
Data Challenges in
Astrophysical Simulation

Jeff Gardner
Dept. of Physics

Dept. of Astronomy
UW eScience Institute

gardnerj@phys

Galaxies: The Tip of the Iceberg
Dark Matter
(Simulation)

Luminous Matter
(Telescope)

100 million light years

Galaxies: The Tip of the Iceberg

30 million light years

Simulations of Dark Matter tell us
what the Universe really “looks like”

100 million light
years

Dataset properties

  106 to 1011 particles
  Dark matter
  Stars
  Gas

  Each particles has roughly a dozen properties:
  Position
  Velocity
  Mass
  Density
  Temperature

How to turn astrophysics simulation
output into scientific knowledge

Step 1: Run simulation

Step 2: Analyze simulation
 on workstation

Step 3: Extract meaningful
 scientific knowledge

(happy scientist) Using 300 processors:
(circa 1995)

Data Analysis

  Each simulation generates many
“snapshots”.

  Each snapshot is a single file.
  To analyze, astrophysicists write

programs in C or Fortran.
  Usually, these programs read in an

entire snapshot, then operate on that
snapshot in memory.

Why analyze in RAM?

1.  Dataset is tightly-coupled
1.  Operations are typically not data-parallel
2.  Cannot break up a snapshot into smaller pieces to be

analyzed separately

2.  One rarely selects subsets of data
1.  It’s hard for a DBMS to minimize I/O when you need

everything anyway
2.  When subset selection is possible, it tends to be in non-

trivial ways

3.  Lots of math
1.  Analysis typically utilizes fairly complex analytical models.
2.  Historically, a highly optimizable compiled language has

been required

How to turn astrophysics simulation
output into scientific knowledge

Step 1: Run simulation

Step 2: Analyze simulation
 on workstation

Step 3: Extract meaningful
 scientific knowledge

(happy scientist) Using 300 processors:
(circa 1995)

How to turn astrophysics simulation
output into scientific knowledge

Step 1: Run simulation

Step 2: Analyze simulation
 on server (in serial)

Step 3: Extract meaningful
 scientific knowledge

(happy scientist) Using 1000 processors:
(circa 2000)

How to turn astrophysics simulation
output into scientific knowledge

Step 1: Run simulation

Step 2: Analyze simulation
 on ???

(unhappy scientist) Using 10,000 cores:
(circa 2008)

X

Exploring the Universe can be
(Computationally) Expensive

  The size of simulations is no longer
limited by computational power

  It is limited by the parallelizability of
data analysis tools

  This situation is only getting worse.

Exploring the Universe can be
(Computationally) Expensive

  The size of simulations is no longer
limited by computational power

  It is limited by the parallelizability of
data analysis tools

  This situation is only getting worse.
1.  Not only are we limited by the size of

shared RAM
2.  We are also limited by I/O
(In fact, CPU speed is almost a second-order effect)

How to turn astrophysics simulation
output into scientific knowledge

Step 1: Run simulation

Step 2: Analyze simulation
 on ???

(unhappy scientist) Using 10,000 cores:
(circa 2008)

X

How to turn astrophysics simulation
output into scientific knowledge

Step 1: Run simulation

Step 2: Analyze simulation
 on ???

Using 500,000 cores?:
(circa 2012)

X

By 2012, we will have machines that will have millions of
processor cores!

(Single snapshot: 200TB)

The Challenge of Data Analysis in a
Massively Parallel Universe

  Parallel programs are expensive to write!
  Lengthy development time

  Parallel world is dominated by simulations:
  Code is often reused for many years by many people
  Therefore, you can afford to invest lots of time writing the

code.
  Example: GASOLINE (a cosmology N-body code)

  Required 10 person-years of development
  Data Analysis does not work this way:

  Rapidly changing scientific queries
  Queries are specific to individual researchers
  Less code reuse

Speed of scalable application development = speed of science

The fundamental challenge:

1.  Physicists and astronomers do lots of math, and
have historically required a language:

1.  Flexible, general-purpose
1.  A more special-purpose language is usually too restrictive.

2.  Procedural
1.  Other paradigms tend to be slower, although OO compilers

are getting pretty good

3.  Imperative
1.  Math-driven view of computation

2.  Despite hundreds of attempts, nobody has
developed a general-purpose imperative
programming language.

  For this reason, programs are written using
message-passing

OK, so what’s different this time?

1.  Although the math is still there, CPUs
are so fast that floating-point
performance is becoming less
important.

2.  Data volume and I/O bandwidth are
the main limiting factors.

3.  The scientist can adopt a more data-
driven view of their workflow (i.e., not
math-driven and imperative).

Summary

  “High-Performance Computing” (HPC) is what we
have been doing for the last 20 years

  Now we are entering the era of Data Intensive
Scalable Computing (DISC)

  Implicit in DISC is the minimization of development
time.
  How do I express my scientific workflow to the computer so

that it can optimize it in a scalable manner?

  The human component is what differentiates DISC
from HPC:

1.  Need, on scalable resources, for short development times.
2.  Need, on scalable resources, for interactivity.

