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Galaxies: The Tip of the Iceberg 
Dark Matter 
(Simulation) 
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100 million light years 



Galaxies: The Tip of the Iceberg 

30 million light years 



Simulations of Dark Matter tell us 
what the Universe really “looks like” 

100 million light 
years 



Dataset properties 

  106 to 1011 particles 
  Dark matter 
  Stars 
  Gas 

  Each particles has roughly a dozen properties: 
  Position 
  Velocity 
  Mass 
  Density 
  Temperature 



How to turn astrophysics simulation 
output into scientific knowledge 

Step 1: Run simulation 

Step 2: Analyze simulation 
 on workstation 

Step 3: Extract meaningful 
 scientific knowledge 

(happy scientist) Using 300 processors: 
(circa 1995) 



Data Analysis 

  Each simulation generates many 
“snapshots”. 

  Each snapshot is a single file. 
  To analyze, astrophysicists write 

programs in C or Fortran. 
  Usually, these programs read in an 

entire snapshot, then operate on that 
snapshot in memory. 



Why analyze in RAM? 

1.  Dataset is tightly-coupled 
1.  Operations are typically not data-parallel 
2.  Cannot break up a snapshot into smaller pieces to be 

analyzed separately 

2.  One rarely selects subsets of data 
1.  It’s hard for a DBMS to minimize I/O when you need 

everything anyway 
2.  When subset selection is possible, it tends to be in non-

trivial ways 

3.  Lots of math 
1.  Analysis typically utilizes fairly complex analytical models. 
2.  Historically, a highly optimizable compiled language has 

been required 



How to turn astrophysics simulation 
output into scientific knowledge 

Step 1: Run simulation 

Step 2: Analyze simulation 
 on workstation 

Step 3: Extract meaningful 
 scientific knowledge 

(happy scientist) Using 300 processors: 
(circa 1995) 



How to turn astrophysics simulation 
output into scientific knowledge 

Step 1: Run simulation 

Step 2: Analyze simulation 
 on server (in serial) 

Step 3: Extract meaningful 
 scientific knowledge 

(happy scientist) Using 1000 processors: 
(circa 2000) 



How to turn astrophysics simulation 
output into scientific knowledge 

Step 1: Run simulation 

Step 2: Analyze simulation 
 on ??? 

(unhappy scientist) Using 10,000 cores: 
(circa 2008) 

X 



Exploring the Universe can be 
(Computationally) Expensive 

  The size of simulations is no longer 
limited by computational power 

  It is limited by the parallelizability of 
data analysis tools 

  This situation is only getting worse. 



Exploring the Universe can be 
(Computationally) Expensive 

  The size of simulations is no longer 
limited by computational power 

  It is limited by the parallelizability of 
data analysis tools 

  This situation is only getting worse. 
1.  Not only are we limited by the size of 

shared RAM 
2.  We are also limited by I/O 
(In fact, CPU speed is almost a second-order effect) 



How to turn astrophysics simulation 
output into scientific knowledge 

Step 1: Run simulation 

Step 2: Analyze simulation 
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How to turn astrophysics simulation 
output into scientific knowledge 

Step 1: Run simulation 

Step 2: Analyze simulation 
 on ??? 

Using 500,000 cores?: 
(circa 2012) 

X 

By 2012, we will have machines that will have millions of 
processor cores! 

(Single snapshot: 200TB) 



The Challenge of Data Analysis in a 
Massively Parallel Universe 

  Parallel programs are expensive to write! 
  Lengthy development time 

  Parallel world is dominated by simulations: 
  Code is often reused for many years by many people 
  Therefore, you can afford to invest lots of time writing the 

code. 
  Example: GASOLINE (a cosmology N-body code) 

  Required 10 person-years of development 
  Data Analysis does not work this way: 

  Rapidly changing scientific queries 
  Queries are specific to individual researchers 
  Less code reuse 

Speed of scalable application development = speed of science 



The fundamental challenge: 

1.  Physicists and astronomers do lots of math, and 
have historically required a language: 

1.  Flexible, general-purpose 
1.  A more special-purpose language is usually too restrictive. 

2.  Procedural 
1.  Other paradigms tend to be slower, although OO compilers 

are getting pretty good 

3.  Imperative 
1.  Math-driven view of computation  

2.  Despite hundreds of attempts, nobody has 
developed a general-purpose imperative 
programming language. 

  For this reason, programs are written using 
message-passing 



OK, so what’s different this time? 

1.  Although the math is still there, CPUs 
are so fast that floating-point 
performance is becoming less 
important. 

2.  Data volume and I/O bandwidth are 
the main limiting factors. 

3.  The scientist can adopt a more data-
driven view of their workflow (i.e., not 
math-driven and imperative). 



Summary 

  “High-Performance Computing” (HPC) is what we 
have been doing for the last 20 years 

  Now we are entering the era of Data Intensive 
Scalable Computing (DISC) 

  Implicit in DISC is the minimization of development 
time. 
  How do I express my scientific workflow to the computer so 

that it can optimize it in a scalable manner? 

  The human component is what differentiates DISC 
from HPC: 

1.  Need, on scalable resources, for short development times. 
2.  Need, on scalable resources, for interactivity. 


