CSE 599c Scientific Data Management

Magdalena Balazinska and Bill Howe Spring 2010 Lecture 5 Part 2 – SciDB

References

 Requirements for Science Data Bases and SciDB. M. Stonebraker et. al. CIDR Perspectives 2009

The Problem...

- Sciences are increasingly data rich
 - Simulations on server clusters produce lots of data
 - Improved instrumentation collects more data
 - Automated experiments produce more data
- Scientists need effective tools to manage data
 - Storage
 - Analysis
 - Organization
 - Sharing
- Existing DBMSs do not meet scientists needs

CSE 599c - Spring 2010

What are the Challenges

- "Big science" very unhappy with RDBMS
- Reason 1: Main data type is not a relation!
 - Many sciences need arrays
 - Others want graphs, sequences, or meshes
- Reason 2: Many required features are absent
 - Provenance
 - Uncertainty
 - Version control
- Reason 3: Operations are wrong
 - Regrid not join

What is the State of Affairs?

- Roll-your-own on the bare metal
 - Larger Hadron Collider (LHC) [http://lhc.web.cern.ch/lhc/]
 - NASA Mission to Planet Earth: [http://www.hq.nasa.gov/office/nsp/mtpe.htm]
- Or put up with a horrible kludge on RDBMS
 - With mountains of application logic
 - And copying the world to application space

So What is SciDB?

- A new type of DBMS for data intensive analytics
- Addresses the above limitations
- Community supported, open-source project
- Fundamental idea: build an array-based DBMS!

How Can We Build an Array DBMS?

- By storing arrays as tables inside of a DBMS
 - Advocated by Greenplum [http://www.greenplum.com/]
 - And MonetDB [http://monetdb.cwi.nl/]
 - But can lead to terrible performance
- Using BLOBs (binary object types) in a DBMS to represent arrays
 - Implemented in RasdaMan [http://www.rasdaman.com/]
- A from-the-ground-up native array system: SciDB

SciDB Data Model Basics

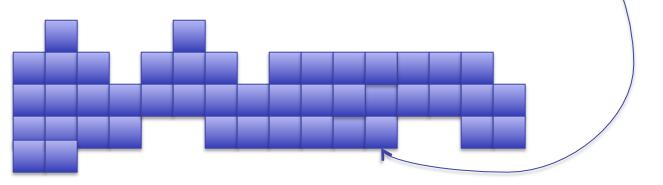
- Nested multidimensional arrays
- Array values are vectors (tuples)
 define Remote (s1 = float, s2 = float, s3 = float) (I, J)
 create My_remote as Remote [4,*]

(1.0, 3.4, 45.0)	(2.0, 3.3, 44.0)	(3.0, 3.5, 42.0)	(4.0, 3.4, 40.0)	h
			····	j

• Updates to arrays logged in a history dimension define updatable

```
Remote_2 (s1=float, s2=float, s3=float) (I, J, history)
```

CSE 599c - Spring 2010


Arrays

can be

nested

SciDB Data Model Advanced Features

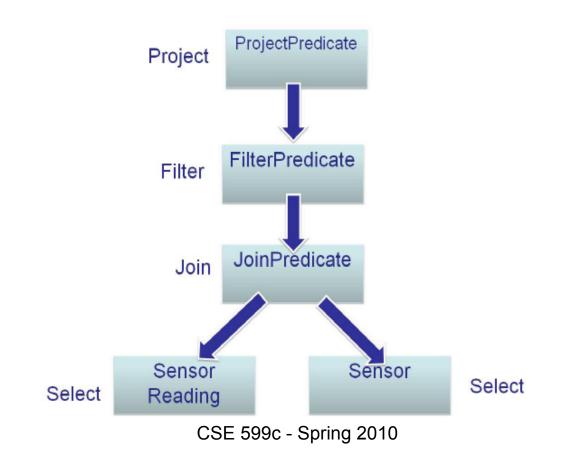
- Arrays can be augmented with co-ordinate systems
 - $My_remote[x, y]$, where (x, y) is the cell in the array
 - My_remote{latitude,longitude}
 - Coordinates need not be integer-valued nor contiguous
- Arrays can be augmented with "shape" functions
 - To define irregular arrays
 - shape-function (My_remote[11, *])
 - Returns info about range of defined values for slice of array

Operators

- Structural Operators
 - Subsample: Subsample (F, even(X))
 - Reshape: not in current system
 - Structured join or SJoin: example in Figure 1
- Content-Dependent Operators
 - Filter
 - Aggregate
 - Cjoin
- But, extensibility is key! Support for user-defined functions

SciDB Query Language

- Declarative queries
- SQL-like and array operators
 - Filter, trim, project, add-dim, slice, join, regrid, etc.
- With a binding to
 - MatLab
 - C++
 - Python
 - There may be more....


Language Binding Example

Filter pixels with flux values between x1 and x2 and display resulting observations

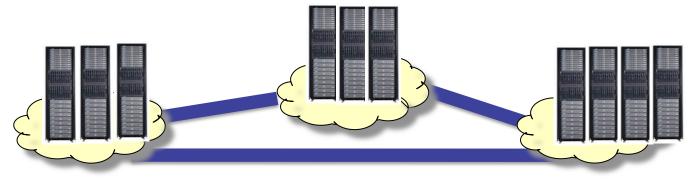
```
string filterPredicate = "xAstrom BETWEEN @x1 AND @x2
AND psfFlux > @flux AND flagForDetection = @flag";
DBArray dba("@arrayName");
DBArray dba2 = dba.filter(filterPredicate);
typedef Observation T;
for (DBArrayIterator<T> it = dba2.begin<T>(); it != dba2.end<T>(); ++it) {
    Observation observ= (*it);
    cout << observ.ToString();</pre>
```

Algebra Tree

• Code is translated into algebra tree

Shipping Query to SciDB

• Algebra tree is serialized to xml format


```
<store ref="q4_res" overwrite="true">
<filter pred=" xAstrom BETWEEN @x1 AND @x2
AND psfFlux > @flux AND flagForDetection = @flag ">
<array ref="@arrayName"/>
```

</filter>

</store>

Environment and Storage

- Store hundreds of Petabytes of data
 - Tables with trillions of rows
- Extendable cloud
 - N clusters of machines spread over WAN
 - Each cluster is a grid of machines on a LAN

• Built-in high availability, failover, disaster recovery

CSE 599c - Spring 2010

Storage manager

- Splits large arrays into series of multidimensional chunks
 - Fixed stride
 - Easy to index
 - But blocks may be highly variable in size
 - Or variable stride
 - Need an R-tree
 - But packing can be more uniform
- Each attribute stored in a separate physical array
- Vertica-style compression
- Replication by multiple copies with different partitioning
- Supports overlap

"In Situ" Data

- Can we process data without a load phase?
 - Loading requires that the user define a schema
 - Loading can fail due to errors
 - Loading is time consuming
- SciDB will try to process data without loading it first
 - Of course, only subset of features will be supported on such data
 - And performance will likely be worse

Additional Features

- No overwrite data model: Instead use updatable arrays
- Named versions
- Provenance
 - Need to log all operations
 - Want to trace "back" and "forward" in time
- Uncertainty