
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006 1603

ASC: A Stream Compiler for
Computing With FPGAs

Oskar Mencer

Abstract—A stream compiler (ASC) for computing with field
programmable gate arrays (FPGAs) emerges from the ambition
to bridge the hardware-design productivity gap where the number
of available transistors grows more rapidly than the productivity
of very large scale integration (VLSI) and FPGA computer-aided-
design (CAD) tools. ASC addresses this problem with a software-
like programming interface to hardware design (FPGAs) while
keeping the performance of hand-designed circuits at the same
time. ASC improves productivity by letting the programmer op-
timize the implementation on the algorithm level, the architecture
level, the arithmetic level, and the gate level, all within the same
C++ program.

The increased productivity of ASC is applied to the hardware
acceleration of a wide range of applications. Traditionally, hard-
ware accelerators are tediously handcrafted to achieve top per-
formance. ASC simplifies design-space exploration of hardware
accelerators by transforming the hardware-design task into a soft-
ware-design process, using only “GNU compiler collection (GCC)”
and “make” to obtain a hardware netlist. From experience, the
hardware-design productivity and ease of use are close to pure
software development.

This paper presents results and case studies with optimizations
that are: 1) on the gate level—Kasumi and International Data
Encryption Algorithm (IDEA) encryptions; 2) on the arithmetic
level—redundant addition and multiplication function evaluation
for two-dimensional (2-D) rotation; and 3) on the architecture
level—Wavelet and Lempel–Ziv (LZ)-like compression.

Index Terms—Design space exploration, FPGAs, hardware
design.

I. INTRODUCTION

T RADITIONALLY, computer systems consist of a micro-
processor and an additional set of application- or domain-

specific devices, or hardware accelerators, which accelerate
a certain functionality. Some examples are floating-point co-
processors in early microprocessor systems, two-dimensional
(2-D) and three-dimensional (3-D) graphics accelerator cards,
and combinations of software and hardware accelerators in
embedded systems. However, all these hardware accelerators
are tediously handcrafted to achieve top performance. If we
consider a field programmable gate array (FPGA) with 10M
customizable gates, which could be reconfigured every 100 ms;
we could generate circuits of up to 100M gates/s to keep the

Manuscript received October 15, 2004; revised January 21, 2005 and
May 14, 2005. This work was supported in part by the Computing Sciences
Center at Bell Labs and Imperial College and in part by the U.K. Engineering
and Physical Sciences Research Council under Contract GR/R 55931. This
paper was recommended by Associate Editor A. Raghunathan.

The author is with the Department of Computing, Imperial College,
London SW7 2BZ, U.K., and Maxeler Technologies, Inc. (e-mail: o.mencer@
imperial.ac.uk).

Digital Object Identifier 10.1109/TCAD.2005.857377

Fig. 1. Computer system with hardware accelerators such as stream
architectures.

chip busy. Therefore, the more we can increase the productivity
of our hardware-design system, the better use we can make of
reconfigurable technology.

The ideal programming solution needs to automate the gen-
eration of hardware and, at the same time, achieve top per-
formance of hand-designed circuits. A stream compiler (ASC)
is a general-purpose hardware-generation system with a spe-
cial support for generating stream architectures. ASC achieves
top performance with low programming effort by providing
access on all three levels of abstraction. Thus, ASC bridges
the hardware-design gap between the ever-increasing number
of transistors on a chip and the much slower increase of
productivity delivered by hardware-design tools and method-
ologies. Previous publications have covered the principle of our
approach [20]. The key points about ASC that are discussed in
this paper are as follows:

1) programming interface, hardware-variable types and
attributes on various levels of abstraction (Section III);

2) details of custom stream architecture generation, in par-
ticular, the datapath part of the design (Section IV);

3) details of module generation/“instruction set’” for hard-
ware accelerators on FPGAs (Section V);

4) evaluation and test using a number of benchmarks from
small to large sizes such as encryption, compression, and
elementary arithmetic (Section IX).

Various aspects of ASC are published in conference papers
[16], [18]. This paper selectively combines and extends pre-
vious publications, adding the test methodology employed to
ASC and ASC user programs and an extended comparison to
related work.

Fig. 1 shows the general structure of a computer system
with multiple application-specific accelerators. The accelera-
tor can be located on-chip with a processor such as today’s
floating-point units, the Berkeley Garp Processor [7], or the
Xilinx Virtex Pro FPGAs with on-chip PowerPC processors
[25]. Also, such accelerators can be combined with the main

0278-0070/$20.00 © 2006 IEEE

1604 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006

memory [14] or on the peripheral bus [17], [34]. Furthermore,
accelerators can be implemented in custom very-large-scale-
integration (VLSI) devices or as FPGA configurations. In either
case, there are two memory systems: 1) a compile-time memory
system on or around the accelerator, i.e., memories inside the
FPGA or directly attached to it and 2) the processors memory
system, which is managed at run time.

On the FPGA side, recent advances in FPGA technology
enable the development of many hardware accelerators cus-
tomized for specific applications and for particular input-data
sets [19]. These accelerators can be generated and managed at
compile time and at run time.

However, building efficient hardware accelerators for a par-
ticular application consists of many challenging tasks. First, the
programmer can explore four degrees of freedom: the system
architecture, the micro architecture, the functional units, and the
level of programmability or granularity of configuration. This
exploration of the structure of computation results in the data-
path part of the design. Second, a custom accelerator requires a
custom memory system consisting of on-chip registers, an on-
chip and off-chip static random access memory (SRAM), and
possibly a dynamic random access memory (DRAM). Third,
run-time software routines take care of sending the appropriate
data back and forth between the processor and the hardware
accelerator. Fourth, a control block for this datapath makes
sure that the timing of operations is correct. Fifth, an interface
between the accelerator and the processor maximizes the data
transfer rate.

With ASC, the programmer can focus on the first three items
while ASC provides facilities to save the programmers time and
automates the fourth and fifth tasks.

Traditionally, low-level hardware-design tools focus on cre-
ating one hardware design, while high-level design tools focus
on design-space exploration. By combining these activities,
ASC simultaneously provides both top performance and easy
design-space exploration.

ASC facilitates design-space exploration in two ways. First,
for the datapath, a single ASC description produces multiple
datapath implementations at the micro architecture level with
user-specified tradeoffs. ASC also simplifies the process of
selecting and possibly custom designing of the functional units
by having the descriptions on various levels of abstractions
captured in a uniform object-oriented style. The object-oriented
implementation of ASC also enables us to easily support several
families of Xilinx FPGA devices such as Xilinx 4000, Xilinx
Virtex, Virtex 2, Virtex 4, Spartan 2, and Spartan 3.

Second, ASC automates the generation of the control block,
the run-time routines, and the CPU–FPGA interface based on
user specifications. Our purpose is to put the design-space
exploration under user control. For example, by specifying
the algorithm in C++ syntax and ASC semantics, the user
also controls the memory system that ASC generates for the
application at hand.

II. A STREAM COMPILER (ASC)

On the top level, the user writes an ASC code that closely
resembles C code. As a consequence, existing C/C++ software

can be seamlessly transformed to ASC. In order to express
and explore the design space of a hardware accelerator, ASC
code is parameterized to generate a large selection of im-
plementations. With these parameterizations, the user trades
off, for example, silicon area for latency, throughput, and/or
precision.

In essence, ASC is a C++ library and, as such, can be
compiled by a standard C++ compiler. Thus, ASC code is
simply C++ that makes use of the ASC library in a compli-
ant manner. When compiled, the ASC code becomes an exe-
cutable that either acts as a word-level simulation or a bit-level
(RT-level) simulation, or produces a circuit in the form of a
hardware netlist.

The concepts of timing and architecture of the circuit map
to user-defined types or ASC “hardware-types,” implemented
as C++ classes and operators. These hardware operators map to
the module-generation layer, PAM-Blox II [18]. PAM-Blox II is
also implemented as a C++ class library built on top of PamDC
[26], which provides the engine for gate-level simulation and
supports output in EDIF netlist format.

For design-space exploration, ASC provides three intermedi-
ate representations, all in C++ syntax, to transform a software
implementation all the way down to the gate level without the
use of a single line of very-high-speed-IC hardware description
language (VHDL), Verilog, or IP libraries. Since each interme-
diate representation is a human readable language, it is possible
to reason about optimizations at each of these levels and explore
such optimizations within the ASC framework.

Conceptually, ASC follows the underlying methodology of
the C programming language. The objective is to offer the
potential for maximal performance and, at the same time, to
provide a convenient language interface. On the hardware
side, implementations are not limited to any particular number
representation or to any particular bitwidth. Custom hardware
provides a substrate for the programmer to tailor the number
representation to the specific application. In order to simplify
this process, the ASC description provides hardware types and
attributes that select specific number representations. Types
and attributes provide either a connection or hooks between the
C++ description and the architecture generation layer. Fig. 2
shows the levels of abstraction in ASC, which are described in
detail below.

1) Algorithm analysis layer. The common tasks associated
with this layer include: extracting compiler-controlled
memory management [38], [39], pointer analysis for
hardware synthesis [37], loop transformations for hard-
ware generation [7], [11], [24], precision analysis [4], [6],
[35], data-structure transformations, and architecture se-
lection. This layer is currently handled manually, i.e., all
algorithmic transformations are done by the programmer.
The task of ASC is to make this activity as easy as
possible and to support research on hardware algorithm
analysis and transformations.

2) Architecture generation layer. ASC code serves as the
input to generate the hardware architecture. The ASC-
type system provides the mapping of sequential code to
a custom-hardware architecture.

MENCER: ASC: A STREAM COMPILER FOR COMPUTING WITH FPGAs 1605

Fig. 2. Levels of abstraction and the structure of ASC. The largest box
represents a single C++ program.

3) Module-generation layer. In contrast to most other hard-
ware compiler efforts, ASC contains its own integrated
module-generator libraries, PAM-Blox II. PAM-Blox II
offers the ASC user easy exploration of bit-level paral-
lelism (BLP) in conjunction with optimizations on vari-
ous other levels of abstraction.

4) Gate Level to netlist layer. ASC does not utilize any
VHDL or Verilog. Instead, it uses PamDC [26], a C++
library for gate-level FPGA design, simulation, and
EDIF-netlist generation.

In order to meet the above requirements for module genera-
tion, we apply an object-oriented-design methodology. Object-
oriented software design is a well established technology in
the software world. The hardware world is slowly adopting the
advances made by object-oriented languages such as C/C++
[45], [46] and Java [47]–[49]. Object-oriented design leads
to an efficient solution of the module-generation problem by
focusing on the requirements for module generation mentioned
above, such as scalability and code sharing. Inheritance and
hierarchical class structures match the requirements of creating
a large library of module generators with the logic expressed as
computation (methods) and the module abstraction parameters
described as internal state (local variables) of the generated
object.

III. COMPARISON WITH OTHER APPROACHES

As for related tools and approaches, the commercial module-
generator library available from Xilinx (CoreGen) contains
module generators that can be instantiated through a stand-
alone GUI. This approach is very well suited for the computer-
aided-design (CAD) tool flow but less ideal for a programming
environment. A direct comparison of the performance values
from the Xilinx CoreGen data sheets is complicated since the
numbers in this paper are real design results, while Xilinx
values are maximal (best case) values.

Pebble [58], a language designed at Imperial College, gener-
ates VHDL modules for a conventional CAD flow but requires
the user to learn a new language syntax and to use the CAD
design methodology. The Java hardware description language

(JHDL) [49] is a similar effort to PAM-Blox/ASC. Besides
thearguments for and against Java, JHDL also integrates mod-
ule generation with the higher compilation layers. Additionally,
JHDL contains a run-time system, a port to Virtex II, and a
large set of modules. Similarly, a commercial effort by Celoxica
[46] provides the “programming feel” to FPGA design, mostly
targeting embedded systems.

One difference of the approach proposed in this paper to
these related projects is the emphasis on handling different
number representations to tap into the full potential of the
FPGAs flexibility on the bit level.

The key benefit of architecture-level ASC as compared to the
C-to-FPGA approaches below is that ASC enables the program-
mer to generate optimal circuits by programming on the bit
level, while at the same time making it easy to explore a large
design space and program noncritical parts of the applications
on a very high level.

The design environment for adaptive computing technology
(DEFACTO) system [23] supports the hardware-design-space
exploration based on parallelizing compiler technology and
high-level synthesis tools. A key element in DEFACTO is the
use of synthesis estimation techniques, possibly from behav-
ioral synthesis tools [22], to quantitatively evaluate alternative
designs for a loop nest computation. Other researchers have
also proposed estimation-based exploration methods, such as
the heuristics-based allocation based on communication cost
reduction [5]. In contrast, ASC operates on a lower level and
could be targeted by a DEFACTO-style layer.

The Nimble framework [15] extracts loops from applications
and generates a hardware accelerator for an FPGA. Similar to
DEFACTO, much of Nimble is actually above the ASC level,
as its main focus is on hardware/software partitioning. As a
consequence, Nimble is limited to high-level transformations,
particularly those exploring architectural and instruction-level
parallelism. The focus with ASC is to bring all relevant levels
of abstraction together in a coherent framework, from bit level
to algorithm level.

The Stream-C [11] and malleable-architecture-generator
(MARGE) [12] systems compile C code to multi-FPGA hard-
ware accelerators. Similar to Nimble above, Stream-C oper-
ates mostly at a higher level than ASC. However, Stream-C
is more hands-on than Nimble, requiring user programming
to explore the design space. Stream-C follows the traditional
behavioral synthesis approach of adding annotations with com-
piler directives to the code in the form of comments. Instead,
ASC includes compiler “directives” into the structure of the
description within the type system, object classes, function
calls, and macros, offering a richer scope of expression to the
programmer.

Celoxica [8] provides Handel-C, a C derivative language for
high-level hardware design. Handel-C can be used to design
hardware accelerators for FPGAs at a similar level as ASC. Like
ASC, Handel-C provides the hardware designer with control
and opportunities for optimization. The main difference from
ASC is that the entire compiler code and most module libraries
are proprietary and thus off limits to the user. In comparison:
1) ASC is truly general purpose, while Handel-C does not
support the generation of arbitrary circuits; 2) ASC uses a

1606 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006

conventional GNU-compiler-collection (GCC) compiler, which
makes ASC more compatible with standard C++ software
practices; 3) Handel-C restricts the user by declaring a clock
cycle as one expression, i.e., the assignment operator “=” spec-
ifies a clock cycle—clearly making it difficult to create large
combinational circuits—while ASC supports the generation of
arbitrary circuits; and 4) ASC enables the user to generate
many designs with a single source file and an experimental
setup in makefiles. To our knowledge, neither Handel-C nor any
other high-performance hardware-design environment support
similar productivity in exploring the design space.

Similar efforts also exist in the custom VLSI world. For
example, ShiftQ [2], the nonprogrammable accelerator (NPA)
for program-in-computer-out [1] (PICO) systems enables the
user to quickly find an optimum hardware solution.

Tensilica [41] provides a similar processor generation sys-
tem. Sherwood and Calder [21] provide higher level algorithms
to search through the processor design space for a PICO or a
Tensilica-like system. Also, Dhodapkar and Smith [10] show
a dynamic method to manage different configurations of a
computer system. Even though their method is targeted at con-
figurable resources in a conventional processor, their method
could be applied to dynamically control configuration options
of domain- and application-specific compilers.

More generally, the idea of data-centric computation is the
key component in dataflow [3] systems. ASC uses similar
principles like static dataflow but customizes the architecture
to a particular application or application domain.

Why did we choose object-oriented C++? C++ is one of the
richest object-oriented languages sometimes criticized for the
complexity arising from this richness of features. On the other
hand, once an optimal mapping of the problem space to C++
features is established, the software design and maintenance
task is greatly simplified.

Why did we choose C++ as opposed to Java [47]–[49]? C++
offers operator overloading (not available in Java), which is
one of the most convenient features for adding application-
specific semantics to a programming language. In our case,
these semantics include Boolean logic equations and in fact
any expressions/operations on user-defined classes that specify
hardware-variable types. The second reason for using C++ is
the standard template library (STL) [50].

Why did we not choose SystemC [45]? SystemC is optimized
for the hardware-design process by mirroring the philosophy of
simulation languages such as VHDL or Verilog, i.e., providing
an additional layer on top of very large legacy code. ASC
provides the user with simultaneous access to all levels of
abstraction.

The major general advantage of ASC is the combination of
general-purpose low-level optimization with high-level design-
space exploration; which, as far as we know, is not supported
by other currently available tools.

IV. ASC ARCHITECTURE GENERATION

ASC architecture generation deals with the mapping of an
architectural description, in our case ASC code, to a structure
consisting of a custom datapath, a control, and various inter-

face blocks. How does an ASC description deal with timing,
parallelization, and pipelining of an algorithm? The big picture
is that ASC contains an underlying parametrizable and mold-
able architecture—the stream architecture. ASC extends the
C++-type system using user-defined classes as hooks to map
the algorithm to a particular instance of a stream architecture.
In addition, for each piece of code, ASC can be directed by
the user to optimize throughput, latency, or area. Since each of
these three optimization modes can be selected separately for
each expression in the ASC code, the user can optimize towards
any objective such as area, latency, or throughput. This means
that ASC allows for optimization towards a combination of all
three optimizations.

A constructive way to visualize stream architectures, assum-
ing a simple feed-forward dataflow graph of a loop body, is
to imagine taking the dataflow graph, inserting flip-flops to
generate a pipeline, and streaming data in at one end while
letting the data flow out on the other end of the pipeline.

The following example shows a C code for vector increment,
an ASC code, and the resulting stream architecture.

in C (software):
int i, a[SIZE], b[SIZE];
for (i = 0; i < SIZE; i++) {
b[i] = a[i] + 1;

}

The C loop above is expressed in ASC by declaring an input
stream a and an output stream b and by specifying the expres-
sion whose operator defines the function (add) to compute the
elements of the output stream when given the input stream.

ASC code:
STREAM_START;
// variables and bitwidths;
HWint a (IN, 32), b (OUT, 32);

STREAM_LOOP (SIZE);
STREAM_OPTIMIZE = THROUGHPUT;
b = a + 1;

STREAM_END;

The ASC code is a correct C++ with user-defined types, oper-
ators, and a library of macros and function calls. Therefore, the
ASC code is compiled with GCC like any other C++ program,
libASC is linked, and running the executable produces an EDIF
netlist or a gate-level simulation of the circuit. Consequently,
programming with ASC is similar to programming in C++; and
thus, we have a true softwarelike (suffix, close up) hardware
development process.

For the simple example above, the seven lines of ASC
code run on an FPGA by typing “make run” in the command
line. The ASC makefile system automatically compiles the
code, generates the EDIF netlist, runs Xilinx place and route
tools, gets the timing information, sets the clock on the FPGA
card, downloads the bit stream, and runs the program on the
FPGA, displaying the result. By typing “make sim,” the pro-
gram above is executed in a gate-level simulation in C++.

MENCER: ASC: A STREAM COMPILER FOR COMPUTING WITH FPGAs 1607

Fig. 3. Simple ASC stream architecture (circuit on the hardware accelera-
tor/FPGA) with one input FIFO, one output FIFO, and a possibly pipelined
datapath (in this case just one adder) absorbing inputs from the input FIFO and
producing outputs for the output FIFO.

Note that the “for” loop in C code translates to a declaration
of STREAM_LOOP in ASC code, the variable-type changes
to HWint, and the variables get “architectural attributes”
IN and OUT. From a vector processor perspective, streams are
a generalization of vectors. We express algorithms in terms of
streams (or arrays in C). ASC then generates a stream architec-
ture based on the STREAM_OPTIMIZE for each expression.
Currently supported optimization values inclue THROUGHPUT,
LATENCY, and AREA.

1) THROUGHPUT: (default) In a throughput mode, all flip-
flops are being used, and the resulting circuit is balanced
(scheduled) by using first-in-first-out (FIFO) buffers in-
between the arithmetic units.

2) LATENCY: In a latency mode, no flip-flops are being
inserted; and as a consequence, the resulting circuit is
purely combinational.

3) AREA: In an area mode, ASC uses sequential arithmetic
units, e.g., ASC selects an add-accumulate unit for multi-
plication.

At run time, a C program with modified ASC run time calls
streams data through the hardware to compute the results. An
example for an ASC run time call could replace the “for” loop
(STREAM_LOOP) above by a call to the ASC run-time library.

ascrt_stream_int (a, b, SIZE, SIZE);

This call sends SIZE data items from buffer a in main mem-
ory to the generated circuits, either in a gate-level simulation
mode or real hardware, and receives SIZE result items into
buffer b. At the hardware accelerator, the input data enters an
FIFO buffer and flows through the stream architecture until it
arrives at the output FIFO buffer. The above ASC code results
in the implementation shown in Fig. 3.

In general, an ASC architecture consists of a multiinput
multioutput data flow graph. Each “wave” of input values flows
through this implementation of the data flow graph. An imple-
mentation of a data flow graph involves delay FIFO buffers,
which balance the movement of the various operands through
the compute engine. The delay inserted by each buffer is set by
the scheduling phase of ASC.

A. ASC Scheduling And Control-Block Generation

ASC generates statically scheduled architectures. While the
ASC user focuses attention on generating the datapath, ASC au-

tomatically schedules all computations and generates a custom
control block for the particular pipeline. This control logic sets
the enable signals for all flip-flops and controls all FIFO buffers
and memories to latch the correct values at the right time.

From the scheduler’s perspective, a stream architecture is a
graph where the nodes have a particular latency (pipeline depth)
and a minimal number of clock cycles between successive
inputs. This minimal number of clock cycles between succes-
sive inputs is the latency of sequential units. ASC schedules
the operations of the data flow graph resulting from the C++
code by inserting delay FIFO buffers between producers and
consumers of data values, to ensure that the operands of each
operation arrive together. As long as there are no cycles in
the data flow graph, the resulting implementation can be fully
pipelined regardless of local data dependencies and runs at
a throughput equal to the data rate, since it can absorb one
set of input values at each clock cycle. This pipelined mode
of operation represents the computation that is parallelized in
time (as opposed to parallelization in space, which would mean
replicating stream architectures).

V. ASC DATAPATH

This section describes the facilities that ASC provides for
design-space exploration of the datapath and the custom-
memory-system blocks of the stream architecture.

A. Hardware Types and Attributes

ASC uses custom types and attributes as the means of
conveying timing and structure to the compiler. Each hardware
type denotes a family of related representations. For exam-
ple, HWint denotes the integer family of representations. In
addition, the user specifies attributes to select more specific
details, such as sign representation (e.g., two’s complement
or sign magnitude), bit width, or memory-type (e.g., register,
temporary, stream input, or FPGA internal memory block).
These attributes are parameters stored within the state of the
hardware-variable class. Available data types include HWint,
HWfix, and HWfloat. For example, the following code uses
fixed-point variables to compute a running average.

STREAM_START;
// var x - iiiiiiii.ffffffff
HWfix x (IN, 16, 8, UNSIGNED);
HWfix y (TMP, 64, 8, UNSIGNED);
HWfix sum (MAPPED_REGISTER, 64, 8,

UNSIGNED);
HWfix av (MAPPED_REGISTER, 24, 12,

UNSIGNED);
HWint l (TMP);
STREAM_LOOP (1000000)
STREAM_OPTIMIZE = LATENCY;
LoopIndex (l);
y = x + sum;
sum + = y;
av = sum/l;
STREAM_END;

1608 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006

Notice that HWint/HWfix are streams of numbers rather
than single data items. Streams are like vectors with flexible
length. The length of a stream can be varied at run time. ASC
stream variables reflect the data streams that come through a
port/bus on a chip.

The attribute MAPPED_REGISTER maps the ASC variable
into the host processors memory space making it read/writable
at run time.

B. ASC “Instructions”: Module-Generator Libraries

The ASC module-generation layer, PAM-Blox II [18], con-
sists of more than 170 integer arithmetic module generators
for elementary operations in about 10 000 lines of C++ code,
resulting in an average of fewer than 60 lines of code per
module generator.

ASC arithmetic-unit generators include flip-flops and thus
timing in the generated unit. For all operations, the user
chooses an appropriate implementation by selecting one of
three optimization modes: latency, area, or throughput. As a
consequence, ASC chooses the appropriate module for the
particular optimization: a plain combinational arithmetic unit
for latency minimization, a sequential arithmetic unit for area
minimization, and a fully pipelined arithmetic unit for through-
put maximization.

ASC also contains floating-point module generators [16]
capable of generating over 200 distinct floating-point units.
The generated floating-point units differ in their algorithm,
architecture, and timing (pipelining) and thus represent over
200 design points in the area, latency, and throughput design
space. In addition, each of these floating-point units can be
generated with a variable number of bits for the mantissa
and the exponent. Furthermore, our arithmetic-unit generators
enable a tradeoff of precision versus area by enabling the user
to choose custom rounding and normalizing schemes.

C. ASC Memory Systems

The compile-time memory system in ASC supports flip-flops
and registers FIFO buffers, small multiported on-chip SRAM
blocks, large on-chip SRAM blocks, off-chip SRAM memory,
and off-chip DRAM memory. At run time, there is also the
processor’s memory system, which is managed by the ASC run-
time system. In this section, we will focus on the compile-time
part of the memory hierarchy.

One key advantage of having flexibility at the bit level is
that we can generate an application-specific memory system
all the way down to the bit level. ASC does not automatically
generate the optimal memory system. Instead ASC provides
a notation to express application-specific memory systems, in
order to enable the exploration of and reasoning about memory-
system optimizations. As before, we utilize types and especially
“architectural attributes” to assign algorithmic variables to the
various physical components of the generated memory system.
Thus, ASC variables can be TMP variables as described before,
and INTMEM or EXTMEM for FPGA internal block RAM
memories or FPGA external memories, respectively. For mul-
tiple external memories, ASC provides attributes EXTMEM0,
EXTMEM1, etc.

VI. IMPLEMENTATION OF ASC MODULE GENERATION

A conventional hardware-module library stores the imple-
mentations of a large set of hardware modules. A module-
generation library distinguishes itself from a conventional
library of hardware modules by storing the algorithm that
generates a set of hardware modules based on input parameters
such as bitwidth of inputs and outputs and sign representation
of inputs and outputs. For example, the parameterized array
multiplier occupies an area of m × n cells, where m and n are
the bitwidths of the multiplicand and multiplier, respectively.
In this sense, module generation is really a software system
that designs hardware, rather than an extension of a hardware
description system.

The module-generation framework of ASC, PAM-Blox II,
contains: 1) extensions to the underlying gate-level layer,
PamDC; and 2) an updated methodology for utilizing object-
oriented features of C++ to module generation for the purpose
sof computing with FPGAs.

Bit-level features are as follows.

1) class Net: The generic class Net encapsulates a
set of wires of variable size and thus enables width
inference at the module-generator level. This class sim-
plifies the C++ code required to describe the genera-
tors. In addition, class Net contains a set of user
defined operators that further simplify the description of
operations on entire sets of wires, such as assignment,
indexing, and concatenation. A key feature of class
Net is compatibility with the STL of C++, which is not
compatible with PamDC objects such as Bool, Wire, or
WireVector.

2) Support for various sign-representation modes on the bit
level: In order to support multiple sign representations
such as twos-complement, sign magnitude, and unsigned
numbers.

3) Xilinx Virtex support includes wrappers for generating
large block RAMs available in the Xilinx Virtex FPGA
family as dedicated parametrizable blocks of memory.
The gate-level designer has the option to select the width
of the constant-size block RAM within the limits of the
particular underlying FPGA technology.

4) In order to make the ASC project and, in particular,
PAM-Blox II more accessible, PamDC is ported from
Compaq ALPHA cxx to GNU GCC version 2.95.2 or
higher. Even though C++ is standardized, porting soft-
ware between platforms is still a major challenge because
most of the C++ compilers do not implement a stable set
of the C++ standard.

PAM-Blox II is implemented on top of these bit-level fea-
tures. Object-oriented features of C++ correspond to the tasks
involved in describing hardware-module generators as follows.

1) Encapsulation of a module generator in a C++ class.
An object state represents the internal wires and pa-
rameters of the module. These parameters can be ac-
cessed by various other components of the architecture
generation environment such as the scheduler or, possi-
bly, a high-level area and timing estimator. The object

MENCER: ASC: A STREAM COMPILER FOR COMPUTING WITH FPGAs 1609

functions or methods describe the logic parametrically,
generating the hardware module based on the input
parameters.

2) The code reuse is supported by a C++ class hierarchy
with explicit inheritance controlled by defining virtual
functions and function overloading. Child objects inherit
all public methods (functions) and variables (state). For
example, all objects with a carry chain (such as adders,
counters, and shifters) inherit the carry-chain defini-
tion functions from their common parent. This particu-
lar example of code reuse is paramount to porting the
module generators from one FPGA family to another.
Details on porting Xilinx XC4000 carry-chain genera-
tors to Xilinx Virtex devices using inheritance and code
reuse are summarized at the end of this section.

The major improvements in PAM-Blox II over the initial
PAM-Blox [42] implementation, in addition to the object-
oriented-design decision mentioned above, are as follows.

1) Use of template classes. A template class is a description
of a class that can be instantiated with different variable
types as inputs. The most common use of template classes
is in the STL. An STL class such as a vector can be
instantiated as a vector of integers (vector <int>), a
vector of floats (vector <float>), or a vector of any
other user-defined class such as vector <Net>. The
initial PAM-Blox implementation uses template classes
to distinguish hardware integers with different bitwidths
as different types. PAM-Blox II uses class Net. As a
consequence, PAM-Blox II treats variables with different
bitwidths as variables of the same type with a different
attribute (or object state).

2) An object-specific “enable” for control. Sequential mod-
ules iterating in parallel for a specific number of clock
cycles require a control input to coordinate the number
of iterations. For example, a one-cycle adder followed
by an N -cycle sequential multiplication requires separate
control lines for the two units to be pipelined correctly. A
priori options are:
a) provide separate clocks;
b) add an enable signal to the logic equations (LUT) of

the module;
c) use the enable input of the flip-flop.
Providing separate clocks is impractical due to the latency
of going between clock domains and the limitation of
FPGAs to few clock buffers. Enable inputs as part of
the object logic (b) are used in the initial PAM-Blox
implementation. PAM-Blox II provides a more efficient
separate enable line for flip-flops (c) of each hardware
object.

In summary, the state of a PAM-Blox II hardware object
consists of latency, number of sequential cycles, a list of nested
sequential objects, a maximal sequential cycle within the object
(for nested objects), size (bitwidth), a hierarchical name for
debugging, an enable signal, a clock signal, and an “inputs
valid” signal.

A. Portability of Object-Oriented Module Generation

Object-oriented design of hardware-module generators en-
ables code reuse. As a consequence, if a particular feature
on the FPGA changes from one product line to another, such
as the carry chain, it is easy to adapt the library to a new
carry chain by overloading a single method. Overloading this
one method then changes the carry chains of all generated
modules that require a carry chain, regardless of the function
that the module computes. The following discussion describes
the object-oriented method of porting FPGA features from one
FPGA family to another by using the carry-chain example.

Carry chains form the basis of almost all arithmetic circuits
from adders, subtracters, multipliers, and dividers to more
specialized units such as counters, comparators, and leading-
one-detect circuits. A conventional binary full adder with inputs
A and B has the following well-known logic equations:

sumi =Ai xor Bi xor carryi−1 (1)

carryi =(AiBi) or (Aicarryi−1) or (Bicarryi−1). (2)

For all FPGAs with a dedicated carry chain, the above
equations have to be mapped to a four-input lookup table (the
lookup table available for logic in the cell) plus some dedicated
custom carry logic. The various FPGA families vary in the
precise way that this partition is accomplished.

In order to simplify porting PAM-Blox to new carry-chain
organizations, the two equations above are described by two
separate virtual functions that can be overloaded and inherited.
The next step lies within the details of the partition of the
carry-chain equations for the two technologies at hand, Xilinx
XC4000 and Xilinx Virtex devices.

From Xilinx documentation, we learn that the equations for
addition in C++ for Xilinx XC4000 FPGAs are as follows:

sum[i] = A[i] ˆ B[i] ˆ carry[i− 1] (3)

carry[i] = (A[i] &B[i]) | (A[i] &carry[i− 1]) |
(B[i] &carry[i− 1])

= mux (A[i]ˆB[i], carry[i− 1], ZERO) . (4)

For Xilinx XC4000 devices, the dedicated carry chain is
inferred by the Xilinx place and route tools based on relative
placement constraints that lock the particular wires to positions
relative to each other.

For Virtex devices, the equations for addition are as follows:

sum[i] = xorcy (LUT[i], carry[i− 1]) (5)

carry[i] = muxcy (LUT[i], ZERO, carry[i− 1]) . (6)

Specific function calls muxcy(select, input1, input0)
and xorcy() instantiate dedicated carry-chain logic primitives
available inside the Virtex logic blocks. The LUT[] array
describes the logic that goes into the Virtex adders lookup

1610 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006

Fig. 4. Latency of addition given three implementation choices: carry chain,
(dedicated) fast carry chain, and constant time addition.

table. In the case above, the lookup table holds the exclusive-or
of the two inputs, or LUT[i] = A[i] ˆB[i]. Since carry chains
use dedicated blocks explicitly, there is no need for relative
placement constraints to infer a carry chain such as that nec-
essary for XC4000 FPGAs.

Since the only difference between the two technologies lies
in the above two equations, declaring each one of these equa-
tions in a separate virtual function enables porting PAM-Blox II
by overloading the carry-chain functions of the top ancestor
class. Thus, partitioning the logic into appropriate virtual func-
tions is the key to portability of an object-oriented module-
generation environment and also provides the key advantages
for using object-oriented technology.

VII. EXAMPLES OF PAM-BLOX II MODULE GENERATORS

In order to demonstrate the custom-designed module gener-
ators for computing with FPGAs, we explain the design of a
few sample module generators and the impact of having such
custom modules available in the module-generator library. The
tradeoffs for the module generators are based on trading area
for speed, hand-optimizing technology mapping to the specific
FPGA microarchitecture, and utilizing a redundant number
representation.

The results for latency and area are based on Xilinx VirtexE
devices (speedgrade −6) and standard Xilinx Foundation series
v3.2 place and route tools.

A. Addition and Subtraction

Addition and subtraction are the most important module gen-
erators for computing with FPGAs. The results in this section
quantify the advantages of the FPGA’s fast carry chain versus
redundant representations. Fig. 4 shows the latency of addition
given three implementation choices: carry chain, (dedicated)
fast carry chain, and constant-time addition.

1) Using Redundant Representations: Redundant represen-
tations are one of the key methods to speed up arithmetic
circuits in VLSI [52]. Redundant encodings are defined by
Omondi [54]. Such redundant digits enable us to tradeoff
area (more bits) for time by eliminating the carry chain and
obtaining “constant-time addition,” where addition time does
not depend on the bitwidth of the operands.

Fig. 5. Latency comparison of two multiplier implementations: with
(dedicated) fast carry chains and with internal redundant representation.

Fig. 4 compares carry-chain adders with and without the
dedicated fast carry chain and a constant-time adder using the
carry-save redundant representation. The carry-save represen-
tation requires two bits to represent each digit and, thus, results
in a doubling of the required bits to represent a value. The
graph in Fig. 4 shows the order of magnitude speedup of carry-
chain addition provided by the Xilinx fast carry chain. A single
redundant addition is comparable to a 32-bit carry-chain add.
Despite that fact, a collection of adders such as that present
in an array multiplier (results in Fig. 5) shows significant time
savings for redundant adders even for bitwidths smaller than
32 bits. Interestingly, not only does the redundant implementa-
tion outperform the multiplier with fast carry chains, but even
scaling turns out to work in favor of redundant digits resulting
in a smaller slope of the redundant multiplication line in Fig. 5.
This surprising result is due to the structure of redundant
representations. Most of the delay is in the interconnect to and
from the unit. By placing multiple units together, Xilinx place
and route tools can minimize this interconnect delay and thus
optimize the performance of the combined circuit.

As for area, redundant multipliers are about 5% smaller than
carry-chain-based implementations. The area advantage results
from a slightly higher utilization of FPGA resources due to
technology mapping of conventional (3, 2) counters [53], which
are the basic building blocks for computing with a redundant
representation. A further optimization of multipliers for com-
puting with FPGAs can be applied to constant multiplication,
as shown in a previous paper [42].

B. Comparison Operator ==

A common computation is to check if two values are equal.
Looking at the problem in a top down approach, one might
consider using a subtracter and checking if the result is zero.
Given the flexibility at the bit level, there are two interesting
solutions; one for checking the equality of a variable and a
constant, and one for checking the equality of two variables.
Optimizing for area and latency, respectively, one could imple-
ment the comparison operation: 1) with a carry chain or 2) with
a parallel treelike (suffix, close up) implementation.

A closer look at the implementation for comparing a variable
with a constant shows that the carry-chain version can be
a subclass of an adder. Such a modified adder then simply

MENCER: ASC: A STREAM COMPILER FOR COMPUTING WITH FPGAs 1611

requires the overloading of the carry chain’s LUT functionality,
which is a separate virtual function within the adder. The code
fragment below shows one version of the PAM-Blox II code
defining a comparison between a variable A and a constant K
at bit position i

virtual EquationHandler LUT(int i){
return ((((K>>i)&1) ? A[i] :∼A[i])&

(((K>>(i+1))&1) ? A[i+1] :∼A[i+1])&
(((K>>(i+2))&1) ? A[i+2] :∼A[i+2])&
(((K>>(i+3))&1) ? A[i+3] :∼A[i+3]));

}

This code implies that a single four-input LUT compares up
to four bits against a constant value. As a consequence, the area
of the resulting unit is four times smaller than a subtracter and
delivers the result of the comparison on the carryout wire of the
unit. A similar construction for comparing two variables leads
to a unit of half the size of a subtracter.

A treelike (suffix, close up) implementation still reduces up
to four bits per lookup table; but instead of a carry chain, the
result is obtained by reducing the input in a treelike fashion.
The PAM-Blox II code for such a reduction tree is slightly more
arduous.

Comparing two variables limits the number of bits that can be
compared in one lookup table to two bits of each input variable.
As a consequence, for the carry-chain solution, comparing two
variables takes about twice the area of comparing a variable to
a constant and about half the area of a subtracter.

From standard VLSI experience, we expect a circuit with
a hierarchical or tree-based solution to be faster than a carry
chain. From an FPGA designer’s view, we expect any solution
that uses the fast carry chain to be superior. The results show
that the dedicated fast carry-chain solution is in fact faster than
the hierarchical solution.

One of the conclusions from this result is that knowledge
from VLSI design is not directly applicable to FPGA design
on the module-generation level despite the fact that both are
hardware-design methodologies. The difference arises from the
particular LUT and interconnect structure of FPGAs and the
associated technology mapping, placement, and routing.

VIII. TESTING ASC AND ASC PROGRAMS

ASC provides a test infrastructure that automates testing and
precision analysis of the hardware generated by ASC. This
testing feature leads to a regression test suite and a simple
mechanism for the ASC programmer to write or utilize an
existing software version of the ASC program. ASC automat-
ically runs a whole series of tests, which can be defined and
parametrized in the makefile.

A test consists of executing: 1) a pure software version of
the code and 2) either a gate-level simulation (PamDC/C++
simulation of circuit on the gate level) or the actual hardware
running on an FPGA in real time. The outputs of the two
executions are automatically compared against each other. The
tests can either be specified to check for equivalence of soft-
ware and simulation/hardware, or the user can specify an error

bound. With the error bound, ASC ensures that the error of
finite precision arithmetic (e.g., 12-bit multiplication) in the
hardware does not exceed the error limit when compared to the
software version. The software versions can be written using
the processor’s data-types such as the double precision IEEE
floating point or 32/64-bit integers. The result of a test is a
message that the test succeeded or failed. In case of a failure,
additional information about the failure case is provided.

We identified verification as an imperative task, and ASC
contains substantial support and infrastructure for regression
testing and verification of resulting circuits. For example, to
illustrate the accuracy of the hardware, ASC enables plotting
error graphs that show the error of hardware/simulation over
the software version as a function of input values.

IX. DESIGN-SPACE-EXPLORATION CASE STUDIES

In this section, three benchmarks—wavelet compression,
Kasumi encryption, and rotation and elementary functions—are
used to illustrate and to evaluate our approach. The first few
benchmarks demonstrate three main kinds of design-space ex-
ploration: loops (architecture level), the arithmetic-unit level,
and the bit level.

A. Wavelet Compression

The first benchmark we evaluate is wavelet compression,
which is based on a piece of code from a wavelet library [9].
The code is implemented using HWfix variables of 20 bits with
the binary point after the 14th fractional bit. The declarations
of the variables show the usage of default values for variable
attributes, such as sign-mode and bitwidth, and the HWvector
declaration, which mirrors the functionality of vector in the
C++ STL

DefaultSign = TWOSCOMPLEMENT; // sign
DefaultSize = 20; // bitwidth
DefaultFract = 14; // fractional bits

HWfix in1 (IN), in2 (IN), // declare IO
out1 (OUT), out2 (OUT);

HWfix low, high, temp, temp2, coeff;

// vectors of HWfix streams
HWvector<HWfix> v_temp1(4, new HWfix

(TMP));
HWvector<HWfix> v_temp2 (5, new HWfix

(TMP));
HWvector<HWfix> lc1 (4, new HWfix (TMP));
HWvector<HWfix> lc2 (5, new HWfix (TMP));
HWvector<HWfix> hc1 (4, new HWfix (TMP));
HWvector<HWfix> hc2 (5, new HWfix (TMP));

The algorithm consists of two consecutive loops. Each loop
can be unrolled in hardware, or ASC can generate an actual
feedback loop in the hardware. ASC provides two main loop
constructs LOOP and UNROLL_LOOP, which explicitly create
a feedback connection or unroll the loop body. The control

1612 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006

flow can be handled by the functional-style IF construct,
which stands for IF(condition, true, false). If the
condition is true, the second argument streams to the output;
while if the condition is false, the third argument proceeds. The
following ASC code shows how the user can explore the design
space for loops in ASC

#ifndef UNROLL1
HWint idx1 (TMP, 5);
idx1 = 0;
LOOP (size1_2); // hardware loop

#else
int idx1 = 0; // fully unrolled
UNROLL_LOOP(int i = 0;i < size1_2;i++){

#endif
temp2 = v_temp1 [idx1<<1];

coefficient = IF(idx1,lc1[3],lc1[1]);
low = low + (coeff*temp2);

coefficient = IF(idx1,hc1[3],hc1[1]);

high = high + (coefficient*temp2);
temp2 = v_temp1 [(idx1<<1)+1];

coefficient = IF(idx1,lc1[2],lc1[0]);
low = low + (coefficient*temp2);

coefficient = IF(idx1,hc1[2],hc1[0]);
high = high + (coefficient*temp2);
idx1++;

#ifndef UNROLL1
LOOP_END(); // feedback hardware loop

#else
}

#endif

Notice that in the case of unrolling, the loop index variable
is an integer. In the case of a loop in hardware, the index
variable is a HWint. A major consequence of unrolling is that
all array indexing can be done at compile time, thus saving a
lot of area for dynamic array accessing. Also, all arithmetic in-
volving the integer idx1 can now be implemented as constant
arithmetic, i.e., PAM-Blox modules for constant multipliers and
adders, etc.

B. Kasumi Encryption

The second application we examine is Kasumi encryp-
tion [13], which is part of the 3G standard for wireless
communication.

Key opportunities for exploring parallelism at the bit level
are in the FL() and FO() function calls (S-boxes), which
are implemented as table lookups in the software version. In
the standard specification, these are provided as both lookup
tables and logic functions. When creating application-specific
hardware, we convert these tables into Boolean equations,
which can be minimized with a logic minimization algorithm.

Given enough symmetries in these tables, the resulting circuit
can be made smaller and faster than the corresponding hard-
ware tables.

ASC allows the user to exploit BLP by creating custom
PAM-Blox modules at the bit level. The user creates modules
by extending the PAM-Blox class library with a new module
(subclass) and creating a function call that access that partic-
ular new module from the ASC code level, as shown in the
code below

void
kasumi(Kstate *ks,HWvector<HWint> &data){
HWint &l(*new HWint(TMP,32,UNSIGNED));
HWint &r(*new HWint(TMP,32,UNSIGNED));
HWint &t1(*new HWint(TMP,32,UNSIGNED));
HWint &t2(*new HWint(TMP,32,UNSIGNED));
l = data[0];
r = data[1];

#if USE_LOOP
HWint i(TMP,6,UNSIGNED);
i = 0;
STREAM_OPTIMIZE = AREA;
LOOP(4);

#else
unsigned int i;
UNROLL_LOOP (i = 0;i < 8;) {

#endif

t1 = FL(ks, l, i);
r ˆ = FO(ks, t1, i);
t2 = FO(ks, r, i+1);
l ˆ = FL(ks, t2, i+1);
i = i + 2;

#if USE_LOOP
LOOP_END(); // feedback

#else
}

#endif

data[0] = l; // assign outputs
data[1] = r;

}

Our implementation of the FL() and FO() functions has
a user configurable parameter to indicate whether the circuit
should use a lookup table (held in on-chip SRAM such as Xilinx
block RAMs) or a direct implementation of the above. Thus, the
user can decide to use available block RAMs when porting the
code to save area or create the custom logic to achieve maximal
performance.

C. Rotation and Elementary Functions

The third application computes elementary functions sine
and cosine for a coordinate-rotation unit. We use polynomial
approximations to generate sine and cosines. The coordinate

MENCER: ASC: A STREAM COMPILER FOR COMPUTING WITH FPGAs 1613

Fig. 6. Results for the wavelet design space exploration showing the best
throughput performers for each of the three FPGA sizes. The size of the circle
indicates the area of the design.

rotation performs a pair of 2-D rotations through input angles
written to memory-mapped registers. The coordinates are then
streamed in, and the rotated coordinates are streamed out of the
ASC pipeline.

The use of Default and STREAM_OPTIMIZE variables
enables exploration of the design space. Changing these options
alters the size of hardware variables or the optimization mode
of the logic blocks; this creates a widely differing range of
hardware implementations.

The code below is the rotation function, demonstrating how
the Default and STREAM_OPTIMIZE variables can be used
to explore the design space. In the case below, we vary bitwidth
for each of the optimization modes

STREAM_START;
DefaultSign = SIGNMAGNITUDE;
// THROUGHPUT, LATENCY or AREA
STREAM_OPTIMIZE = THROUGHPUT;
DefaultSize = 26;
DefaultFract = 21;
HWfix x(IN), y(IN), z(IN);
HWfix outx(OUT), outy(OUT), outz(OUT);
HWfix phi (MAPPED_REGISTER);
HWfix delta (MAPPED_REGISTER);
HWfix cosP(TMP), cosD(TMP);
HWfix sinP(TMP), sinD(TMP);

// runtime stream length parameter
STREAM_LOOP (10);

cosP = cos(phi);
cosD = cos(delta);
sinD = sin(delta);
sinP = sin(phi);
outx = x*cosD-z*sinD;
outy = y*cosP+x*sinP*sinD+z*sinP*cosD;
outz = x*sinD-z*cosP-y*sinP+z*cosD*cosP;
STREAM_END;

The bubble chart in Fig. 6 shows the design space for the
wavelet compression example. We explore the latency, the

Fig. 7. Kasumi design space exploration with ASC, using a bubble chart. The
size of the bubble corresponds to the area of the circuit. The color of the bubble
shows the particular FPGA (XC. . .) used.

throughput, and the FPGA area, which is shown as the size of
the bubbles. The tradeoffs between the various implementations
are based on different loop-unrolling decisions. The smallest
design has no unrolling, the middle design unrolls once, and
the large implementation is fully unrolled for maximal through-
put. Since each of the bubbles corresponds to the maximal
throughput for a particular FPGA size, we observe the general
activity of trading area for performance. ASC enables us to
obtain a larger FPGA and increase performance by recompiling
to a larger area, without changes to the source code. The
modifications are limited to the parametrizations of the source
code, which can be located in the makefile.

Fig. 7 shows the results of design-space exploration for
Kasumi encryption using ASC. The bubbles in the figure corre-
spond to a complete design with a particular set of parameters;
which includes loop unrolling and optimization modes such
as latency, area, and throughput. The area restrictions for each
particular FPGA limit the number of optimizations that can be
employed. Also, the figure shows only a part of the complete
design space across all levels of abstraction.

The third set of results shows the design space for the rotation
example. As in the previous two examples, a bubble chart in
Fig. 8 shows the design space for varying precision (bitwidth)
and different optimization modes. Given the user’s precision
requirements, it is possible to optimize down to the individual
variable bitwidth. By reducing the bitwidth of each variable,
especially for multipliers and table indices, considerable sav-
ings in time and space can be observed.

In addition, Figs. 9 and 10 show the design-space tradeoff
when varying the bitwidth of the variables. The graphs show
the impact of optimizing latency, throughput, or area across
different bitwidths. Note an interesting artifact in the through-
put result in Fig. 9: When increasing bitwidth with mainly
constant multiplication (e.g., cosP), the throughput remains
close to flat despite increasing complexity of the multiplication.
Logic minimization seems to get us to the same clock frequency
for different bitwidths in this particular case. Therefore, in this
case, we can conclude that bitwidth is not forming a critical
bottleneck at these particular bitwidth values.

Also, while throughput optimization clearly increases the
throughput of implementations, there are still surprises

1614 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006

Fig. 8. Rotation example—exploration of design space—using a bubble chart.
The size of the bubble corresponds to the area of the circuit, when optimizing
for area, latency, or throughput (agenda). The different bubbles of the same
color correspond to different bitwidths.

Fig. 9. Impact of bitwidth on the throughput of the implementation, when
optimizing for area, latency, or throughput (agenda).

Fig. 10. Impact of bitwidth on the latency of the implementation, when
optimizing for area, latency, or throughput (agenda).

sometimes; such as the throughput for different bitwidths,
which exhibits artifacts from the discrete nature of technology
mapping and place and route. An example of such deviation
from the general shape is in the latency figure for 26 bits: the
throughput line shows a lower value than expected.

X. PERFORMANCE RESULTS

Results are obtained using a conventional GCC compiler
and current Xilinx tools under Windows. We run ASC on

Fig. 11. Performance [Mb/s] of IDEA Encryption on a Compaq Alpha
processor and a range of Xilinx Virtex devices. (∗)This implementation is run
on the Wildcard board.

Windows/Cygwin and Linux, since these are the platforms for
which we can get Xilinx tools. ASC itself requires GCC and
can be compiled on any system supporting GCC.

We simulate the implementations on the gate level by com-
piling ASC code with GCC and by running the program in sim-
ulation mode. The gate-level simulation is provided by PamDC.
Since ASC can target any FPGA board, the reported results
show FPGA peak performance without taking into account
board level bottlenecks.

The two case studies are IDEA encryption and lossless
compression.

1) Idea Encryption: The IDEA encryption serves to dem-
onstrate the effects of the above redundant multipliers on
the performance of an application. The IDEA encrypts or
decrypts 64-bit data blocks, using symmetric 128-bit keys.
The 128-bit keys are expanded further to 52 subkeys, with
16 bits each. A single algorithm uses different keys for en-
cryption and decryption. The inner loop is repeated eight times
and consists of operations: XOR, multiplication, addition, and
(mod 216 + 1).

Fig. 11 shows a performance comparison of running the
inner loop of IDEA encryption on an Alpha EV5.6 (21164A)
processor operating at 532 MHz, compiled with the native
Alpha C compiler, and a series of Xilinx VirtexE FPGAs
(speedgrade −6). The FPGA designs include glue logic
for the Wildcard [56] from Annapolis Microsystems with a
Xilinx XCV300E device. The implementation for the Wildcard
(XCV300E) utilizes 99% of the FPGA’s lookup tables.

The performance results show a speedup of about two times
for the conventional XCV300E implementation without “re-
dundant multipliers” and another factor of two speedup with
“redundant multipliers” for the XCV300E and the XCV600E,
using the redundant adders from Section III. In the case of the
XCV2000E, the design is fully unrolled and thus throughput
does not depend on the latency of the operations. Since redun-
dant multipliers only help with latency, and the XCV2000E
implementation is fully unrolled and pipelined; latency does
not impact performance/throughput, and thus redundancy does
not generate a performance bar for the XCV2000E. Since
redundant multipliers only help with latency, there is only one
performance bar for the XCV2000E.

MENCER: ASC: A STREAM COMPILER FOR COMPUTING WITH FPGAs 1615

Fig. 12. Performance [Mb/s] of compression on an Alpha processor and a
range of Virtex devices. (∗)This implementation is run on the Wildcard board.

2) Lossless Compression: The results for compression
demonstrate the effects of optimal comparison units on com-
pression performance.

Lempel–Ziv (LZ) compression has many variations. In this
example, we implement a very simple form of LZ-like com-
pression where we look at D bytes of history and try to match
a string up to length D into the future. As a consequence, the
implementation consists of a 2-D array of comparison units.

Fig. 12 shows the performance comparison of our variant
of LZ compression with D = 26, using the same methodology
as in the previous example. The implementation for the Wild-
card/XCV300E utilizes 99% of the configurable logic blocks
(CLBs). The results show that the 10% improvement in cycle
time of the stand-alone compare units, described in Section III,
scales to a 10% performance improvement for our variant of
LZ compression. In general, ASC allows us to explore low-
level optimizations and quickly study their impact on complete
application performance.

XI. CONCLUSION

The results presented above show a wide range of opti-
mizations that can be undertaken within the ASC system.
Optimizations on the algorithm level, the architecture level,
the arithmetic level, and the bit level can be explored within
the same C++ program. On the architecture generation level,
ASC enables the exploration of area, latency, and throughput
tradeoffs for hardware design and accelerator generation es-
pecially. Moreover, ASC is a platform for tools that automate
the exploration of the area-time design space. On the module-
generation level, PAM-Blox II is a core enabling technology for
computing with FPGAs. It enables the programmer to take full
advantage of the bit-level flexibility of FPGAs. This flexibility
enables us to explore BLP, in addition to parallelism on higher
levels of abstraction.

Although the user does have expanded design space with
variable granularity (bit level to architecture level), obviously,
bit-level and architecture-specific optimizations require the user
to change the source code for changes in the target technology
family—such as if Virtex4 was the desired target architecture.
This may require considerable effort but is not avoidable due
to the nature of manual bit-level optimization. Also, ASC is

technology specific to Xilinx, a limitation that other similar
tools do not have but which enables the user to optimize for
the Xilinx architecture-specific low-level features. Clearly, this
is a limitation of project resources rather than the methodology
itself.

On the language side, careful utilization of C++ features
yields an efficient abstraction for the development, mainte-
nance, and extension of a large module-generator library and an
architecture generation layer such as present in ASC. Concrete
conclusions from the sample module generators shown in this
paper are as follows.

1) A single redundant (constant latency) addition is com-
parable to a 32-bit carry-chain add. Despite that fact, a
collection of adders such as present in an array multiplier
shows significant time savings for redundant adders even
for bitwidths smaller than 32 bits. This surprising result
can be explained by finding that most of the delay of a
stand-alone constant-time adder can be optimized away
when compiling a whole set of such adders, while the
delay through the carry chain is fixed by the technology.

2) Knowledge from VLSI design is not directly applicable
to FPGA design despite the fact that both are hardware-
design methodologies. In particular, design tradeoffs de-
pend largely on the available resources in the FPGA cell
and on the optimality of technology mapping, which can
be controlled within the module-generation layer.

3) The object-oriented design of module generators allows
us to retarget ASC to multiple Xilinx FPGA families such
as the Xilinx 4000, Virtex, Virtex 2, Virtex 4, Spartan 2,
and Spartan 3. In addition to Xilinx FPGAs, we also con-
sider porting PAM-Blox II to Altera devices. However,
any such effort is complicated by the artificial incom-
patibility of Xilinx and Altera netlists on the AND/OR

gate level, even though both netlists are in standard
EDIF format. As a consequence, this effort is left for
future work.

Our experience substantiates that ASC simplifies hardware
design. In fact, most of the ASC application codes presented
in this paper are developed by C++ programmers rather than
hardware designers. With ASC, the hardware-design productiv-
ity and the complexity of the description are close to software
development.

We foresee another layer of software on top of ASC archi-
tecture generation, which will automate tasks such as precision
analysis, loop transformations, memory management genera-
tion, and partitioning of an application into software and hard-
ware accelerators. In addition, such a high-level transformation
layer will be able to deal efficiently with data structures. The
combination of these techniques has the potential to attack the
memory wall [57] and result in productive interactions between
FPGA research results and microprocessor-centered research.
Clearly, some of the high-level transformations will not be
fully automatable in the near future. Some transformations will
have to be partially automated in conjunction with user hints.
Minimizing the user hints necessary for successful acceleration
across a wide range of applications is one of the long-term
goals.

1616 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2006

ACKNOWLEDGMENT

The author would like to thank W. Luk, M. J. Flynn, M. Morf,
and C. Young for the discussions and support of ASC efforts;
D. Pearce, J. Liang, G. Huang, H. Styles, and L. Howes for
helping to advance ASC and for writing some of the code
examples; and M. Shand for keeping PamDC up to date with
current Xilinx technology, for his efforts in porting PamDC to
GNU GCC, and for his help with various PamDC related issues.

REFERENCES

[1] S. G. Abraham and B. R. Rau, “Efficient design space exploration in
PICO,” in Proc. Int. Conf. Compilers, Architecture and Synthesis Embed-
ded Systems (CASES), San Jose, CA, Nov. 2000, pp. 71–79.

[2] S. Aditya and M. S. Schlansker, “ShiftQ: A bufferred interconnect for
custom loop accelerators,” in Proc. Int. Conf. Compilers, Architecture
and Synthesis Embedded Systems (CASES), Atlanta, GA, Nov. 2001,
pp. 158–167.

[3] Arvind, “Can dataflow subsume von Neumann computing?” in 16th
Int. Symp. Computer Architecture (ISCA), Jerusalem, Israel, May 1989,
pp. 262–272.

[4] K. Bondalapati and V. K. Prasanna, “Dynamic precision manage-
ment for loop computations on reconfigurable architectures,” in IEEE
Symp. FPGAs Custom Computing Machines, Napa, CA, Apr. 1999,
pp. 249–258.

[5] L. Bossuet, G. Gogniat, and J.-L. Philippe, “Fast design space exploration
method for reconfigurable architectures,” in Proc. Int. Conf. Engineering
Reconfigurable Systems and Algorithms, Las Vegas, NV, 2003, pp. 65–71.

[6] M. Budiu, S. C. Goldstein, K. Walker, and M. Sakr, “BitValue infer-
ence: Detecting and exploiting narrow bitwidth computations,” in Eur.
Conf. Parallel Processing (Euro-Par), Munich, Germany, Aug. 2000,
pp. 969–979.

[7] T. J. Callahan, J. R. Hauser, and J. Wawrzynek, “The Garp architecture
and C compiler,” IEEE Computer, vol. 33, no. 4, pp. 62–69, Apr. 2000.

[8] Celoxica. Handel-C Language Reference Manual. [Online]. Available:
http://www.celoxica.com/

[9] G. Davis, J. Danskin, and R. Heasman, Wavelet Image Compression Con-
struction Kit, Version 0.3. [Online]. Available: http://www.geoffdavis.net/
dartmouth/wavelet/wavelet.html

[10] A. Dhodapkar and J. Smith, “Managing multi-configuration hardware via
dynamic working set analysis,” in Proc. Int. Symp. Computer Architecture
(ISCA), Anchorage, AK, May 2002, pp. 233–244.

[11] J. Frigo, M. Gokhale, and D. Lavenier, “Evaluation of the streams-C
C-to-FPGA compiler: An applications perspective,” in Proc. IEEE Field
Programmable Gate Arrays (FPGA) Conf., Monterey, CA, Feb. 2001,
pp. 134–140.

[12] M. Gokhale, J. Kaba, A. Marks, and J. Kim, “Malleable architecture
generator for FPGA computing,” Proc. SPIE, vol. 2914, pp. 208–217,
Oct. 1996.

[13] Kasumi encryption algorithm. 3G Wireless Standard. [Online].
Available: http://www.3gpp.org/

[14] P. H. W. Leong, M. P. Leong, O. Y. H. Cheung, T. Tung, C. M. Kwok,
M. Y. Wong, and K. H. Lee, “Pilchard—A reconfigurable computing plat-
form with memory slot interface,” in Proc. IEEE Symp. FPGAs Custom
Computing Machines, Apr. 2001, pp. 170–179.

[15] Y. Li et al., “Hardware-software co-design of embedded reconfig-
urable architectures,” in Proc. Design Automation Conf., Los Angeles,
CA, 2000, pp. 507–512.

[16] J. Liang, R. Tessier, and O. Mencer, “Floating point unit generation and
evaluation for FPGAs,” in Proc. IEEE Symp. FPGAs Custom Computing
Machines, Napa, CA, Apr. 2003, pp. 185–194.

[17] M. Macedonia, “The computer graphics war heats up,” IEEE Computer,
vol. 35, no. 10, pp. 97–99, Oct. 2002.

[18] O. Mencer, “PAM-Blox II: Design and evaluation of C++ module gener-
ation for computing with FPGAs,” in Proc. IEEE Symp. FPGAs Custom
Computing Machines, Napa, CA, Apr. 2002, pp. 67–76.

[19] O. Mencer and W. Luk, “Tutorial: Computing with FPGAs,” presented
at the Int. Symp. Computer Architecture (ISCA), Anchorage, AK, May
2002.

[20] O. Mencer, M. Platzner, M. Morf, and M. Flynn, “Object-oriented
domain-specific compilers for programming FPGAs,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. (Special issue on Reconfigurable Com-
puting), vol. 9, no. 1, pp. 205–210, Feb. 2001.

[21] T. Sherwood and B. Calder, “Automated design of finite state machine
predictors for customized processors,” in Proc. Int. Symp. Computer Ar-
chitecture (ISCA), Göteborg, Sweden, Jun. 2001, pp. 86–97.

[22] B. So, P. Diniz, and M. Hall, “Using estimates from behavioral
synthesis tools in compiler-directed design space exploration,” in Proc.
ACM/IEEE 40th Design Automation Conf., Anaheim, CA, Jun. 2003,
pp. 514–519.

[23] B. So, M. Hall, and P. Diniz, “A compiler approach to fast design space
exploration in FPGA-based systems,” in Proc. ACM Conf. Program-
ming Language Design and Implementation (PLDI), Berlin, Germany,
Jun. 2002, pp. 165–176.

[24] M. Weinhardt and W. Luk, “Pipeline vectorization,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 20, no. 2, pp. 234–248,
Feb. 2001.

[25] Xilinx, Virtex-E and Virtex II Pro FPGA Datasheet. [Online]. Available:
http://www.xilinx.com/

[26] P. Bertin, D. Roncin, and J. Vuillemin, “Programmable active memories:
A performance assessment,” in ACM Field Programmable Gate Arrays
(FPGA), Feb. 1992.

[27] D. A. Buell, J. M. Arnold, and W. J. Kleinfelder, Splash-2, FPGAs in
a Custom Computing Machine. Los Alamitos, CA: IEEE Comput. Soc.
Press, 1996.

[28] W. H. Mangione-Smith, B. Hutchings, D. Andrews, A. DeHon,
C. Ebeling, R. Hartenstein, O. Mencer, J. Morris, K. Palem, V. Prasanna,
and H. Spaanenburg, “Seeking solutions in configurable computing,”
IEEE Computer, vol. 30, no. 12, pp. 38–43, Dec. 1997.

[29] O. Mencer, M. Morf, and M. Flynn, “Hardware software tri-design of
encryption for mobile communication units,” presented at the Int. Conf.
Application Specific Signal Processing, Seattle, WA, May 1998.

[30] O. Mencer and M. Morf, “CORDICs for reconfigurable computing,”
presented at the 6th FPGA/PLD Design Conf. and Exhibit, Yokohama,
Japan, Jun. 24–26, 1998.

[31] M. Shand and J. Vuillemin, “Fast implementations of RSA cryptography,”
in Proc. 11th IEEE Symp. Computer Arithmetic, Windsor, ON, Canada,
1993, pp. 252–259.

[32] F. F. Lee, “A scalable computer architecture for lattice gas simulation,”
Ph.D. thesis, Dept. Elect. Eng., Stanford Univ., Stanford, CA, Jun. 1993.

[33] H. Styles and W. Luk, “Customising graphics applications: Tech-
niques and programming interface,” in Proc. IEEE Symp. Field Pro-
grammable Custom Computing Machines (FCCM), Napa, CA, Apr. 2000,
pp. 77–87.

[34] S. D. Haynes, P. Y. K. Cheung, W. Luk, and J. Stone, “Video image
processing with the SONIC architecture,” IEEE Computer, vol. 33, no. 4,
pp. 50–57, Apr. 2000.

[35] M. Stephenson, J. Babb, and S. Amarasinghe, “Bitwidth analysis with
application to silicon compilation,” in Proc. ACM Conf. Program-
ming Language Design and Implementation, Vancouver, BC, Canada,
Jun. 2000, pp. 108–120.

[36] R. Razdan, “PRISC: Programmable reduced instruction set comput-
ers,” Ph.D. thesis, Div. Appl. Sci., Harvard Univ., Cambridge, MA,
May 1994.

[37] L. Semeria, “Applying pointer analysis to the synthesis of hardware
from C,” Ph.D. thesis, Dept. Elect. Eng., Stanford Univ., Stanford, CA,
Jun. 2001.

[38] O. S. Unsal, I. Koren, C. M. Krishna, and C. A. Moritz, “Cool-cache
for hot multimedia,” in Proc. MICRO-34 Conf. Austin, TX, Dec. 2001,
pp. 274–283.

[39] L. Zhang, Z. Fang, M. Parker, B. K. Mathew, L. Schaelicke, J. B. Carter,
W. C. Hsieh, and S. A. McKee, “The impulse memory controller,” IEEE
Trans. Comput., vol. 50, no. 11, pp. 1117–1132, Nov. 2001.

[40] O. Mencer, H. Huebert, M. Morf, and M. J. Flynn“StReAm: Object-
oriented programming of stream architectures using PAM-blox,”
in Field-Programmable Logic and Applications. Berlin, Germany:
Springer-Verlag, 2000, vol. 1896, pp. 595–604.

[41] The Xtensa Processor. [Online]. Available: http://www.tensilica.com/
[42] O. Mencer, M. Morf, and M. J. Flynn, “PAM-Blox: High performance

FPGA design for adaptive computing,” in Proc. IEEE Symp. FPGAs
Custom Computing Machines, Napa, CA, 1998, pp. 167–174.

[43] Synopsys. [Online]. Available: http://www.synopsys.com/products/fpga/
fpga_express.html

[44] P. Bertin and H. Touati, “PAM programming environments: Practice and
experience,” in Proc. IEEE Workshop FPGAs Custom Computing Ma-
chines, Napa, CA, Apr. 1994, pp. 133–138.

[45] J. Kunkel and K. Kranen, “SystemC demonstrates rapid progress,”
Electron. Eng. Times, Sep. 2000.

[46] ——, “Celoxica adds simulator, debugger to Handel-C compiler,”
Electron. Eng. Times, Feb. 2001.

MENCER: ASC: A STREAM COMPILER FOR COMPUTING WITH FPGAs 1617

[47] S. A. Guccione and D. Levi, “XBI: A java-based interface to FPGA
hardware,” in Proc. SPIE Photonics East Conf., J. Schewel, Ed,
Nov. 1998, pp. 97–102.

[48] A. Frey, G. Berry, P. Bertin, F. Bourdoncle, and J. Vuillemin, Jazz is a
high-level programming language for expressing ... large digital synchro-
nous circuits. [Online]. Available: http://www.exalead.com/jazz/

[49] B. Hutchings, P. Bellows, J. Hawkins, S. Hemmert, B. Nelson, and
M. Rytting, “A CAD suite for high-performance FPGA design,” presented
at the IEEE Symp. Field Programmable Custom Computing Machines
(FCCM), Napa, CA, Apr. 1998.

[50] B. Stroustrup, The C++ Programming Language, 3rd ed. Reading, MA:
Addison-Wesley, 1997.

[51] H. Boehm, “Space efficient conservative garbage collection,” in Proc.
ACM SIGPLAN Conf. Programming Language Design and Implementa-
tion, Albuquerque, NM, Jun. 1993, vol. 28, 6, pp. 197–206.

[52] D. S. Phatak, T. Goff, and I. Koren, “Constant-time addition and simulta-
neous format conversion based on redundant binary representation,” IEEE
Trans. Comput., vol. 50, no. 11, pp. 1267–1278, Nov. 2001.

[53] I. Koren, Computer Arithmetic Algorithms. Englewood Cliffs, NJ:
Prentice-Hall, 1993.

[54] A. Omondi, Computer Arithmetic Systems. Englewood Cliffs, NJ:
Prentice-Hall, 1994.

[55] O. Mencer and W. Luk, “Parameterized high throughput function eval-
uation for FPGAs,” J. VLSI Signal Process. (Special Issue on Field
Programmable Logic), vol. 36, no. 1, pp. 17–25, 2004.

[56] Annapolis Microsystems. Wildcard, A Cardbus Based FPGA Accelerator
card. [Online]. Available: http://www.annapmicro.com/

[57] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of
the obvious,” Comput. Archit. News, vol. 23, no. 1, pp. 20–24, Mar. 1995.

[58] W. Luk and S. McKeever, “Pebble: A language for parametrised and
reconfigurable hardware design,” in Proc. Field-Programmable Logic and
Applications (FPL) Conf., Tallinn, Estonia, 1998, pp. 9–18.

Oskar Mencer received the B.Sc. degree in com-
puter engineering at the Technion—Israel Institute
of Technology, Haifa, Israel, and the M.S. and Ph.D.
degrees from the Computer Systems Laboratory at
Stanford University, Stanford, CA.

His early work on object-oriented hardware de-
sign was mentioned in an EE-Times top technology
story in 1998. In 2000–2003, he was a member of
Technical Staff at the Computing Sciences Center at
Bell Labs, where he led the development of a stream
compiler (ASC) for computing with field program-

mable gate arrays (FPGAs) and founded Maxeler Technologies Inc. in 2003.
He holds two patents and is the author or coauthor of over 30 publications. His
main interests are in the field of computer architecture, computer-aided-design
(CAD), very large scale integration (VLSI), and FPGAs.

Dr. Mencer currently holds a 5-year Engineering and Physical Sciences
Research Council (EPSRC) Advanced Fellowship.

