
University of Washington
Department of Computer Science and Engineering / Department of Statistics

CSE 599 / Stat 592 Machine Learning (Statistics) for Big Data

Homework 1
Winter 2013

Issued: Tuesday, January 15, 2013 Due: Tuesday, January 29, 2013

Suggested Reading: Assigned Readings in Case Study I (see website).
Instructions: The homework consists of two parts: (i) Problems 1.1 to 1.3 cover
theoretical and analytical questions and (ii) Problem 1.4 covers data analysis
questions. Please submit each portion as separate sets of pages with your name and
userid (UW student number) on each set. For Part II which involves coding, please
print out your code and graphs and attach them to the written part of your
homework. Refer to the course webpage for policies regarding collaboration and
extensions.
Checkpoint: Problem 1.4 ”Warm up” is due in class on Tuesday, January 22 as a
checkpoint.

Problem 1.1

(Source: KM Exercise 8.6) Elementary properties of l2 regularized logistic regression
Consider minimizing

J(w) = −l(w,Dtrain) + λ ‖w‖22

where

l(w,D) =
∑

j lnP(yj|xj,w)

is the log-likelihood on data set D, for yj ∈ {−1,+1}. Determine whether the follow-
ing statements are true or false. Briefly explain.

(a) With λ > 0 and the features xjk linearly separable, J(w) has multiple locally
optimal solutions.

(b) Let ŵ= arg minwJ(w) be a global optimum. ŵ is typically sparse (has many
zero entries).

(c) If the training data is linearly separable, then some weights wj might become
infinite if λ =0.

(d) l(ŵ,Dtrain) always increases as we increase λ.

(e) l(ŵ,Dtest) always increases as we increase λ.

1

Problem 1.2

(Source: KM Exercise 8.7) Regularizing separate terms in 2d logistic regression

Figure 1 Data for logistic regression question

(a) Consider the data in Figure 1, where we fit the model

p(y = 1|x,w) =
exp(w0 + w1x1 + w2x2)

1 + exp(w0 + w1x1 + w2x2)
.

Suppose we fit the model by maximum likelihood, i.e., we minimize

J(w) = −l(w,D)

where l(w,D) is the log likelihood on the data set. Sketch a possible decision
boundary corresponding to ŵ. Is your answer (decision boundary) unique?
How many classification errors does your method make on the training set?

(b) Now suppose we regularize only on the w0 parameter, i.e., we minimize

J0(w) = −l(w,D) + λw2
0

Suppose λ is a very large number, so we regularize w0 all the way to 0, but
all other parameters are unregularized. Sketch a possible decision boundry.
How many classification errors does your method make on the data set? Hint:
consider the behavior of simple linear regression, w0 + w1x1 + w2x2 when x1 =
x2 = 0.

(c) Now suppose we heavily regularize only the w1 parameter, i.e.,we minimize

J1(w) = −l(w,D) + λw2
1

Sketch a possible decision boundry. How many classification errors does your
method make on the training set?

(d) Now suppose we heavily regularize only the w2 parameter. Sketch a possible
decision boundry. How many classification errors does your method make on
the data set?

2

Problem 1.3

The Count-Min sketch of Cormode and Muthukrishnan is biased. That is, the esti-
mated count âi for element i ∈ {1, . . . , N} is always higher than (or equal to) the
true count ai. Reminder: The count ai is the number of times we see element i in the
sequence. In this question, you will develop a simple unbiased sketch, Simple-Count,
(with weaker convergence rates than the Count-Min sketch).

First, we will start with the simplest version of Simple-Count: Let g be a hash
function chosen from a family G of independent hashes, such that g maps each i to
either +1 or −1 with equal probability: 1:

P (g(i) = +1) = P (g(i) = −1) = 1/2.

We now define h, the accumulator of our sketch. When we observe element i in the
sequence, we simply update:

h = h+ g(i).

Now, if we would like to predict the count for element i, we simply return:

âi = h g(i).

Given this sketch, please answer the following questions:

(a) Let ai be the true counts for each element i. Express h in terms of the ai and
g(i) only.

(b) What is the expected value of g(i), denoted by E[g(i)]?

(c) Prove that âi = h g(i) is an unbiased estimate of ai, i.e., E[âi] = ai. Hint: use
linearity of expectations, E[u+v] = E[u]+E[v], and the fact that g(i) and g(j)
are independent.

(d) Prove that the variance of our estimate V ar(âi) is given by:

V ar(âi) =
∑

j∈{1,...,N}:j 6=i

a2j .

Hint: recall that V ar(X) = E[X2]− (E[X])2.

(e) We will now bound the probability of getting a bad estimate. In particular,
after n steps, we will say our estimate âi is ε-bad if, for ε > 0:

|âi − ai| ≥ εn.

1The randomness arises from the fact that the hash function g is drawn randomly from the family
G. Given a hash function g, the mapping g : {1, . . . , N} is deterministic. All expectations, etc. are
taken with respect to the distribution of g.

3

To prove our bound, we will use Chebyshev’s inequality: If X is a random
variable, and α > 0, then:

P (|X − E[X]| ≥ α) ≤ V ar(X)

α2
.

Use Chebyshev’s inequality to prove that the probability δ of getting a bad
estimate for âi is bounded by:

δ ≤ V ar(âi)

ε2n2
≤ 1

ε2
.

(f) The bound in the previous question is going to be vacuous for sufficiently small
ε. To address this issue, we will expand the number of hash functions in our
sketch. Let’s introduce a set of k independent hash functions gj with the same
properties as g above. Now, we will create hj, in analogy to the h function
above, for each gj. When we see element i in the sequence, we will update each
hj by:

hj = hj + gj(i).

Now, if we would like to predict the count for element i, we simply return the
average:

âi =
1

k

k∑
j=1

hj gj(i).

For this sketch, prove that:

i. The variance of âi is now bounded by:

V ar(âi) ≤
n2

k
.

Hint: The estimates obtained by each hash function are independent.

ii. Use this result and the Chebyshev’s inequality as above to prove that for
any ε > 0, δ > 0, the probability of getting an ε-bad estimate of âi will be
lower than δ if we use k ≥ 1

δε2
hash functions.

Problem 1.4

Logistic Regression for Ads Click Prediction

In this problem, you will train a logistic regression model to predict the Click Through
Rate (CTR) on a dataset with ∼1 million examples. The CTR provides a measure of
the popularity of an advertisement, and the features we will use for prediction include

4

attributes of the ad and the user. You will also implement the hashing kernel, where
the features are hashed into a smaller space. At the end, there is an extra credit
component for implementing multitask logistic regression for personalized CTR pre-
diction (see the “Weinberger, Kilian, et al.” paper from the reading list).

Dataset

The dataset we will consider comes from the 2012 KDD Cup Track 2. Here, a user
types a query and a set of ads are displayed and we observe which ad was clicked.
For example:

1. Alice went to the famous search engine Elgoog, and typed the query “big data”.

2. Besides the search result, Elgoog displayed 3 ads each with some short text
including its title, description, etc.

3. Alice then clicked on the first advertisement.

This completes a SESSION. At the end of this session Elgoog logged 3 records:
Clicked = 1 Depth = 3 Position = 1 Alice Text of Ad1
Clicked = 0 Depth = 3 Position = 2 Alice Text of Ad2
Clicked = 0 Depth = 3 Position = 3 Alice Text of Ad3

In addition, the log contains information about Alice’s age and gender. Here is
the format of a complete row of our training data:

Clicked Depth Position Userid Gender Age Text Tokens of Ad

Let’s go through each field in detail:

• “Clicked” is either 0 or 1, indicating whether the ad is clicked.

• “Depth” takes a value in {1, 2, . . . , } specifying the number of ads displayed in
the session.

• “Position” takes a value in {1, 2, . . . , Depth} specifying the rank of the ad among
all the ads displayed in the session.

• “Userid” is an integer id of the user.

• “Age” takes a value in {1, 2, 3, 4, 5, 6}, indicating different ranges of a user’s
age: ‘1’ for (0, 12], ‘2’ for (12, 18], ‘3’ for (18, 24], ‘4’ for (24, 30], ‘5’ for (30,
40], and ‘6’ for greater than 40.

• “Gender” takes a value in {−1, 1}, where −1 stands for male and 1 stands for
female.

5

• “Text Tokens” is a comma separated list of token ids. For example: “15,251,599”
means “token 15”, “token 251”, and “token 599”. (Note that due to privacy
issues, the mapping from token ids to words is not revealed to us in this dataset,
e.g., “token 32” to “big”.)

Here is an example that illustrates the concept of features “Depth” and “Position”.
Suppose the list below was returned by Elgoog as a response to Alice’s query. The list
has depth = 3. “Big Data” has position = 1, “Machine Learning” has position = 2
and so forth.

Big Data
Machine Learning
Cloud Computing

Here is a sample from the training data:

0 2 2 280151 1 2 0,1,154,173,183,188,214,234,26,3,32,36,37,4503,51,679,7740,8,94

The test data are in the same format except that they do not have the first label
field, which is stored in a separate file named “test label.txt”. Some data points do
not have user information. In these cases, the userid, age, and gender are set to zero.

Feature Representation

In class, we simply denote
xt = [xt1, . . . , x

t
d] (1)

as an abstract feature vector. In the real world, however, constructing the feature
vector requires some thought.

• First of all, not everything in the data should be treated as a feature. In this
dataset, “Userid” should not be treated as feature.

• Similarly, we cannot directly use the list of token ids as features in Eq. 1 since
the numbers are arbitrarily assigned and thus meaningless for the purposes of
regression. Instead, we should think of the list of token ids L ≡ [l1, l2, l3, . . .] as
a compact representation of a sparse binary vector b where b[i] = 1 ∀i ∈ L.
It is important to think in terms of the binary representation but implement
the code using a compact representation.

• As for the rest of the features: “Depth”, “Position”, “Age”, and “Gender”, they
are scalar variables, so please use their original value as the feature.

6

Accessing and Processing the Data

(a) Download “clickprediction data.zip” from the course website.

(b) After unzipping the folder, there should be three files: train.txt, test.txt and
test label.txt.

(c) For instructions on setting up Java/Eclipse and using the starter code, please
read section at the end of the file.

1. Warm up

We begin by simply assessing various attributes of the dataset, primarily to ensure
that it is correctly accessed and parsed.

If you are using the starter code, please complete the functions in “analysis/BasicAnalysis.class”.
In the starter code, you will find “analysis/DummyLoader.class” as sample code for
initializing the dataset, iterating over each row, parsing the text, and printing out
results.

(a) Report the average CTR for the training data (Number of clicks / Number of
examples).

(b) How many unique tokens are there in the training data? What about the test
data? How many tokens appear in both datasets?

(c) How many unique users are there in the training data? What about the test
data? How many users appear in both datasets?

2. Stochastic Gradient Descent

Recall that stochastic gradient descent (SGD) performs a gradient descent using a
noisy estimate of the full gradient based on just the current example.

(a) Write down the equation for the weight update step. That is, how to update
weights wt using the data point (xt, yt), where xt ≡ [xt1, x

t
2, . . . , x

t
d] is the feature

vector for example t, and yt ∈ {0, 1} is the label.

(b) For stepsizes η = {0.001, 0.01, 0.05} and without regularization, implement SGD
and train the weights by making one pass over the dataset. Use only one pass
over the data on all subsequent questions as well. For each step size:

• Plot the average loss L as a function of the number of steps T , where

L(T) =
1

T

T∑
t=1

(ŷt − yt)2

7

where ŷt is the predicted label of example xt using the weights wt−1. Record
the the average loss every 100 steps, e.g. [100, 200, 300, . . .].

• Report the l2 norm of the weights at the end of the pass.

• Use the weights to predict the CTRs for the test data. Recall that “test label.txt”
contains the labels for the test data. Report the RMSE (root mean square
error) of your predicted CTR. Also report the RMSE of the baseline predic-
tion you got from the Warm Up. (Do not expect a huge improvement since
the label distribution is biased. Elgoog still makes a huge profit even with
a 0.1% improvement in accuracy.)
Hint: you can use the given Util/EvalUtil.class to compute RMSE.

(c) For η = 0.01, report the weights for the following features: intercept, “Position”,
“Depth”, “Gender”, and “Age”. Provide an interpretation of the effect of each
feature on the probability of a click based on these inferred weights.

Hint
Java users: You need to complete the “LogisticRegression.class”. Ignore the lambda
and “performDelayedRegularization()” for now, which will be useful in the next ques-
tion “Regularization”.

Big data is often sparse. In this problem, the feature space is huge (the order is
on the size of the entire token vocabulary). Fortunately, you do not need to update
every feature for every data point. Why? Because a data point only has a few tokens,
and the gradient of wi will be non-zero if and only if feature i is non-zero. In other
words, you just need to update the weights corresponding to the tokens that appear
in the current example. Other weights will stay the same. Taking advantage of the
data sparsity is one of the key weapons for attacking big data problems.

3. Regularization

Notice that the l2 norm of the weights in the previous part is not small and keeps
growing as we get more and more data. It is necessary to add l2 regularization to
each update step. However, the regularization is not a sparse update. At every step,
the regularization affects the weights for all of the features, not just the ones that
appeared in the current example. To deal with this issue, we will try to be as lazy
as possible. What if at each iteration we just regularize the weights that affect the
current example and hope for the best? Unfortunately, this is too lazy because it will
be unfair to features that appear frequently.

The trick is to delay the regularization for wi until we encounter a data point that
affects it. Suppose feature i appeared for the first time at time t1. No regularization
of wi is needed because its value is 0. Then at time t2, feature i shows up again. You

8

know that the regularization for wi was delayed for t2 − t1 − 1 steps, so its time to
let it pay. How much? Each step of the regularization downweights wi by a factor of
(1 − η ∗ λ), so the total is (1 − η ∗ λ)t2−t1−1. To implement the lazy regularization,
you need to keep track of the update timestamp for the weights on sparse tokens.

(a) Implement the regularization, and train the weights again using stepsize η = 0.05
with λ ranging from 0−0.014 spaced by 0.002, e.g. [0, 0.002, 0.004, 0.006, . . . , 0.014].

(b) Predict the CTR for the test data and evaluate the RMSE. Plot the RMSE as a
function as λ.

Hint
Java users: You need to complete the function “performDelayedRegularization()” in
“LogisticRegression.class”. “Weights.accessTime” is a map for keeping track of the
access time of token weights. For example, “w.accessTime.get(256)” should return
the most recent time when the weight for token 256 was updated, or null if it’s never
been updated before.

4. Hashing Kernel

The “Weinberger, Kilian, et al.” paper introduces an unbiased hash kernel φ : X →
F . The original feature space X is transformed into a space F with lower dimension
through two hash functions: h : I → {0, . . . ,m − 1}, and ξ : I → {+1,−1}, where
I indexes the original feature space X . In this problem, we only ask you to hash the
text features, keeping the rest of the features as before. Therefore, I will be the space
of all token ids.

The new feature vector (for the text features) φ(x) will be an m-dimensional ar-
ray, where the φ(x)i =

∑
j:h(j)=i ξ(j)Xj. Now, we can run the same SGD algorithm

in the hashed feature space. The sparse updating and lazy regularization tricks still
apply.

Train the weights in the hashed feature space with m = {97, 12289, 1572869}, λ =
0.001 and stepsize η = 0.01. Report the RMSE of the predicted CTRs for all 3 cases.

Hint
Java users: Complete the “HashDataInstance.class” and “LogisticRegressionWith-
Hashing.class”. The starter code has two hash functions in “util/HashUtil.class”
where you can use as h and ξ. Ignore the personalized flag. Make sure the runtime
does not depend on the size of the hash space m.

5. Extra Credit: Personalization

9

If you have read and understood the “Weinberger, Kilian, et al.” paper in its en-
tirety, you can implement a personalized version of CTR prediction. It’s just a few
lines of code to change: Instead of hashing each feature once, you hash it again with
the userid. The rest remains the same.

Implement the personalized logistic regression with hashing. Train the weights using
η = 0.01, m = 12289, and λ = 0.001.

(a) Report the RMSE on the test data (including all users).

(b) Report the RMSE just based on the subset of users who appear both in the test
and training data.

10

Instructions for starter code and setup

(a) Eclipse is a good editor for programming Java. Download Eclipse Classic 4.2.1 at:

http://www.eclipse.org/downloads/

To install, just unzip the downloaded file. Double click the eclipse executable
to launch.

(b) To import the starter code, go to the menu File→ Import. Under general, select
Existing Projects into Workspace, and click Next. Choose “Select archive file”,
and find “stubs.zip” that you downloaded from the course website. Click Finish.

(c) If you use the starter code, here are files you need to print out and attach to the
end of your writeup:

• BasicAnalysis.java

• HashedDataInstance.java

• LogisticRegression.java

• LogisticRegressionWithHashing.java

General advice for Java users

(a) If you get a Nan, either you divided something by zero or the exp(wTx) overflowed.

(b) Be careful when dividing an integer. Java performs rounding for integer division.
For example: x = 1; x/2; gives you zero. Use x/2.0; instead. When you have two
integer variables, cast one into double.

(c) Use map.containsKey(key) before asking a value from a map. Or use “Integer”
and “Double” object to store the return from map.get(key), and check null. int
x = map.getKey(y) will throw an exception if the key y does not exist.

(d) If you are using the starter code, remember to call Dataset.reset() after every
pass of the data.

(e) If you get “out of heap space error”, you probably need a larger heap space for
jvm. In Eclipse, go to the menu run → run configuration. On the left panel,
select the application you just ran, on the right panel, select the Arguments next
to Main. Type -Xmx1g on the second input box (VM arguments). This will
ensure 1G heap space, which should be enough for this homework.

11

