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Galaxies: The Tip of the Iceberg 
Dark Matter 
(Simulation) 

Luminous Matter 
(Telescope) 

100 million light years 



Galaxies: The Tip of the Iceberg 

30 million light years 



Simulations of Dark Matter tell us 
what the Universe really “looks like” 

100 million light 
years 



Dataset properties 

  106 to 1011 particles 
  Dark matter 
  Stars 
  Gas 

  Each particles has roughly a dozen properties: 
  Position 
  Velocity 
  Mass 
  Density 
  Temperature 



How to turn astrophysics simulation 
output into scientific knowledge 

Step 1: Run simulation 

Step 2: Analyze simulation 
 on workstation 

Step 3: Extract meaningful 
 scientific knowledge 

(happy scientist) Using 300 processors: 
(circa 1995) 



Data Analysis 

  Each simulation generates many 
“snapshots”. 

  Each snapshot is a single file. 
  To analyze, astrophysicists write 

programs in C or Fortran. 
  Usually, these programs read in an 

entire snapshot, then operate on that 
snapshot in memory. 



Why analyze in RAM? 

1.  Dataset is tightly-coupled 
1.  Operations are typically not data-parallel 
2.  Cannot break up a snapshot into smaller pieces to be 

analyzed separately 

2.  One rarely selects subsets of data 
1.  It’s hard for a DBMS to minimize I/O when you need 

everything anyway 
2.  When subset selection is possible, it tends to be in non-

trivial ways 

3.  Lots of math 
1.  Analysis typically utilizes fairly complex analytical models. 
2.  Historically, a highly optimizable compiled language has 

been required 



How to turn astrophysics simulation 
output into scientific knowledge 

Step 1: Run simulation 

Step 2: Analyze simulation 
 on workstation 

Step 3: Extract meaningful 
 scientific knowledge 

(happy scientist) Using 300 processors: 
(circa 1995) 



How to turn astrophysics simulation 
output into scientific knowledge 

Step 1: Run simulation 

Step 2: Analyze simulation 
 on server (in serial) 

Step 3: Extract meaningful 
 scientific knowledge 

(happy scientist) Using 1000 processors: 
(circa 2000) 



How to turn astrophysics simulation 
output into scientific knowledge 

Step 1: Run simulation 

Step 2: Analyze simulation 
 on ??? 

(unhappy scientist) Using 10,000 cores: 
(circa 2008) 

X 



Exploring the Universe can be 
(Computationally) Expensive 

  The size of simulations is no longer 
limited by computational power 

  It is limited by the parallelizability of 
data analysis tools 

  This situation is only getting worse. 



Exploring the Universe can be 
(Computationally) Expensive 

  The size of simulations is no longer 
limited by computational power 

  It is limited by the parallelizability of 
data analysis tools 

  This situation is only getting worse. 
1.  Not only are we limited by the size of 

shared RAM 
2.  We are also limited by I/O 
(In fact, CPU speed is almost a second-order effect) 



How to turn astrophysics simulation 
output into scientific knowledge 

Step 1: Run simulation 

Step 2: Analyze simulation 
 on ??? 

(unhappy scientist) Using 10,000 cores: 
(circa 2008) 

X 



How to turn astrophysics simulation 
output into scientific knowledge 

Step 1: Run simulation 

Step 2: Analyze simulation 
 on ??? 

Using 500,000 cores?: 
(circa 2012) 

X 

By 2012, we will have machines that will have millions of 
processor cores! 

(Single snapshot: 200TB) 



The Challenge of Data Analysis in a 
Massively Parallel Universe 

  Parallel programs are expensive to write! 
  Lengthy development time 

  Parallel world is dominated by simulations: 
  Code is often reused for many years by many people 
  Therefore, you can afford to invest lots of time writing the 

code. 
  Example: GASOLINE (a cosmology N-body code) 

  Required 10 person-years of development 
  Data Analysis does not work this way: 

  Rapidly changing scientific queries 
  Queries are specific to individual researchers 
  Less code reuse 

Speed of scalable application development = speed of science 



The fundamental challenge: 

1.  Physicists and astronomers do lots of math, and 
have historically required a language: 

1.  Flexible, general-purpose 
1.  A more special-purpose language is usually too restrictive. 

2.  Procedural 
1.  Other paradigms tend to be slower, although OO compilers 

are getting pretty good 

3.  Imperative 
1.  Math-driven view of computation  

2.  Despite hundreds of attempts, nobody has 
developed a general-purpose imperative 
programming language. 

  For this reason, programs are written using 
message-passing 



OK, so what’s different this time? 

1.  Although the math is still there, CPUs 
are so fast that floating-point 
performance is becoming less 
important. 

2.  Data volume and I/O bandwidth are 
the main limiting factors. 

3.  The scientist can adopt a more data-
driven view of their workflow (i.e., not 
math-driven and imperative). 



Summary 

  “High-Performance Computing” (HPC) is what we 
have been doing for the last 20 years 

  Now we are entering the era of Data Intensive 
Scalable Computing (DISC) 

  Implicit in DISC is the minimization of development 
time. 
  How do I express my scientific workflow to the computer so 

that it can optimize it in a scalable manner? 

  The human component is what differentiates DISC 
from HPC: 

1.  Need, on scalable resources, for short development times. 
2.  Need, on scalable resources, for interactivity. 


