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Case Study 2: Document Retrieval 

Document Retrieval 
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n  Goal: Retrieve documents of interest  
n  Challenges:  

¨ Tons of articles out there 
¨ How should we measure similarity? 
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Task 1: Find Similar Documents 

©Emily Fox 2013 3 

n  So far… 
¨  Input: Query article  
¨ Output: Set of k similar articles 

Task 2: Cluster Documents 
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n  Now: 
¨ Cluster documents based on topic 
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Document Representation 
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n  Bag of words model 

document d 

A Generative Model 
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n  Documents: 
n  Associated topics:  
n  Parameters: ✓ = {⇡,�}
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A Generative Model 
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n  Documents: 
n  Associated topics:   
n  Parameters: 
n  Generative model: 

✓ = {⇡,�}
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Form of Likelihood 
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n  Conditioned on topic... 

n  Marginalizing latent topic assignment: 

p(xd | zd,�) =

p(xd | �,⇡) =
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Gaussian Mixture Model 
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n  Most commonly used mixture model 
n  Observations: 

n  Parameters: 

n  Likelihood: 

n  Ex.      = country of origin,      = height of ith person 
¨  kth mixture component = distribution of heights in country k 
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Another Example 
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(Taken from Kevin Murphy’s ML textbook) 
n  Data: gene expression levels 
n  Goal: cluster genes with similar expression trajectories 
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Mixture models are useful for… 
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n  Density estimation 
¨ Allows for multimodal density 

n  Clustering 
¨ Want membership information for each observation 

n  e.g., topic of current document 
¨ Soft clustering: 

¨ Hard clustering: 

p(zi = k | xi
, ✓) =

z
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p(z
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= k | xi

, ✓) =

Issues  
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n  Label switching 
¨ Color = label does not matter 
¨ Can switch labels and likelihood 

is unchanged 
 

n  Log likelihood is not convex in the parameters 
¨ Problem is simpler for “complete data likelihood” 
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ML Estimate of Mixture Model Params 
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n  Log likelihood 

 
n  Want ML estimate 

n  Assume exponential family 

n  Neither convex nor concave and local optima 
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n  Assume class labels     were observed in addition to   

n  Compute ML estimates 
¨  Separates over clusters k! 

n  Example: mixture of Gaussians (MoG) 

If “complete” data were observed… 
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n  Motivates a coordinate ascent-like algorithm: 
1.  Infer missing values      given estimate of parameters   
2.  Optimize parameters to produce new      given “filled in” data 
3.  Repeat 

 
n  Example: MoG (derivation soon… + HW) 

1.  Infer “responsibilities” 

2.  Optimize parameters 

Iterative Algorithm 

zi ✓̂
✓̂ zi

rik = p(zi = k | xi
, ✓̂

(t�1)) =

max w.r.t. ⇡k :

max w.r.t. �k :
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Gaussian Mixture Example: Start 
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After first iteration 
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After 2nd iteration 
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After 3rd iteration 
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After 4th iteration 
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After 5th iteration 
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After 6th iteration 
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After 20th iteration 
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Some Bio Assay data 
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GMM clustering of the assay data 
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Resulting 
Density 
Estimator 
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n  More broadly applicable than just to mixture models 
considered so far 
 

n  Model: 

 
n  Interested in maximizing (wrt    ): 

n  Special case:  

Expectation Maximization (EM) – 
Setup 

x

y

✓

✓

p(x | ✓) =
X

y

p(x, y | ✓)

x = g(y)

observable – “incomplete” data 
not (fully) observable – “complete” data 
parameters 
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n  Step 1 
¨  Rewrite desired likelihood in terms of complete data terms 

n  Step 2 
¨  Assume estimate of parameters  
¨  Take expectation with respect to 

 

Expectation Maximization (EM) – 
Derivation 

p(y | ✓) = p(y | x, ✓)p(x | ✓)

✓̂
p(y | x, ✓̂)
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n  Step 3 
¨  Consider log likelihood of data at any     relative to log likelihood at       

 
n  Aside: Gibbs Inequality 
    Proof: 

 

Expectation Maximization (EM) – 
Derivation 

✓ ✓̂

L
x

(✓)� L
x

(✓̂)

Ep[log p(x)] � Ep[log q(x)]
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n  Step 4 
¨  Determine conditions under which log likelihood at    exceeds that at 
Using Gibbs inequality: 
 
 
 
If  
 
Then 

 
 

Expectation Maximization (EM) – 
Derivation 
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n  Initial guess: 
n  Estimate at iteration t:  
 
n  E-Step 
 

 Compute 

n  M-Step 
 

 Compute  
 
 
 

Motivates EM Algorithm 
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n  E-Step   Compute 
n  M-Step  Compute 

n  Consider            i.i.d.   
 
 
 

Example – Mixture Models 

U(✓,
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n  Bound log likelihood: 
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Coordinate Ascent Behavior 

L
x

(✓) =

�
L
x

(✓̂(t)) =

Figure from 
KM textbook 

U(✓, ✓̂(t)) + V (✓, ✓̂(t))

U(✓̂(t), ✓̂(t)) + V (✓̂(t), ✓̂(t))
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n  Since Gibbs inequality is satisfied with equality only if p=q, 
any step that changes     should strictly increase likelihood 
 

n  In practice, can replace the M-Step with increasing U instead 
of maximizing it (Generalized EM) 
 

n  Under certain conditions (e.g., in exponential family), can 
show that EM converges to a stationary point of 
 

n  Often there is a natural choice for y … has physical meaning 
 

n  If you want to choose any y, not necessarily x=g(y), replace 
        in U with   

Comments on EM 

✓

L
x

(✓)

p(y | ✓) p(y, x | ✓)



18 

©Emily Fox 2013 35 

n  In mixture model case where    there are 
many ways to initialize the EM algorithm 
 

n  Examples: 
¨  Choose K observations at random to define each cluster.  

Assign other observations to the nearest “centriod” to form 
initial parameter estimates 

¨  Pick the centers sequentially to provide good coverage of data 
¨  Grow mixture model by splitting (and sometimes removing) 

clusters until K clusters are formed 
 

n  Can be quite important to convergence rates in practice 

Initialization 

y

i = {zi, xi}
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n  Bayesian approach:  
¨  Place prior           on parameters  
¨  Infer posterior  

 
n  Many, many, many motivations and implications 

¨  For the sake of this class, simplest motivation is to think of this 
as akin to regularization  

 

¨  Saw importance of regularization in logistic regression  
(ML estimate can overfit data and lead to poor generalization) 

MAP Estimation 

p(✓)
p(✓ | x)

ˆ

✓

MAP
= argmax

✓
log p(✓ | x)
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n  Re-derive EM algorithm for 

n  Add                to  
¨  What must be computed in E-Step remains unchanged 

because this term does not depend on y.  
¨  M-Step becomes:  

EM Algorithm – MAP Case 

p(✓ | x)

log p(✓) U(✓, ✓̂(t))

ˆ✓(t+1)
= argmax

✓
U(✓, ˆ✓(t))
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n  For mixture of Gaussians, conjugate priors are:  

n  Results in following M-Step: 

MAP EM Example – MoG  

⇡̂k =
rk + ↵k � 1

N +
P

k ↵k �K

⇡ ⇠ Dir(↵1, . . . ,↵K)

⌃̂k =
S0 + rkSk + 0rk

0+rk
(x̄k �m0)(x̄k �m0)0

⌫0 + rk + d+ 2

µ̂k =
rkx̄k + 0m0

rk + 0

{µk,⌃k} ⇠ NIW(m0,0, ⌫0, S0)
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What you need to know 

n  Mixture model formulation 
¨  Generative model 
¨  Likelihood 

n  Expectation Maximization (EM) Algorithm 
¨  Derivation 
¨  Concept of non-decreasing log likelihood 
¨  Application to standard mixture models 
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Course Announcements 

n  Homework 2 will be posted on Thursday 
¨ Due 2 weeks later (Feb 14) 

 
n  Project proposals: 

¨  Initial ideas now posted 
¨ Deadline extended to Tues, Feb 5 
¨ 1 page, 1-2 people 

 
n  Recitation on Thursday (Linda) 

 
n  Office hours as normal 
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