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Abstract

We present Sequoia, a programming language designed to
facilitate the development of memory hierarchy aware paral-
lel programs that remain portable across modern machines
featuring different memory hierarchy configurations. Se-
quoia abstractly exposes hierarchical memory in the pro-
gramming model and provides language mechanisms to de-
scribe communication vertically through the machine and to
localize computation to particular memory locations within
it. We have implemented a complete programming sys-
tem, including a compiler and runtime systems for Cell
processor-based blade systems and distributed memory clus-
ters, and demonstrate efficient performance running Sequoia
programs on both of these platforms.

1 Introduction

Writing a high-performance application, whether for a
uniprocessor or for a large scale parallel machine, requires
the programmer to have non-trivial knowledge of the un-
derlying machine’s architecture. On modern systems of all
scales, a major aspect of performance optimization involves
ensuring that processors do not frequently idle waiting on
memory. This requires structuring algorithms and placing
data so that data references are serviced by levels of the
memory hierarchy as close to the processors as possible,
whether it be on-die storage, local DRAM, or remote mem-
ory accessed over high-speed interconnect. Writing pro-
grams that make efficient use of a machine’s memory system
is further complicated by desires for program portability.A
series of optimizations targeted at the hierarchy of one ma-
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chine is likely not the correct solution for the particular sizes
and physical configurations of other systems.

The need for new programming abstractions for managing
memory is becoming acute as the number of parallel process-
ing units on a chip is increasing rapidly and the importance
of efficiently utilizing available memory bandwidth is grow-
ing. This trend is apparent both in the ubiquity of multi-core
microprocessors and in the emergence of stream architec-
tures, such as the Sony/Toshiba/IBM Cell Broadband Engine
ProcessorTM (Cell) [Pham et al. 2005] and Stanford’s Imag-
ine [Kapasi et al. 2002] and Merrimac [Dally et al. 2003]
processors. In contrast to traditional microprocessors, which
provide a single address space and manage the transfer of
data between memory and levels of on-chip storage trans-
parently in hardware, these newexposed-communicationar-
chitectures require software to move data in between distinct
on- and off-chip address spaces; explicit memory manage-
ment is necessary for program correctness, not just perfor-
mance. Thus, the challenges of managing data movement,
formerly only a concern when programming large parallel
machines, now exist at the node level. These difficulties
compound as larger scale systems are considered.

Mechanisms provided to express memory locality in exist-
ing parallel languages, such as the designation of local and
global arrays in UPC [Carlson et al. 1999], Co-Array For-
tran [Numrich and Reid 1998], and Titanium [Yelick et al.
1998], and distributions over locales as in ZPL [Deitz et al.
2004], Chapel [Callahan et al. 2004], and X10 [Charles et al.
2005], do not solve the problem of memory management
on exposed-communication architectures. These existing ap-
proaches describe the distribution andhorizontalcommuni-
cation of data among nodes of a parallel machine. They do
not address the problem of choreographing data movement
vertically through the memory hierarchy, a critical aspect of
programming modern architectures.

The principal idea of our work is that the movement and
placement of data at all levels of the machine memory hier-
archy should be under explicit programmer control via first
class language mechanisms. This paper presentsSequoia,
a programming model focused on assisting the programmer
in structuring bandwidth-efficient parallel programs thatre-
main easily portable to new machines. The design of Sequoia
centers around the following key ideas:
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Figure 1: Multiplication of 1024x1024 matrices structured
as a hierarchy of independent tasks performing smaller mul-
tiplications.

• We introduce the notion of hierarchical memory di-
rectly into our programming model to gain both porta-
bility and performance. Sequoia programs run on ma-
chines that are abstracted as trees of distinct memory
modules and describe how data is moved and where it
resides in a machine’s memory hierarchy.

• We usetasksas abstractions of self-contained units of
computation that include descriptions of key informa-
tion such as communication and working sets. Tasks
isolate each computation in its own local address space
and also express parallelism.

• To enable portability, we maintain a strict separation
between generic algorithmic expression and machine-
specific optimization. To minimize the impact of this
separation on performance, details of the machine-
specific mapping of an algorithm are exposed to pro-
grammer control.

Sequoia takes a pragmatic approach to portable parallel pro-
gramming by providing a limited set of abstractions that can
be implemented efficiently and controlled directly by the
programmer. While the compiler implementation described
in this paper does not make heavy use of automatic analy-
sis, we have taken care to ensure that Sequoia programs are
written within a framework that is amenable to the use of
advanced compiler technology.

Details of Sequoia programming are discussed in Sections
2 through 4. Section 5 describes our implementation of a
Sequoia language compiler and associated runtime systems
for Cell-based workstations and for clusters of PCs. Section
6 discusses the performance obtained by running initial Se-
quoia applications on both of these parallel platforms.

2 Hierarchical Memory

On modern systems featuring deep memory hierarchies and
many parallel processing units, breaking large computations
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Figure 2: A Cell workstation (left) is modeled as a tree con-
taining nodes corresponding to main system memory and
each of the processor’s software-managed local stores. A
representation of a dual-CPU workstation is shown at right.

into smaller operations is essential to achieving good perfor-
mance because it exposes parallelism and results in efficient
execution on datasets stored local to processing elements.
Common examples of this optimization technique include
blocking to increase cache locality and problem decomposi-
tion to minimize network communication in MPI programs
for clusters. In Figure 1 we illustrate the hierarchical struc-
ture of a computation to perform blocked matrix multipli-
cation, an example we revisit throughout much of this pa-
per. In this algorithm, which features nested parallelism and
a high degree of hierarchical data locality, parallel evalua-
tion of submatrix multiplications is performed to compute
the product of two large matrices.

Sequoia requires such hierarchical organization in programs,
borrowing from the idea of space-limited procedures [Alpern
et al. 1995], a programming methodology proposed to en-
courage hierarchy-aware, parallel divide-and-conquer pro-
grams. Space-limited procedures require each function in a
call chain to accept arguments occupying significantly less
storage than those of the calling function. Sequoia tasks
(Section 3) generalize and concretize the concept of a space-
limited procedure into a central construct used to express
communication and parallelism and enhance the portability
of algorithms. We have implemented a complete program-
ming system around this abstraction, including a compiler
and runtime systems for Cell and distributed memory clus-
ters.

Writing Sequoia programs involves abstractly describing hi-
erarchies of tasks (as in Figure 1) and then mapping these
hierarchies to the memory system of a target machine. Se-
quoia requires the programmer to reason about a parallel ma-
chine as a tree of distinct memory modules, a representation
that extends the Parallel Memory Hierarchy (PMH) model of
Alpern et al. [1993]. Data transfer between memory modules
is conducted via (potentially asynchronous) block transfers.
Program logic describes the transfers of data at all levels,but
computational kernels are constrained to operate upon data
located within leaf nodes of the machine tree. The abstract
representation of a system containing a Cell processor (at
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Figure 3: The point-to-point links connecting PCs in a clus-
ter are modeled as a virtual node in the tree representation of
the machine.

left in Figure 2) contains nodes corresponding to main sys-
tem memory and each of the 256KB software-managed local
stores (LSes) located within the chip’s synergistic processing
units (SPEs). At right in Figure 2, a model of a dual-CPU
workstation contains nodes representing the memory shared
between the two CPU’s as well as the L1 and L2 caches
on each processor. Sequoia permits a machine to be mod-
eled with detail commensurate with the programmer’s needs.
A representation may include modules corresponding to all
physical levels of the machine memory hierarchy, or it may
omit levels of the physical hierarchy that need not be consid-
ered for software correctness or performance optimization.

Establishing an abstract notion of hierarchical memory is
central to the Sequoia programming model. Sequoia code
does not make explicit reference to particular machine hier-
archy levels and it remains oblivious to the mechanisms used
to move data between memory modules. For example, com-
munication described in Sequoia may be implemented us-
ing a cache prefetch instruction, a DMA transfer, or an MPI
message depending on the requirements of the target archi-
tecture. Supplying constructs to describe the movement of
data throughout a machine while avoiding any reference to
the specific mechanisms with which transfers are performed
is essential to ensuring the portability of Sequoia programs
while retaining the performance benefits of explicit commu-
nication.

As with the PMH model, our decision to represent machines
as trees is motivated by the desire to maintain portability
while minimizing programming complexity. A program that
performs direct communication between sibling memories,
such as a program written using MPI for a cluster, is not di-
rectly portable to a parallel platform where such channels do
not exist. Because many machines have complex non-tree
topologies we allow our tree abstraction to includevirtual

levelsthat do not correspond to any single physical machine
memory. For example, it is not practical to expect the nodes
in a cluster of workstations to communicate only via global
storage provided by networked disk. As shown in Figure
3, our model represents a cluster as a tree rooted by a vir-
tual level corresponding to the aggregation of all worksta-
tion memories. The virtual level constitutes a unique ad-
dress space distinct from any node memory. Transferring
data from this global address space into the child modules as-
sociated with individual cluster workstations results in com-
munication over the cluster interconnect. The virtual level
mechanism allows us to generalize the tree abstraction for
modeling vertical communication to encapsulate horizontal
inter-node communication as well.

3 Sequoia Design

The principal construct of the Sequoia programming model
is atask: a side-effect free function with call-by-value-result
parameter passing semantics. Tasks provide for the expres-
sion of:

• Explicit Communication and Locality. Communica-
tion of data through the memory hierarchy is expressed
by passing arguments to tasks. Calling tasks is the only
means of describing data movement in Sequoia.

• Isolation and Parallelism. Tasks operate entirely
within their own private address space and have no
mechanism to communicate with other tasks other than
by calling subtasks and returning to a parent task. Task
isolation facilitates portable concurrent programming.

• Algorithmic Variants. Sequoia allows the program-
mer to provide multiple implementations of a task and
to specify which implementation to use based on the
context in which the task is called.

• Parameterization. Tasks are expressed in a parameter-
ized form to preserve independence from the constraints
of any particular machine. Parameter values are chosen
to tailor task execution to a specific hierarchy level of a
target machine.

This collection of properties allows programs written using
tasks to be portable across machines without sacrificing the
ability to tune for performance.

3.1 Explicit Communication And Locality

A Sequoia implementation of blocked matrix multiplication
is given in Figure 4. Thematmul task multipliesM x P input
matrix A by P x N input matrixB, accumulating the results
into M x N matrix C (C is a read-modify-write argument to
the task). The task partitions the input matrices into blocks



1 void task matmul::inner( in float A[M][P],
2 in float B[P][N],
3 inout float C[M][N] )
4 {
5 // Tunable parameters specify the size
6 // of subblocks of A, B, and C.
7 tunable int U;
8 tunable int X;
9 tunable int V;

10

11 // Partition matrices into sets of blocks
12 // using regular 2D chopping.
13 blkset Ablks = rchop(A, U, X);
14 blkset Bblks = rchop(B, X, V);
15 blkset Cblks = rchop(C, U, V);
16

17 // Compute all blocks of C in parallel.
18 mappar (int i=0 to M/U, int j=0 to N/V) {
19 mapreduce (int k=0 to P/X) {
20 // Invoke the matmul task recursively
21 // on the subblocks of A, B, and C.
22 matmul(Ablks[i][k],Bblks[k][j],Cblks[i][j]);
23 }
24 }
25 }
26

27 void task matmul::leaf( in float A[M][P],
28 in float B[P][N],
29 inout float C[M][N] )
30 {
31 // Compute matrix product directly
32 for (int i=0; i<M; i++)
33 for (int j=0; j<N; j++)
34 for (int k=0; k<P; k++)
35 C[i][j] += A[i][k] * B[k][j];
36 }

Figure 4: Dense matrix multiplication in Sequoia.
matmul::inner and matmul::leaf are variants of the
matmul task.

(lines 13–15) and iterates over submatrix multiplicationsper-
formed on these blocks (lines 18–24). An explanation of the
Sequoia constructs used to perform these operations is pro-
vided in the following subsections.

Defining tasks expresses both locality and communication
in a program. While a task executes, its entireworking set
(the collection of all data the task can reference) must remain
resident in a single node of the abstract machine tree. As a
result, a task is said to run at a specific location in the ma-
chine. In Figure 4, the matricesA, B, andC constitute the
working set of thematmul task. Pointers and references are
not permitted within a task and therefore a task’s working set
is manifest in its definition.

Notice that the implementation ofmatmul makes a recur-
sive call in line 22, providing subblocks of its input matri-
ces as arguments in the call. To encapsulate communication,
Sequoia tasks usecall-by-value-result(CBVR) [Aho et al.
1986] parameter passing semantics. Each task executes in
the isolation of its own private address space (see Subsection
3.2) and upon task call, input data from the calling task’s ad-
dress space is copied into that of the callee. Output argument
data is copied back into the caller’s address space when the
call returns. The change in address space induced by the re-
cursivematmul call is illustrated in Figure 5. The block of

M

P

P

N

A B

CA B

NP N

MM P

Working set ofmatmul task (calling task):

Working set ofmatmul subtask:

0 X 0 V 2V
0

U

2U

0

X(U,X) (X,V)

(0,0)(0,0) (0,0)

M

N

C

0 V 2V
0

U

2U

(U,V)

Figure 5: Thematmul::inner variant calls subtasks that
perform submatrix multiplications. Blocks of the matrices
A, B, andC are passed as arguments to these subtasks and
appear as matrices in the address space of a subtask.

sizeU x X of matrixA from the calling task’s address space
appears as a similarly sized array in the address space of the
called subtask. CBVR is not common in modern languages,
but we observe that for execution on machines where data is
transferred between distinct physical memories under soft-
ware control, CBVR is a natural parameter passing seman-
tics.

The mapping of a Sequoia program dictates whether a callee
task executes within the same memory module as its call-
ing task or is assigned to a child (often smaller) memory
module closer to a compute processor. In the latter case,
the subtask’s working set must be transferred between the
two memory modules upon task call/return. Thus, the cal-
l/return of a subtask implies that data movement through the
machine hierarchymightoccur. Explicitly defining working
sets and limiting communication to CBVR parameter pass-
ing allows for efficient implementation via hardware block-
transfer mechanisms and permits early initiation of transfers
when arguments are known in advance.

3.2 Isolation and Parallelism

The granularity of parallelism in Sequoia is the task and par-
allel execution results from calling concurrent tasks. Lines
18–24 of Figure 4 describe iteration over submatrix multipli-
cations that produces a collection of parallel subtasks. (The
i andj dimensions of the iteration space may be executed in
parallel while the innermost dimension defines a reduction).
In Sequoia, each of these subtasks executes in isolation, a
key property introduced to increase code portability and per-
formance.



Sequoia Blocking Primitives

blkset
An opaque Sequoia object representing a collection of array blocks.

rchop(A, len0, len1, ...)
Generates ablkset containing non-overlapping blocks that tile the multi-
dimensional arrayA. Each block is multi-dimensional with sizelen0×
len1× . . ..

rchop(A, rchop t(offset0, len0, stride0), ...)
Generalized form ofrchop that generates blocksets containing potentially
overlapping blocks. The starting array offset, block size, and stride between
blocks is specified for every dimension of the source array.

ichop(A, Starts, Ends, N)
Generates a set ofN irregularly-sized blocks from arrayA. Block start and
end indices are given by elements in the length-N integer arraysStarts
andEnds.

gather(A, IdxBlkset)
Generates a set of blocks by gathering elements from source arrayA using
the indices provided in the blocks ofIdxBlkset. The resultingblkset
has the same number and size of blocks asIdxBlkset.

Sequoia Mapping Primitives

mappar(i=i0 to iM, j=j0 to jN ...) {...}
A multi-dimensional for-all loop containing only a subtask call in the loop
body. The task is mapped in parallel onto a collection of blocks.

mapseq(i=i0 to iM, j=j0 to jN ...) {...}
A multi-dimensional loop containing only a subtask call in the loop body.
The task is mapped in sequentially onto a collection of blocks.

mapreduce(i=i0 to iM, j=j0 to jN ...) {...}
Maps a task onto a collection of blocks, performing a reduction on at least
one argument to the task. To support parallel tree reductions, an additional
combinersubtask is required.

Table 1: Sequoia mapping and blocking primitives

Isolation of task address spaces implies that no constraints
exist on whether a subtask must execute within the same
level of the memory hierarchy as its calling task. Addition-
ally, Sequoia tasks have no means of communicating with
other tasks executing concurrently on a machine. Although
the implementation ofmatmul results in the execution of
many parallel tasks, these concurrent tasks do not functionas
cooperating threads. The lack of shared state among tasks al-
lows parallel tasks to be executed simultaneously using mul-
tiple execution units or sequentially on a single processor.
Task isolation simplifies parallel programming by obviating
the need for synchronization or locking constructs required
by cooperating threads. Sequoia language semantics require
that output arguments passed to concurrent subtasks do not
alias in the calling task’s address space. We currently relyon
the programmer to ensure this condition holds.

3.3 Task Decomposition

We now introduce Sequoia’sarray blockingand task map-
ping constructs: first-class primitives available to describe
portable task decomposition.

In Sequoia a subset of an array’s elements is referred to as
an array block. For example,A[0:10] is the block corre-
sponding to the first 10 elements of the arrayA. Thematmul
task uses therchop (regular chop) blocking function to de-

scribe a regular 2D partitioning of its input matrices. In line
13,rchop is used to divide the matrixA into a set of blocks
eachU x X in size. This collection is returned in the form
of an opaque Sequoia object referred to as ablockset. Se-
quoia provides a family of blocking functions (see Table 1)
to facilitate decompositions that range from the simplicity of
rchop to the irregularity of arbitrary array gathers.

After defining blocksets usingrchop, matmul iterates over
the blocks, recursively calling itself on blocks selected from
Ablks, Bblks, andCblks in each iteration. As introduced
in Subsection 3.2, themappar construct designates paral-
lel iteration, implying concurrency among subtasks but not
asynchronous execution between calling and child tasks. All
iterations of amappar or mapreduce must complete before
control returns to the calling task.

Imperative C-style control-flow is permitted in tasks, but use
of blocking and mapping primitives is encouraged to facil-
itate key optimizations performed by the Sequoia compiler
and runtime system. All applications presented in Section 6
use only mapping primitives to describe iteration. A com-
plete listing of Sequoia blocking and mapping constructs is
given in Table 1.

3.4 Task Variants

Figure 4 contains two implementations of thematmul task,
matmul::inner and matmul::leaf. Each implementa-
tion is referred to as avariant of the task and is named
using the syntaxtaskname::variantname. The variant
matmul::leaf serves as the base case of the recursive ma-
trix multiplication algorithm. Notice that the Sequoia code
to recursively callmatmul gives no indication of when the
base case should be invoked. This decision is made as part
of the machine-specific mapping of the algorithm (Section
4).

Inner tasks, such asmatmul::inner, are tasks that call sub-
tasks. Notice thatmatmul::inner does not access elements
of its array arguments directly and only passes blocks of the
arrays to subtasks. Since a target architecture may not sup-
port direct processor access to data at certain hierarchy lev-
els, to ensure code portability, the Sequoia language does not
permit inner tasks to directly perform computation on array
elements. Instead, inner tasks use Sequoia’s mapping and
blocking primitives (Section 3.3) to structure computation
into subtasks. Ultimately, this decomposition yields com-
putations whose working sets fit in leaf memories directly
accessible by processing units. An inner task definition is
not associated with any particular machine memory module;
it may execute at any level of the memory hierarchy in which
its working set fits.

Leaf tasks, such asmatmul::leaf, do not call subtasks and
operate directly on working sets resident within leaf levels of
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Figure 6: The call graph for the parameterizedmatmul task
is shown at top left. Specialization to Cell or to the cluster
machine from Figure 3 generates instances of the task shown
at bottom left and at right.

the memory hierarchy. Direct multiplication of the input ma-
trices is performed bymatmul::leaf. In practice, Sequoia
leaf tasks often wrap platform specific implementations of
computational kernels written in traditional languages, such
as C or Fortran.

3.5 Task Parameterization

Tasks are written in parameterized form to allow for spe-
cialization to multiple target machines.Specializationis the
process of creatinginstancesof a task that are customized to
operate within, and are mapped to, specific levels of a tar-
get machine’s memory hierarchy. A task instance defines a
variant to execute and an assignment of values to all variant
parameters. The Sequoia compiler creates instances for each
of the various contexts in which a task is used. For example,
to run thematmul task on Cell, the Sequoia compiler gen-
erates an instance employing thematmul::inner variant to
decompose large matrices resident in main memory into LS-
sized submatrices. A second instance usesmatmul::leaf

to perform the matrix multiplication inside each SPE. On
a cluster machine, onematmul instance partitions matrices
distributed across the cluster into submatrices that fit within
individual nodes. Additional instances usematmul::inner
to decompose these datasets further into L2- and then L1-
sized submatrices. While parameterized tasks do not name
specific variants when calling subtasks, specialized task in-
stances make direct calls to other instances. The static
call graph relatingmatmul’s parameterized task variants is
shown at top left in Figure 6. Calls among the task instances
that result from specialization to Cell and to a cluster are also
shown in the figure. Notice that three of the cluster instances,

instance {

name = matmul_mainmem_inst

task = matmul :: inner

runs_at = main_memory

calls = matmul_LS_inst

tunable U=128,X=64,V=128

}

instance {

name = matmul_LS_inst

variant = matmul ::leaf

runs_at = LS_level

}

instance {

name = matmul_cluster_inst

variant = matmul ::inner

runs_at = cluster_level

calls = matmul_node_inst

tunable U=1024,X=1024,V=1024

}

instance {

name = matmul_node_inst

variant = matmul ::inner

runs_at = node_level

calls = matmul_L2_inst

tunable U=128,X=128,V=128

}

instance {

name = matmul_L2_inst

task = matmul ::inner

runs_at = L2_cache_level

calls = matmul_L1_inst

tunable U=32,X=32,V=32

}

instance {

name = matmul_L1_inst

task = matmul ::leaf

runs_at = L1_cache_level

}

Figure 7: Specification for mapping thematmul task to a
Cell machine (left) and a cluster machine (right).

each mapped to a different location of the machine hierarchy,
are created from thematmul::inner variant (each instance
features different argument sizes and parameter values).

Task variants utilize two types of numeric parameters,array
sizeparameters andtunableparameters. Array size param-
eters, such asM, N, andP defined in thematmul task vari-
ants, represent values dependent upon array argument sizes
and may take on different values across calls to the same in-
stance. Tunable parameters, such as the integersU, V, and
X declared inmatmul::inner (lines 7-9 of Figure 4), are
designated using thetunable keyword. Tunable parameters
remain unbound in Sequoia source code but are statically as-
signed values during task specialization. Once assigned, tun-
able parameters are treated as compile-time constants. The
most common use of tunable parameters, as illustrated by the
matrix multiplication example, is to specify the size of array
blocks passed as arguments to subtasks.

Parameterization allows the decomposition strategy de-
scribed by a task variant to be applied in a variety of contexts,
making the task portable across machines and across levels
of the memory hierarchy within a single machine. The use of
tunable and array size parameters and the support of multiple
task variants is key to decoupling the expression of an algo-
rithm from its mapping to an underlying machine. Tasks pro-
vide a framework for defining the application-specific space
of decisions that must be made during the process of program
tuning. In the following section, we describe the process of
tuning and targeting Sequoia applications to a machine.

4 Task Specialization and Tuning

Tasks are generic algorithms that must be specialized before
they can be compiled into executable code. Mapping a hier-
archy of tasks onto a hierarchical representation of memory



requires the creation of task instances for all machine levels.
For each instance, a code variant to run must be selected, tar-
get instances for each call site must be chosen, and values
for tunable parameters must be provided.

One approach to specialization is to rely upon the compiler to
automatically generate task instances for a target by meansof
program analysis or a heuristic search through a pre-defined
space of possibilities. In Sequoia, the compiler is not re-
quired to perform this transformation. Instead we give the
programmer complete control of the mapping and tuning
phases of program development. A unique aspect of Se-
quoia is thetask mapping specificationthat is created by
the programmer on a per-machine basis and is maintained
separately from Sequoia source. The left half of Figure 7
shows the information required to mapmatmul onto a Cell
machine. The tunables have been chosen such that submatri-
ces constructed by the instancematmul mainmem inst can
be stored entirely within a single SPE’s LS.

In addition to defining the mapping of a task hierarchy to a
machine memory hierarchy, the mapping specification also
serves as the location where the programmer provides op-
timization and tuning directives that are particular to the
characteristics of the intended target. A performance-tuned
mapping specification formatmul execution on a cluster is
shown in Figure 8. The instancematmul cluster inst

runs at the cluster level of the machine hierarchy, so the dis-
tribution of array arguments across the cluster has significant
performance implications. The instance definition specifies
that task argument matrices be distributed using a 2D block-
block decomposition consisting of blocks 1024x1024 in size.
The definition also specifies that the transfer of subtask ar-
guments to the individual nodes should be double-buffered
acrossmappar iterations to hide the latency of the transfers.
As an additional optimization,matmul L2 inst specifies
that the system should copy the second and third arguments
passed tomatmul::leaf into contiguous buffers to ensure
stride-1 access in the the leaf task.

Mapping specifications are intended to give the program-
mer precise control over the mapping of a task hierarchy
to a machine while isolating machine-specific optimizations
in a single location. Performance is improved as details in
the mapping specification are refined. While an intelligent
compiler may be capable of automating the creation of parts
of a new mapping specification, Sequoia’s design empow-
ers the performance-oriented programmer to manage the key
aspects of this mapping to achieve maximum performance.

5 Implementation

We have experimented with implementing Sequoia on two
different platforms, a Cell blade system and a cluster of tra-
ditional PCs. When targeting either platform, our source-to-

instance {

name = matmul_cluster_inst

task = matmul

variant = inner

runs_at = cluster_level

calls = matmul_node_inst

tunable U=1024, X=1024, V=1024

A distribution = 2D block -block (blocksize 1024 x1024)

B distribution = 2D block -block (blocksize 1024 x1024)

C distribution = 2D block -block (blocksize 1024 x1024)

mappar loop -partition = grid 4x4

mappar software -pipeline = true

}

instance {

name = matmul_node_inst

task = matmul

variant = inner

runs_at = node_level

calls = matmul_L2_inst

tunable U=128, X=128, V=128

}

instance {

name = matmul_L2_inst

task = matmul

variant = inner

runs_at = L2_cache_level

calls = matmul_L1_inst

tunable U=32, X=32, V=32

subtask arg A = copy

subtask arg B = copy

}

instance {

name = matmul_L1_inst

task = matmul

variant = leaf

runs_at = L1_cache_level

}

Figure 8: A tuned version of the cluster mapping specifi-
cation from Figure 7. The cluster instance now distributes
its working set across the cluster and utilizes software-
pipelining to hide communication latency.

source Sequoia compiler emits C code that interfaces with a
platform-specific Sequoia runtime. The input to the compiler
is a Sequoia program and a mapping specification for the tar-
get machine. The C++ front-end provided by Elsa [McPeak
and Wilkerson 2005] was modified to accept Sequoia lan-
guage syntax and served as the front-end for our compiler.

The following subsections describe key points of our com-
piler/runtime implementation and summarize program op-
timizations conducted by our system to achieve the results
discussed in Section 6.

5.1 Cell Compiler and Runtime

The execution of Sequoia programs on Cell utilizes both
the chip’s PowerPC and SPE cores. Inner task instances
assigned to the machine’s main memory level are executed
by the PowerPC core and instances corresponding to the LS
level of the hierarchy are executed by the SPEs. To facil-
itate this partitioning, the Sequoia compiler emits two sets
of C output files. The first, corresponding to main memory
tasks, is compiled for PowerPC core execution using GCC
3.4.1. Code generated for LS-mapped tasks is compiled for
the SPEs using IBM’s XLC. Linking all LS-mapped oper-
ations into a single SPE binary often results in a code text
region exceeding the SPE’s 256KB local store. To minimize
code footprint, our compiler separates the binaries from an



application’s set of leaf tasks into a series of SPE overlays.
We do not attempt to analyze the code within leaf tasks to
partition large leaf tasks into multiple overlays.

Our Cell runtime system is event driven. A single thread
runs on each SPE for the lifetime of the application and is
notified of work by the PowerPC core via mailbox messages.
For example, calling an LS-mapped task generates a work
request sent to a SPE from the PowerPC core. Once this
notification is received, a lightweight Sequoia SPE runtime
library loads the code overlay corresponding to the requested
task and initiates the appropriate transfers of argument data
via asynchronous DMA operations.

Our system leverages the structure of Sequoia programs to
efficiently utilize the Cell architecture. Limiting communi-
cation to task parameter passing enables the use of SPE initi-
ated bulk DMA transfers that make maximal use of memory
bus bandwidth and are overlapped with computation when
parallel tasks exist. Due to Sequoia task isolation, synchro-
nization between processing cores is only required on task
boundaries, therefore events in our system correspond to
large operations such as task calls or the execution of entire
sequences of tasks within mapping constructs. For example,
when a SPE is notified of the start of amappar loop, it inde-
pendently executes all subtasks from it’s assigned sectionof
the iteration space before synchronizing with the other cores.
As a result, runtime overhead is minimal when running Se-
quoia applications on Cell.

5.2 Cluster Runtime

Implementing the Sequoia runtime for a cluster of work-
stations presented two key challenges: supporting arbitrary
mappings of Sequoia’s hierarchical task parallelism onto a
collection of cluster nodes and implementing the virtual level
abstraction required by inner tasks assigned to the cluster
level of the machine.

Responsibility for executing inner tasks is not replicated
across the cluster. Instead a single node executes a Sequoia
program beginning at the root of the task hierarchy until par-
allelism is encountered. At this point, notification is sentto
additional cluster nodes to begin performing subtasks in par-
allel. In this way control and synchronization interactions
between nodes in the cluster runtime, albeit implemented
via MPI messages instead of on-chip signaling, are similar
to those orchestrated by the Cell runtime between the Pow-
erPC and SPE cores. Since not all algorithms expressible
in Sequoia decompose immediately into a large number of
parallel operations, multiple levels of parallel task decompo-
sition might occur before all cluster nodes are actively per-
forming computation. To support this level of generality, a
node that receives notification to begin work on a task may
subsequently notify additional idle nodes to begin executing
as the task decomposes into smaller parallel subtasks.

Sequoia’s design made the implementation of a cluster-
wide virtual address space feasible without significant per-
formance penalties. Since Sequoia inner tasks may not ac-
cess array elements directly and are only permitted to refer
to blocks of arrays when calling subtasks, a fully general
implementation of distributed shared memory was not re-
quired. Instead, the runtime need only track the distribution
of blocks of arrays across the cluster, and move blocks to the
appropriate node when they are passed as arguments to node-
level subtasks in a Sequoia program. Since these transfers
involve large blocks of data and occur with course granular-
ity, the overhead of the virtual level abstraction is small.In
our implementation, data communication is implemented via
non-blocking MPI messages managed by a separate runtime
thread on each node. The program’s mapping specification
describes how virtual-level arrays are partitioned acrossthe
cluster nodes although a more sophisticated runtime might
seek to alter this distribution dynamically to improve perfor-
mance.

Sequoia task isolation and CBVR parameter passing seman-
tics minimize the amount of network communication per-
formed by Sequoia applications. As stated previously, the
system transfers all task argument data to a nodeen masse
upon task call. When a node-level task begins, all data it
manipulates is resident locally; no further communication
is necessary for the duration of the task. Only upon task
completion are output arguments returned to the appropriate
locations in the cluster. As a result, our example programs
generate efficient large MPI messages and feature communi-
cation patterns similar to those of well-written MPI applica-
tions. As in the Cell runtime, the cluster runtime attempts to
hide transfer latencies by overlapping communication with
the execution of parallel tasks.

5.3 Program Optimizations

As described above, Sequoia programs are constrained to
exhibit properties that lend themselves to efficient execu-
tion on modern parallel architectures where efficient soft-
ware management of the bandwidth hierarchy is critical to
performance. Even so, our compiler and runtime systems
perform additional optimizations that are required for Se-
quoia applications to perform competitively with platform-
specific hand-tuned code on our target machines.

The most important of these optimizations is the efficient im-
plementation of Sequoia’s CBVR parameter passing seman-
tics. CBVR semantics are natural when data must be phys-
ically copied between memory modules on a task call, such
as between main system memory and a SPE LS on Cell, or
between nodes of a cluster. However, when parent and child
tasks are resident in the same level of the memory hierarchy,
copying data in and out of task address spaces is both waste-
ful of memory and detrimental to performance. We detect



SAXPY BLAS L1 saxpy performed on 32 million word vectors

SGEMV BLAS L2 sgemv using a 8192x4096 matrix

SGEMM BLAS L3 sgemm with matrices of size 4096x4096

ITERCONV2D 15 successive iterations of convolution of a 9x9 filter with
a 8192x4096 input signal obeying non-periodic boundary
conditions.

FFT3D Discrete Fourier transform of a complex 2563 dataset. Com-
plex data is stored in struct-of-arrays format.

GRAVITY An O(N2) N-body stellar dynamics simulation on 8192 par-
ticles for 100 time steps. We are using Verlet update and
the force calculation is acceleration without jerk [Fukushige
et al. 2005].

HMMER Fuzzy protein string matching using Hidden Markov Model
evaluation. The Sequoia implementation of this algorithm is
derived from the formulation of HMMER-search for graph-
ics processors given in [Horn et al. 2005] and is run on a
large fraction of the NCBI non-redundant database.

Table 2: Applications implemented in Sequoia

and remove such copies in Sequoia programs and in these
cases rewrite array references in subtasks to be relative tothe
original data in the parent task’s address space. This analysis
is performed statically during compilation for Cell-targeted
programs and dynamically at runtime when executing on a
cluster (higher latencies of cluster operations make this fea-
sible). This optimization can be overridden by the program-
mer via the mapping specification if copies within an address
space are desired, for example, to yield stride-1 access to ar-
ray data in leaf tasks.

Other optimizations performed by the Sequoia compiler or
runtime systems include task-granularity software pipelining
to hide memory latency, and loop-invariant code motion to
better exploit producer-consumer locality when subsequent
tasks make use of the same arguments.

6 Evaluation

In this section we evaluate the performance of Sequoia ap-
plications on a prototype Cell blade system and on a clus-
ter of workstations. Our IBM BladeCenter is configured
with a prototype blade containing dual-2.4GHz Cell proces-
sors sharing bandwidth to 512MB of system memory. On
this machine we scaled Sequoia applications from 1 to all
16 SPEs available across both processors. Our cluster setup
consists of 16 nodes each with 2.4GHz Intel P4 Xeon proces-
sors and 1GB of main memory. Inter-node communication
is performed via a Mellanox PCI-X 4X Cougar Infiniband
HCA interconnect. The benchmark applications used in our
initial experiments are described in Table 2. All programs
operate on single-precision values. Notice that this set of
benchmarks features widely used algorithms that are highly
regular in control flow and data access, making them a good
fit for the Sequoia programming model. An evaluation of Se-
quoia’s utility for more complex irregular algorithms is not
performed in this paper and is the subject of ongoing work.

Cell 8 SPE Cell 16 SPE Cluster (16 nodes)
Pre-distrib Overall

SAXPY 3.9 (22GB/s) 4.0 (22.1GB/s) 3.6 0.1
SGEMV 9.8 (18GB/s) 11.0 (20.5GB/s) 11.1 0.2
SGEMM 80.6 160.7 97.9 72.5
ITERCONV2D 62.8 119.4 27.2 19.9
FFT3D 32.3 40.2 6.8 1.98
GRAVITY 73.1 125.2 50.6 50.5
HMMER 9.9 19.1 13.4 12.7

Table 3: Application performance (GFLOP/s) on a single
Cell blade (8 SPEs), dual-Cell blade (16 SPEs), and a 16
node cluster. Cluster performance is given with (pre-distrib)
and without (overall) datasets pre-distributed across theclus-
ter. Bandwidth is reported for severely memory bound
benchmarks.

6.1 Sequoia Performance

Our applications utilize the highest quality leaf task imple-
mentations available. If kernel libraries could be obtained,
such as FFTW and the Intel MKL for PCs, or the IBM SPE
matrix library for Cell, we call these libraries from Sequoia
leaf tasks. In all other situations we carefully hand-tuned
leaf task implementations using either SSE2 or Cell SPE in-
trinsics. The ability to leverage existing libraries or highly-
tuned platform-specific kernels is a feature of the Sequoia
programming model.

Table 3 reports the raw performance (GFLOP/s) of each ap-
plication running on a single Cell (8 SPEs), on both Cell pro-
cessors in our blade (16 SPEs), and on a cluster of 16 nodes.
Speedup relative to single SPE and single cluster node per-
formance is plotted in Figures 9 and 10. In Table 3, we report
performance including and excluding the time to initially
distribute datasets across cluster nodes. In our experiments,
non-performance-critical application code is written as ase-
quential C program and Sequoia inner tasks perform each
benchmark’s core algorithms. Performance measured when
including distribution time is indicative of speedup from sim-
ply replacing a sequential target machine with a cluster. Ina
more realistic scenario, data is pre-distributed across nodes
as part of a larger Sequoia application and for this reason we
also report performance that neglects this cost. The ensuing
discussion and the results graphed in Figures 10 and 11 do
not include the time to distribute datasets prior to launching
the root-level Sequoia task but do incorporate the cost of any
data reshuffling that occurs once this task begins.

Our results are competitive with existing implementations
of similar algorithms. The greatest raw performance is
demonstrated bySGEMM, which reaches a rate of over 160
GFLOP/s running on two Cells and nearly 100 GFLOP/s
on the cluster. Our implementation ofFFT3D on the Cell
(8 SPE) achieves a rate of 32.3 GFLOP/s, a result compa-
rable to the hand-tuned FFT implementation described by
IBM [Chow et al. 2005]. GRAVITY on a single Cell per-
forms 3 billion interactions per second, exceeding the 2.3
billion interactions per second realized by the custom hard-
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Figure 9: Speedup of Sequoia programs on a dual-Cell blade.

1 2 4 8 16

Number of nodes

0

2

4

6

8

10

12

14

16

Sp
ee

du
p

SAXPY
SGEMV
SGEMM
ITERCONV2D
FFT3D
GRAVITY
HMMER

Figure 10: Speedup of Sequoia programs on a cluster of PCs.

ware of GRAPE-6A [Fukushige et al. 2005] although numer-
ical precision differences exist between the implementations
(GRAPE-6A uses a combination of fixed and floating point
calculations at varying precisions; our computations operate
on 32-bit floating point values). Lastly, our Cell implementa-
tion of HMMER is 5% faster than the implementation pre-
sented in [Horn et al. 2005] measured on an ATI 1900XT
graphics processor, which was demonstrated to outperform
hand-tuned versions of the algorithm on traditional CPUs.

TheSAXPY andSGEMV benchmarks do not scale well to
multiple Cell SPEs because they are bandwidth bound. Al-
though the lack of computation and data locality in these
benchmarks prevents efficient utilization of available pro-
cessing units, as shown in Table 3 these Sequoia programs
access data at over 20 GB/s, near the peak bandwidth ob-
served on the machine. Since distributing these computa-
tions across a cluster yields more aggregate bandwidth than
on a single node,SAXPY andSGEMV scale favorably on
the cluster if data is pre-distributed. When the data is not
pre-distributed, these benchmarks are limited by cluster in-
terconnect bandwidth.

A key goal of the Sequoia language is to encourage the de-
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Figure 11: Execution time breakdown for each benchmark
when running on a single Cell processor (left bar) and on a
16 node cluster (right bar).

velopment of bandwidth efficient programs that maximize
processing unit utilization. Figure 11 provides a breakdown
of each application’s execution into time spent computing
in leaf tasks, time waiting on requests from memory, and
time performing overhead operations such as waiting at bar-
riers or executing Sequoia runtime logic. On both the Cell
blades and on the cluster, Sequoia code utilizes processing
units well. Other than the bandwidth-boundSAXPY and
SGEMV tests, andFFT3D, which places heavy load on
the memory system by conducting transposes of large 3D
datasets, the applications rarely require processing units to
idle waiting on data from memory.

6.2 Sequoia Portability

Sequoia applications are efficient without requiring Sequoia
code to be tailored in detail to the requirements of the ma-
chines. With the exception ofFFT3D, no changes were
made to Sequoia source to run our benchmarks on either plat-
form. Although the sameFFT3D Sequoia source ran on both
targets, an additional variant was added to minimize inter-
node communication on the cluster. Sequoia variants easily
supported this algorithmic change to improve cluster perfor-
mance without impacting or cluttering parts of the code used
on Cell.

Once a Sequoia program was running on one target, porting
the application to a second platform required the program-
mer to perform two changes. First, existing leaf tasks were
replaced with implementations specific to the new target ma-
chine. Hand-written leaves required a port from SSE2 to
Cell SPE intrinsics (or vice-versa), however when libraries
were used as leaf implementations, this change was trivial.
For example, a one line modification to theSGEMM leaf



task was required to use the Intel MKL implementation of
matrix multiplication instead of the IBM-provided matrix li-
brary for Cell. Note that no port is required if leaf tasks are
written entirely within Sequoia, such as the implementation
of matmul::leaf given in Figure 4. The second aspect of
porting Sequoia programs involves creating a mapping spec-
ification for the new target. The primary difference between
the Cell and cluster mapping specifications is the selectionof
tunable parameter values (recall examples of Cell and cluster
mapping files from Figure 7). Using Sequoia, a blocking and
decomposition strategy is implemented fully on one platform
and is then quickly transferred to the second target machine
by changing the scale and parameters of the decomposition.
A frequent inclusion in cluster mapping files is information
about the distribution of global arrays across the machine’s
virtual root level. This information is not applicable to ap-
plication tuning on Cell since a virtual level does not exist.

7 Related Work

Automatic restructuring of programs to improve data locality
is possible for affine programs [Lim et al. 2001]. While this
type of analysis aims to tackle similar performance goals as
our work, it does not currently provide mechanisms for dis-
tributed systems and rich memory hierarchies, nor does it
work with the many non-affine programs available.

There have been many attempts to incorporate explicit data
locality into parallel programming models. Split-C [Culler
et al. 1993], Co-Array Fortran [Numrich and Reid 1998],
UPC [Carlson et al. 1999], and Titanium [Yelick et al. 1998]
present a single program address space, but seek to minimize
horizontal communication between processors by designat-
ing memory that is local or remote to each program thread.
Stream processing languages [Mattson 2002; Buck et al.
2004] also build upon a two-tiered memory model [Labonte
et al. 2004], choosing to differentiate between on and off-
chip storage. Modern parallel language efforts [Charles etal.
2005; Callahan et al. 2004; Allen et al. 2005] support locality
cognizant programming through the concept of distributions
(from ZPL [Deitz et al. 2004]). A distribution is a map of
array data to a set of machine locations, facilitating a single
program namespace despite execution on nodes with phys-
ically distinct address spaces. Distributions fail to describe
movement of array data up and down the memory hierarchy
and are not applicable when arrays are not stored across dis-
tributed memories. Our decision to use a hierarchical mem-
ory model brings explicit control of communication between
nodes and within a node into a common framework.

Previous efforts to model memory hierarchies include the
Uniform Memory Hierarchy Model (UMH) [Alpern et al.
1994], which abstracted uniprocessor machines as sequences
of memory modules of increasing size. The Parallel Memory
Hierarchy Model (PMH) [Alpern et al. 1993] extended this

abstraction to parallel architectures by modeling machines
as trees of memories. Historically, interest in non-uniform
memory access models has been motivated by the analysis
of algorithm performance [Jia-Wei and Kung 1981; Vitter
2002]. Instead, we view hierarchical memory as a funda-
mental aspect of our programming model required to achieve
both performance and portability across a wide range of ar-
chitectures. As stated in Section 2, our design is influenced
by the idea of space-limited procedures [Alpern et al. 1995],
a methodology for programming machines modeled using
the PMH model.

Hierarchically Tiled Arrays (HTA) [Bikshandi et al. 2006]
accelerate existing sequential languages with an array data
type expressing multiple levels of tiling for locality and par-
allelism but permit arbitrary element access. As with array
distributions, the HTA approach specifies locality by anno-
tating a data type which is less flexible and less portable than
Sequoia’s approach of using task composition.

The Chameleon [Alverson and Notkin 1993] and
CHORES [Eager and Jahorjan 1993] systems also bear
similarities to Sequoia in their runtime-based approach to
dividing computation into hierarchies of simple operations
called chores. These systems were intended to ease parallel
programming on shared memory systems, and do not deal
with issues such as explicit naming of working sets and
address space isolation that are important in the context of
our target systems.

Sequoia tasks are a generalization of stream programming
kernels [Mattson 2002; Buck et al. 2004]. Tasks and kernels
share similarities such as isolation, a local address space,
and well specified working sets, but significantly differ in the
ability of tasks to arbitrarily nest. Task hierarchies facilitate
explicit expression of many levels of locality and parallelism
that stream compilers have struggled to find via automatic
analysis.

Sequoia’s control flow when encountering a parallel map-
ping of subtasks resembles the thread-less abstraction of con-
currency in Cilk [Blumofe et al. 1995], X10 [Charles et al.
2005], Chapel [Callahan et al. 2004], and Fortress [Allen
et al. 2005]. Sequoia control flow is constrained in com-
parison to these languages since the calling task cannot pro-
ceed until all subtasks complete (similar to common usage of
OpenMP [Dagum and Menon 1998] loops). Cilk introduced
a generic concurrency model to facilitate the implementa-
tion of sophisticated dynamic scheduling of workloads. We
leverage the flexibility of this style of control flow to achieve
portability goals.

It is well known that divide-and-conquer strategies lead to
algorithms that exhibit high levels of locality [Gustavson
1997]. Cache-oblivious algorithms [Frigo et al. 1999; Frigo
and Strumpen 2005] make provably efficient use of a ma-
chine’s memory hierarchy without regard to the particular
size or number of hierarchy levels. The portability of the



cache-oblivious approach comes at the cost of lost constant
factors in performance and added complexity of expressing
algorithms in a cache-oblivious manner. Sequoia algorithms
are machine independent and are often written in a divide-
and-conquer style, however, they may explicitly refer to the
sizes and number of levels in the machine’s hierarchy so
that decomposition occurs only when crossing memory hi-
erarchy boundaries. Sequoia provides portability across ma-
chines featuring widely varying communication mechanisms
and rich memory hierarchies by allowing the programmer to
describe multiple address spaces, while cache-oblivious al-
gorithms written using traditional languages do not.

A different approach to gain memory hierarchy efficiency
is to rely on domain-specific libraries. Meta-compilation of
parameterized algorithms automatically tunes such libraries
to machines by a heuristic-guided search through a domain-
specific parameter space [Whaley et al. 2001; Frigo 1999].
Compiler technology that relies on exposing library seman-
tics [Guyer and Lin 1999; Kennedy et al. 2001] can be used
to further enhance performance by optimizing across tuned
library calls. Task parameterization via Sequoia tunables
and task variants generalizes meta-compilation, as it implic-
itly defines a parameter space for every Sequoia application.
Search techniques can potentially be employed to automati-
cally generate Sequoia mapping files for a new architecture,
and a Sequoia compiler could perform global optimizations
across tasks.

8 Discussion and Future Work

The Sequoia programming model is a pragmatic approach
to reconciling the conflicting goals of performance and
portability. Improving the productivity of the performance-
conscious programmer requires placing performance critical
aspects of the machine under explicit control. At the same
time, to ensure portability, the separation of algorithmicex-
pression and machine-specific tuning remains fundamental
in Sequoia’s design. The explicit expression of communica-
tion, the movement of data through the memory hierarchy,
parallel computation, and the definition of isolated working
sets are achieved through a single abstraction, the task. Se-
quoia provides first-class language primitives for structur-
ing computations as hierarchies of tasks, a general way of
performing the locality improving optimizations already re-
quired of programmers tuning for performance. Using Se-
quoia instead of ad-hoc techniques or platform-specific com-
munication intrinsics, we demonstrated programs running
efficiently on two very different exposed-communication ar-
chitectures, a Cell blade and a cluster of workstations.

Sequoia remains in the early stages of development and al-
though our initial results with important, but highly regular,
applications are encouraging, our current designs will cer-
tainly need to overcome a number of apparent limitations.

Most importantly, it is unclear if the minimal set of prim-
itives Sequoia provides can sufficiently express more dy-
namic applications where the data computations access can-
not be concisely described a priori in the form of a task argu-
ment list. Additionally, we have not critically analyzed how
Sequoia’s task mapping abstractions will generalize to sup-
port classes of applications where work is generated dynam-
ically based on the results of previous computations. Simi-
larly, the implications of inner tasks’ inability to accessarray
data directly have not been thoroughly explored.

While the existence of Sequoia mapping specifications facil-
itates the separation of tuning from algorithmic implementa-
tion, improvements on our current mechanisms are required
to ease the burden of managing both Sequoia code and the
separate mapping specification.

Future work on Sequoia will attempt to address these issues
without sacrificing the performance of the large class of reg-
ular algorithms that benefit from Sequoia’s features. In addi-
tion, we wish to further investigate the portability of the Se-
quoia language by adapting the compiler and runtime system
to more traditional multicore and multithreaded processors
as well as to larger systems comprised of higher numbers of
processing elements.
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