
Data Challenges in
Astrophysical Simulation

Jeff Gardner
Dept. of Physics

Dept. of Astronomy
UW eScience Institute

gardnerj@phys

Galaxies: The Tip of the Iceberg
Dark Matter
(Simulation)

Luminous Matter
(Telescope)

100 million light years

Galaxies: The Tip of the Iceberg

30 million light years

Simulations of Dark Matter tell us
what the Universe really “looks like”

100 million light
years

Dataset properties

  106 to 1011 particles
  Dark matter
  Stars
  Gas

  Each particles has roughly a dozen properties:
  Position
  Velocity
  Mass
  Density
  Temperature

How to turn astrophysics simulation
output into scientific knowledge

Step 1: Run simulation

Step 2: Analyze simulation
 on workstation

Step 3: Extract meaningful
 scientific knowledge

(happy scientist) Using 300 processors:
(circa 1995)

Data Analysis

  Each simulation generates many
“snapshots”.

  Each snapshot is a single file.
  To analyze, astrophysicists write

programs in C or Fortran.
  Usually, these programs read in an

entire snapshot, then operate on that
snapshot in memory.

Why analyze in RAM?

1.  Dataset is tightly-coupled
1.  Operations are typically not data-parallel
2.  Cannot break up a snapshot into smaller pieces to be

analyzed separately

2.  One rarely selects subsets of data
1.  It’s hard for a DBMS to minimize I/O when you need

everything anyway
2.  When subset selection is possible, it tends to be in non-

trivial ways

3.  Lots of math
1.  Analysis typically utilizes fairly complex analytical models.
2.  Historically, a highly optimizable compiled language has

been required

How to turn astrophysics simulation
output into scientific knowledge

Step 1: Run simulation

Step 2: Analyze simulation
 on workstation

Step 3: Extract meaningful
 scientific knowledge

(happy scientist) Using 300 processors:
(circa 1995)

How to turn astrophysics simulation
output into scientific knowledge

Step 1: Run simulation

Step 2: Analyze simulation
 on server (in serial)

Step 3: Extract meaningful
 scientific knowledge

(happy scientist) Using 1000 processors:
(circa 2000)

How to turn astrophysics simulation
output into scientific knowledge

Step 1: Run simulation

Step 2: Analyze simulation
 on ???

(unhappy scientist) Using 10,000 cores:
(circa 2008)

X

Exploring the Universe can be
(Computationally) Expensive

  The size of simulations is no longer
limited by computational power

  It is limited by the parallelizability of
data analysis tools

  This situation is only getting worse.

Exploring the Universe can be
(Computationally) Expensive

  The size of simulations is no longer
limited by computational power

  It is limited by the parallelizability of
data analysis tools

  This situation is only getting worse.
1.  Not only are we limited by the size of

shared RAM
2.  We are also limited by I/O
(In fact, CPU speed is almost a second-order effect)

How to turn astrophysics simulation
output into scientific knowledge

Step 1: Run simulation

Step 2: Analyze simulation
 on ???

(unhappy scientist) Using 10,000 cores:
(circa 2008)

X

How to turn astrophysics simulation
output into scientific knowledge

Step 1: Run simulation

Step 2: Analyze simulation
 on ???

Using 500,000 cores?:
(circa 2012)

X

By 2012, we will have machines that will have millions of
processor cores!

(Single snapshot: 200TB)

The Challenge of Data Analysis in a
Massively Parallel Universe

  Parallel programs are expensive to write!
  Lengthy development time

  Parallel world is dominated by simulations:
  Code is often reused for many years by many people
  Therefore, you can afford to invest lots of time writing the

code.
  Example: GASOLINE (a cosmology N-body code)

  Required 10 person-years of development
  Data Analysis does not work this way:

  Rapidly changing scientific queries
  Queries are specific to individual researchers
  Less code reuse

Speed of scalable application development = speed of science

The fundamental challenge:

1.  Physicists and astronomers do lots of math, and
have historically required a language:

1.  Flexible, general-purpose
1.  A more special-purpose language is usually too restrictive.

2.  Procedural
1.  Other paradigms tend to be slower, although OO compilers

are getting pretty good

3.  Imperative
1.  Math-driven view of computation

2.  Despite hundreds of attempts, nobody has
developed a general-purpose imperative
programming language.

  For this reason, programs are written using
message-passing

OK, so what’s different this time?

1.  Although the math is still there, CPUs
are so fast that floating-point
performance is becoming less
important.

2.  Data volume and I/O bandwidth are
the main limiting factors.

3.  The scientist can adopt a more data-
driven view of their workflow (i.e., not
math-driven and imperative).

Summary

  “High-Performance Computing” (HPC) is what we
have been doing for the last 20 years

  Now we are entering the era of Data Intensive
Scalable Computing (DISC)

  Implicit in DISC is the minimization of development
time.
  How do I express my scientific workflow to the computer so

that it can optimize it in a scalable manner?

  The human component is what differentiates DISC
from HPC:

1.  Need, on scalable resources, for short development times.
2.  Need, on scalable resources, for interactivity.

