 0.1145, clean 

 0.0600, open 

 0.0586, smell 

 0.0286, touch 

 … 

 … 

 0.0000, drive 

 0.0000, wear 

 0.0000, lift 

 0.0000, break 

 0.0000, ride 

Semantic feature values: “airplane” 

 0.8673, ride 

 0.2891, see 

 0.2851, say 

 0.1689, near   

 0.1228, open 

 0.0883, hear 

 0.0771, run 

 0.0749, lift 

 … 

 … 

 0.0049, smell 

 0.0010, wear 

 0.0000, taste 

 0.0000, rub 

 0.0000, manipulate 

Zero-Shot Classification 
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n  From training data, learn two mappings: 
¨  S: input image à semantic features 
¨  L: semantic features à word 

n  Can use “cheap” co-occurrence data to help learn L 

Features 
of word 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 
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fMRI Prediction Subtask 
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n  Goal: Predict semantic features from fMRI image 

Features 
of word 

Linear Regression – review  
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n  Model: 

n  MLE: 

n  Minimizing RSS= least squares regression 

ˆ✓ = argmax

✓
log p(D | ✓)
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Linear Regression – review  
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n  Taking the gradient 
¨  Reformulate objective 

¨  Set gradient = 0 

Ridge Regression 
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n  Ameliorating issues with overfitting:  

n  New objective: 

¨  Reformulate: 

¨  Set gradient = 0 
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Ridge Regression 
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n  Solution is indexed by the regularization parameter λ 
n  Larger λ 

n  Smaller λ  

n  As λ à 0 

n  As λ à∞ 

 
 

Ridge Coefficient Path 

n  Typical approach: select λ using cross validation 
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From  
Kevin Murphy 
textbook 
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Variable Selection 
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n  Ridge regression: Penalizes large weights 
 

n  What if we want to perform “feature selection”? 
¨  E.g., Which regions of the brain are important for word prediction? 
¨  Can’t simply choose predictors with largest coefficients in ridge solution 
¨  Computationally impossible to perform “all subsets” regression 

¨  Stepwise procedures are sensitive to data perturbations and often include 
features with negligible improvement in fit  

n  Try new penalty: Penalize non-zero weights 
¨  Penalty: 

¨  Leads to sparse solutions 
¨  Just like ridge regression, solution is indexed by a continuous param λ 

LASSO Regression 
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n  LASSO: least absolute shrinkage and selection operator 

n  New objective: 
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Geometric Intuition for Sparsity 
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Picture of Lasso and Ridge regression

β̂ β̂2
. .β

1

β 2

β
1

β

Lasso Ridge Regression

Soft Threshholding  

n  To see why LASSO results in sparse solutions, look at 
conditions that must hold at optimum 

n  L1 penalty            is not differentiable whenever  

n  Look at subgradient… 
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�j = 0||�||1
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Subgradients of Convex Functions 

n  Gradients lower bound convex functions: 

n  Gradients are unique at x if function differentiable at x 

n  Subgradients: Generalize gradients to non-differentiable points: 
¨  Any plane that lower bounds function: 
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Soft Threshholding  

n  Gradient of RSS term: 

n  Subgradient of full objective: 
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Soft Threshholding  

n  Set subgradient = 0: 

n  The value of              constrains 
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Soft Threshholding  
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LASSO Coefficient Path  
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From  
Kevin Murphy 
textbook 

LASSO Example  
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6

Estimated coefficients

Term Least Squares Ridge Lasso

Intercept 2.465 2.452 2.468

lcavol 0.680 0.420 0.533

lweight 0.263 0.238 0.169

age −0.141 −0.046

lbph 0.210 0.162 0.002

svi 0.305 0.227 0.094

lcp −0.288 0.000

gleason −0.021 0.040

pgg45 0.267 0.133
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Debiasing 
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From Kevin Murphy textbook 

LASSO Algorithms  
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n  Standard convex optimizer 
n  Least angle regression (LAR) 

¨  Efron et al 2004 
¨  Computes entire path of solutions  
¨  State-of-the-art until 2008 

n  Pathwise coordinate descent – new 
n  More on these algorithms next time… 
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