
42

Embedded- and real-time system
designers are continually challenged to provide
increased computational capabilities to meet
tighter system requirements at ever-improving
price/performance ratios. Best practices have
long promoted the use of commercial off-the-
shelf (COTS) components to reduce design
costs and time to market. Creating COTS
components that are reusable in a wide range of
real-time and embedded applications is still a
difficult challenge, partly because it requires the
simultaneous satisfaction of apparently con-
tradictory design forces: generalization and spe-
cialization. System designers are all too familiar
with the tension caused by these opposing
forces when trying to balance cost versus per-
formance. Adopting COTS components
reduces costs and time to market, but can prove
inadequate for meeting challenging perfor-
mance requirements. Custom components can
achieve significantly higher performance when
compared to COTS components, but require
significantly higher development costs and
longer times to market.

Recently emerging hybrid chips containing
both CPU and field-programmable gate array

(FPGA) components are an exciting new
development that promises COTS economies
of scale, while also supporting significant
hardware customization. For example, Xilinx
offers the Virtex II Pro, which combines up
to four PowerPC 405 cores with up to approx-
imately 4 million free gates, while Altera offers
the Excalibur, which combines an ARM 922
core with approximately the same number of
free gates. Designers can program the free
FPGA gates with a widening range of stan-
dard FPGA intellectual property (IP) system
library components, including serial and par-
allel I/O interfaces, bus arbiters, priority inter-
rupt controllers, and DRAM controllers.
They now have the freedom to select a set of
FPGA IP to create a specialized system-on-
chip (SoC) solution. This capability allows
designers a COTS-like economy of scale while
specializing the design for particular applica-
tion requirements. One of the most interest-
ing aspects of specialization is that the free
FPGA gates can support customized applica-
tion-specific components for performance-
critical functions. Although an FPGA-based
implementation’s performance is still lower

David Andrews
Douglas Niehaus

Razali Jidin
Michael Finley

Wesley Peck
Michael Frisbie

Jorge Ortiz
Ed Komp

University of Kansas

Peter Ashenden
Ashenden Designs

EMERGING HYBRID CHIPS CONTAINING CPU AND FPGA COMPONENTS ARE AN

EXCITING NEW DEVELOPMENT PROMISING COMMERCIAL OFF-THE-SHELF

ECONOMIES OF SCALE, WHILE ALSO SUPPORTING HARDWARE CUSTOMIZATION.

PROGRAMMING MODELS FOR
HYBRID FPGA-CPU

COMPUTATIONAL COMPONENTS:
A MISSING LINK

Published by the IEEE Computer Society 0272-1732/04/$20.00 2004 IEEE

than that of an equivalent application-specif-
ic IC, the FPGA-based solution often provides
acceptable performance and a significantly
better price/performance ratio.

Tapping the full potential of these hybrids
presents an interesting challenge for system
developers. Although the ability to program
them with a standard set of FPGA IP to
replace current COTS designs with a single
chip already exists, specifying custom com-
ponents within the FPGA is tedious and
device specific—contrary to the desired goals
of modularity, portability, and reuse. Knowl-
edge of hardware design methods and tools is
also required, which places the full potential
of these hybrids just out of reach of the major-
ity of system programmers. New capabilities
are being developed that allow the synthesis
of hardware designs from a more familiar
high-level language syntax: a fundamental step
toward allowing programmers to form cus-
tom components within the FPGA. Howev-
er, in addition to the high level syntax
provided by a programming language, a com-
plete programming model is necessary to
completely abstract away the hardware-spe-
cific details, making it unnecessary for the
designer to distinguish the use of the FPGA
and CPU hardware components to produce
a transparent system implementation plat-
form. This will enable programmers to access
the full potential of the hybrid system and
apply familiar componentization and reuse
best practices that reduce cost and time to
market. To achieve this potential requires the
definition of a new hybrid computational
model and hardware-software codesign of
runtime services.

Programming languages for reconfigurable
architectures

Researchers are seeking solutions to system-
level design for embedded systems by
investigating new design languages, hardware-
software specification environments, and tools.
Projects such as Ptolemy,1 Rosetta,2 and Sys-
tem-C seek system-level specification capabil-
ities that can drive software compilation and
hardware synthesis. Other projects such as
SPARK,3 Streams-C,4 and Handel C
(www.celoxica.com) focus on raising the level
of abstraction for FPGA programming, from
gate-level parallelism to that of a modified and

augmented C syntax. System Verilog
(www.eda.org/sv-cc/) and a newly evolving
VHDL standard (www.eda.org/vhdl-200x/)
are also now under development, with the goal
of abstracting away the distinction between
the traditional low-level hardware-software
interface and moving toward a system-level
perspective. Although these approaches differ
in the scope of their objectives, they all share
the common goal of raising the level of abstrac-
tion required to design and integrate hardware
and software components.

In light of all this work, a good question is
then, if high-level programming-language capa-
bilities for FPGAs continue maturing at cur-
rent rates, will this be sufficient to allow
software engineers to apply their skills across
the FPGA-CPU boundaries? Unfortunately,
current hybrid computational models are still
immature, generally treating FPGAs as com-
putational accelerators that are invoked pas-
sively as subroutines, or for essentially
independent portions of a data flow computa-
tion, requiring only input and output queues.

Effectively programming across the FPGA-
CPU boundary will require a high-level pro-
gramming model that abstracts the FPGA and
CPU components, bus structure, memory,
and low-level peripheral protocols into a trans-
parent computational platform. Programming
models form the definition of software com-
ponents as well as the interactions among
them.5 Message passing and shared-memory
protocols are two familiar forms of compo-
nent interaction mechanisms in use today.
Both have been successfully used in the
embedded world and practitioners enjoy
debating the relative merits of their personal
choice. We have chosen to discuss the multi-
threaded shared-memory model with the
basic principles described here being equally
appropriate for the message-passing model.

Multithreaded programming model
The multithreaded programming model is

convenient for describing embedded applica-
tions composed of concurrently executing
components that synchronize and exchange
data. The popularity of the multithreaded
programming model is apparent from the
widespread use of the Posix threads standard.6

One example of this is the significantly
improved Pthreads multithreading library

43JULY–AUGUST 2004

included with new releases of Linux. Because
of its acceptance within the software engi-
neering community and expressiveness for
embedded applications, the multithreaded
model is a good candidate for a programming
model that can provide a high-level abstrac-
tion; it provides a largely uniform view of
computations whose set of components can
cross the FPGA-CPU boundary.

Under such a multithreaded programming
model, system developers can specify appli-
cations as sets of threads distributed flexibly
across the system’s CPU and FPGA assets.
This approach promises several advantages.

First, the use of the familiar multithreaded
programming model will greatly reduce design
and development costs since the computa-
tional structure of hybrid applications remains
familiar at the highest level of abstraction.

Second, whether the threads implementing
a computation are CPU- or FPGA-based will
become just one more of the available design
and implementation parameters with resource
use and application performance implications.
How to perform this partitioning to best sup-
port the needs of an application or system is
yet another challenging problem currently
under investigation.

Third, it’s possible to iteratively develop
applications, beginning with an exclusively
CPU-based multithreaded implementation
and gradually transferring specific threads to
FPGA support. Such an approach can accel-
erate time to market, as well as make it possi-
ble to focus FPGA support on the portions of
the application that will benefit the most as
established by performance measurements.

At this point, it is appropriate to draw a dis-
tinction between policy and mechanism. The
policy of the multithreaded model is fairly sim-
ple: to allow the specification of concurrent
threads of execution and protocols for access-
ing common data, and synchronizing the exe-
cution of independent threads. On a
general-purpose processor, the mechanisms
used to achieve this policy include the defin-
ition of data structures that store state infor-
mation about thread execution, and the
semantics of how thread synchronization
primitives interact with the operating system’s
thread scheduler. For example, both the syn-
chronization (semaphore) control and the
thread-scheduling portions of the system soft-

ware access common data structures for thread
context. Additionally, synchronization prim-
itives make use of architecture specific assem-
bly language instructions such as load linked
and store conditional.

The FPGA computational model employs
a different-enough level of abstraction from
that of the CPU that there is no immediately
obvious equivalent to the CPU structures used
to hold a thread’s context such as the register
set, program counter, and stack pointer. Addi-
tionally, with current FPGA technology, sys-
tem developers must synthesize and map the
data paths and operations that represent the
computations of the thread into the FPGA
before runtime. These differences require new
mechanisms for achieving the basic policies
of the multi-thread model for threads running
within the FPGA, and to support interactions
among threads across the FPGA-CPU bound-
ary. Although, at first glance, the lack of a
computational model seems to be a liability, it
is instead an asset, because it presents an
opportunity to create efficient mechanisms
for implementing FPGA threads and for sup-
porting thread synchronization within the
FPGA and across the FPGA-CPU boundary.
The implementation of threads in FPGAs
must maximize the advantages of using the
FPGA platform, while preserving the com-
mon multithreaded programming model.
Blindly adhering to historical thread syntax
and semantics that were developed for gener-
al-purpose CPUs is a trap. It can easily lead to
an implementation that falls far short of the
reconfigurable logic’s performance potential.
At the same time, the FPGA thread imple-
mentation must not use methods that degrade
the efficiency of synchronization across the
FPGA-CPU boundary. Neither should the
FPGA methods create any form of unfairness
between the FPGA and CPU threads.

Hybrid thread abstraction layer
As part of our ongoing research to extend

the thread programming model across hybrid
FPGA-CPU components,7,8,9 we have defined
the Hardware Thread Interface (HTI) library
component shown in Figure 1. We implement
the Hardware Thread Interface component as
three subcomponents: a CPU interface, a
hardware-thread state controller, and a user
hardware-computation interface. The user

44

EMBEDDED SYSTEMS

IEEE MICRO

interface binds our device independent API’s
accessible from within the application pro-
gram to platform-specific implementation
methods. Thus the HTI component provides
a general-purpose register set that supports
platform independent user level semantics to
promote thread migration across the system.

We provide the Hardware Thread Interface
component as a library for inclusion with each

user-defined hardware thread. The set of Hard-
ware Thread Interface components and a soft-
ware interface component form a system-level
hybrid thread abstraction layer as shown in Fig-
ure 2. The hybrid thread abstraction layer
implements all interactions between user
threads and other system components through
the command and status registers. This capa-
bility is particularly useful for debugging and is

45JULY–AUGUST 2004

Bus interface (architectural dependent)

Hardware thread interface component

State machines*:
• Bus writer
• Bus reader
• Spin lock
 access, and so on

State machines*:
• Thread state scheduler
• Status register updates
• Bus slave - read/right
 registers

Spin lock:
loops unitil status = lock acquired
{
address <= base address
operation <= spin lock
parameter 1 <= thread_ID
}

Spin semaphore:
loop until status = sema acquired
{
 address <= semaphore base address
 operation <= spin semaphore
 parameter 1 <= thread_ID
 parameter 2 <= request number
 }

Block semaphore:
{ do once
 address <= semaphore base address
 operation <= block semaphore
 parameter 1 <= thread_ID
 parameter 2 <= request_ID number
 }
if status = sema fail, waits

Block lock:
{ do once
address <= base address
operaion <= block lock
parameter 1 <=thread_ID
}
if status = lock fail, waits

command

operation status

address

argument 1

argument 2

result 2

result 1

parameter 1 parameter 1

parameter 2

parameter 2

User hardware thread

* Hardware thread state controller
 User hardware thread interface registers
 CPU interface registers

Figure 1. Hardware Thread Interface component.

used during runtime to interact with the other
system components, such as our semaphore IP
for thread blocking and wake-up. During
debug, the status register is accessible, so that
the developer can determine the execution state
of a hardware thread. We have also included
control signals within the hardware thread
interface component to perform a system soft
stop and soft reset. The soft stop is similar in
capability to setting a break point within the
software and causes all state machines within

the hardware thread interface to temporarily
halt. The soft reset is useful when a particular
IP needs to be reset without requiring a com-
plete system reboot. Compared to existing
approaches that implement simple slave
coprocessors within an FPGA, our approach
has one new requirement for supporting hard-
ware threads: A thread must also write to—in
addition to read from—memory-mapped loca-
tions across the bus. The bus interface supports
both bus slave and master modes; as bus mas-
ter, a thread must also be able to request bus
transfers, such as memory accesses, on behalf
of the user thread.

The state machine in Figure 3 controls the
execution of a user hardware thread, which
will be in one of three states: idle, running, or
waiting. Threads that have not yet started or
have terminated are in the idle state. Threads
that are currently in the run state transition
into the wait state when a thread requests a
semaphore, or continues to be blocked on a
semaphore. Each hardware thread’s state is
maintained in the status register. Dedicated
hardware threads require no context switch-
ing when transitioning the thread into the
wait state. Instead, the hardware thread sim-
ply idles. This allows the adoption of the same
approach for both spinning and blocking sem-
aphores. The hardware thread interface com-
ponent, however, does perform different
processing for spinning and blocking sema-
phores. For the spinning semaphore, the hard-
ware thread interface transitions the thread
state into the wait state, issues a single request
for the semaphore, and returns the thread to
the running state when the request’s status is
returned in the status register. The thread then
checks to see if it owns the semaphore or not.
In contrast, for a blocking semaphore, the
hardware thread interface transitions the
thread to the wait state, issues the request for
the blocking semaphore, and leaves the thread
in the wait state while the semaphore is in use.
Upon a grant or release, the state machine will
then transition the thread back into the run
state. The semaphore IPs we discuss later
exemplify the differences in the semaphore
logic for the two types of semaphores.

Operating-system codesign
The operating system is the most funda-

mental system software layer, abstracting a

46

EMBEDDED SYSTEMS

IEEE MICRO

CPU

Software
thread 1

Software
thread 1

Software thread interface component

Hardware thread
interface

component

Hardware thread
interface

component

Hardware thread
interface

component

Hardware thread
interface

component

System bus

Hardware threads

Hybrid
thread

abstraction
layer

Figure 2. Hybrid thread abstraction layer.

CPU writes to
command
register

Reset

Idle

Run

Wait

cmd_run

usr_request
or

cmd stop

ack

Hardware thread waits
for semaphore or
user thread command

usr_stop

Figure 3. Hardware thread controller state machine.

wide range of low-level system services and
device-specific requirements into a generic set
of interfaces through which both application
and system programs access specific operat-
ing-system capabilities. Creation of a hybrid
thread programming model, which eliminates
the distinction between a CPU- and FPGA-
based thread from the developer’s point of
view, requires a hardware-software codesign
of portions of the operating system to extend
system services across the FGPA-CPU bound-
ary.10 One of the most attractive goals of hard-
ware-software codesign of operating system
services is to reduce the overhead of servicing
asynchronous interrupts while reducing their
effect on overall system behavior. Hardware-
software co-design of operating system ser-
vices such as timekeeping, event queue
management, interrupt handling, and task
scheduling hold the promise of creating a real-
time system with extremely low scheduling
jitter and enhanced performance. An extreme-
ly important goal for our hardware-software

codesign of operating-system components is
to create a system that will only interrupt the
CPU when a change in the system state
requires the CPU to switch to another activ-
ity. Such changes in system state include
timers expiring, devices completing an
assigned activity and generating an interrupt,
or external inputs arriving in the form of net-
work packets. Current systems fall far short
of the ideal because the CPU must be inter-
rupted whenever a change in system state
might require a switch of CPU activity.

Task management
Figure 4 shows the hardware component

block diagram of our hardware-software code-
signed thread manager for software threads,
the software thread manager (SWTM). The
SWTM hardware component contains a
thread state table, scheduler for software
threads, system timers, and interrupt pro-
cessing. The SWTM provides an interface for
software thread state change requests from all

47JULY–AUGUST 2004

decision_reg

decision_reg

decision_reg

decision_reg

decision_reg

decision_reg

decision_reg

decision_reg

decision_reg

decision_reg

decision_reg

decision_reg

decision_reg

decision_reg

decision_reg

decision_reg

decision_reg

decision_reg

CORE_HALT

CORE_RESET

decision_reg

Core access

Core control

Thread ID table

Scheduler

Find next
available

Xilinx
priority

interrupt
controller

Interrupt

Device
control
register

 bus

Timers

Processor local bus

Figure 4. Software thread manager subsystem.

sources, including software threads, hardware
threads, and system devices. However, the
SWTM does not perform the scheduling of
hardware threads; instead, hardware threads
are controlled in a distributed fashion through
their hardware thread interface components.
We have migrated the basic control mecha-
nisms for software threads into the SWTM to
reduce overhead, minimize code require-
ments, and support our goal of migrating the
scheduler for CPU-based threads into the
hardware. Thread management functions are
invoked by reading or writing to the register
set. A write to, or a read from, a register
invokes a state machine that performs the
associated processing. Figure 5 shows an
example of our hardware-software codesign
thread-create API. The pseudocode that the
CPU executes appears on the left of Figure 5;
the register read or write invokes the subse-
quent processing that appears on the right.
Similarly, Figure 6 shows the pseudo code and
processing for joining a thread.

The SWTM scheduler in Figure 4 runs in
parallel with the execution of the software
thread on the CPU. To reduce overhead and
CPU thread scheduling jitter, all requests to

interrupt the CPU, including external-device
interrupts, expiring timers, terminating,
blocking threads, and unblocking threads, go
to the SWTM scheduler. This approach is dis-
tinctly different from existing approaches that
allow external interrupts to cause state changes
outside of the CPU thread scheduler’s con-
trol. When a state change requires a context
switch away from the software thread on the
CPU, as determined by the SWTM sched-
uler, the SWTM generates an interrupt. The
SWTM interrupt service routine on the CPU
is very lightweight, only needing to read the
thread_id of the next thread to run from the
next_thread register and performing the spec-
ified context switch.

The first version of the SWTM imple-
mented simple first-in first-out and round
robin schedulers to simplify development and
debugging. The next version will implement
our recently developed, component-oriented
and flexibly configurable scheduling frame-
work.11 We call our approach group scheduling
because it explicitly addresses an important
trend in system design: The implementation of
computations as groups of computational
components, most often but not exclusively

48

EMBEDDED SYSTEMS

IEEE MICRO

htread create()

{

 if (attr>detached)

 threadStatus = create_thread_detached; ⇒

 else

 threadStatus = create_thread_joined; ⇒

 if(hasError(addStatus))

 {

 clrStatus – clear_thread(threadID); ⇒
 update software data structures

 return RUN_QUEUE_FULL;

 } else

 thread->id = threadID

 } else

 return NO_THREADS_AVAILABLE;

 if(!hasError (threadStatus))

 threadID = extractID(threadStatus);

 update software data structures

 addStatus – add_thread(threadID); ⇒

 return SUCCESS;

}

if(thread unavailable) return 0 + ERR_BIT

thd's status=used,~exited,~queued,~joined,detached

thd's pid = 0

return thread's Id

if(thread unavailable) return 0 + ERR_BIT

thd's status=used,~exited,~queued,~joined,detached

thd's pid = current_thread

return thread's Id

if(threadID->status=used,~exited,~queued) {

 threadID->status = queued

 add threadID to RZR_QUEUED

 update RZR_QUEUE

 return 0;

} else return threadID->pid,status,ERR_BIT

if(threadID->pid == current_thread) {

 threadID->status = ~used, ~exited, ~queued,

 ~joined, ~detached

 threadID->pid - 0;

 return 0;

} else return threadID->pid,status,ERR_BIT

Figure 5. Thread-create pseudo-code and processing.

threads, and the most-appropriate scheduling
semantics for the group of components
depends on the semantics of the computation
they implement. Group scheduling addresses
these issues by permitting the grouping of
threads and other operating-system computa-
tion components, such as interrupt handlers,
according to the computations they support.
In addition, this approach associates a sched-
uling decision function (SDF) with the appro-
priate semantics within each group. We then
form the SDF for the system as a whole by
hierarchically composing group SDFs into a
decision tree that controls the execution of all
threads and other computation components
on the system. We have implemented the
group-scheduling framework in software
under the most recent version of Kurt-Linux.12

Semaphores
Semaphore implementations on modern

general-purpose CPUs are based on pairings
of atomic read and (conditional) write oper-
ations such as the load-linked and store-
conditional instructions. These existing
mechanisms can be integrated in with mem-
ory coherence protocols in shared memory
multiprocessors (SMPs) to provide synchro-
nization between applications running on
multiple CPUs. This approach introduces a
level of complexity that is not easily extend-
able to the independent hardware threads run-
ning within the FPGA. Instead of reproducing
these mechanisms, we use the FPGA to imple-
ment more efficient mechanisms that are
CPU family independent and require no addi-

tional control logic to interface into the system
memory coherence protocol. Figure 7 shows
such a semaphore implementation, our bina-
ry spin-lock mechanism. The basic mecha-
nism uses a standard write of a thread_id into
a memory-mapped request register. We define
a simple control structure within the sema-
phore IP that conditionally accepts or denies
the request. The thread requesting the write
then performs a read operation of the owner
register to see if the thread_id has been accept-
ed as the new owner of the lock.

Blocking semaphores allows the queuing
and suspension of threads that cannot gain
access to the semaphore, thus providing more
efficient use of shared computing resources,
and decreasing congestion on the system bus.
Figure 8 shows our basic mechanism, which
includes queue structures associated with each
blocking semaphore to hold the thread_ids of
blocked threads. Our semaphore API writes
the thread_id of the requester into the request
register and then checks the owner register, as
users of the binary spin-lock do. If the thread

49JULY–AUGUST 2004

htread_join()

{

 joinStatus = join_thread(thread-?id) ⇒

 if(!hasError (joinStatus)) {

 if(joinStatus != ALREADY_TERMINATED) {

 run thread scheduler

 } else

 return joinStatus

 }

 clearStatus = clear_thread(thread->id) ⇒ if(threadID->pid == current_thread) {

 threadID->status = ~used, ~exited, ~queued,

 ~joined, ~detached

 threadID->pid - 0;

 return 0;

} else return threadID->pid,status,ERR_BIT

if((threadID->pid == current_thread) &&

 (threadID->status==~used,~joined,~detached, {

 if(threadID->status != exited

 threadID->status = joined

 return 0;

 } else return 0+ALREADY_TERMINATED

} else return threadID->pid,status,ERR_BIT

 return clearStatus

}

Figure 6. Thread join pseudo-code and processing.

Data bus

Request ReleaseLock own

Spin lock controller

Figure 7. Spin-lock semaphore implementation.

did not receive the lock, then the semaphore
API saves the context of the (software) thread
and calls the scheduler. . The semaphore API
called from a hardware based thread puts the
thread into the wait state until the semaphore
is granted. In both cases, he semaphore IP
control logic enqueues the thread_ids of
blocked threads.

The lock is released when the current owner
writes its thread_id into the release register.
When a thread releases a blocking semaphore,
the semaphore IP either enqueues the
unblocked thread_id into the ready to run
queue by writing into the add_thread register
of the SWTM, or in the case of a hardware
thread writes into the appropriate hardware
thread interface component. This approach,
having the semaphore IP interface with the
SWTM, removes jitter associated with inter-
rupting the CPU to perform updates of struc-
tures and calling the scheduler. Instead, all
interactions are within the hardware compo-
nents. The CPU will be interrupted only if
unblocking the thread should generate an
immediate context switch to a new thread as
determined by the scheduler.

Timekeeping and timer services
Hardware-software codesign of timekeep-

ing and timer services provides an opportu-
nity to improve system performance in several
ways that are particularly important for real-
time systems. First, providing support for
timekeeping services in the FPGA enables
developers to choose among a wide range of
timekeeping and timer resolutions while keep-
ing the overhead of time management at a
constant and low level. A second, more sub-

tle advantage arises from the ability to modi-
fy the relationship between the timer inter-
rupt and the scheduler. Modern systems use
the timer interrupt to invoke the scheduler.
In our system with the hardware based sched-
uler running concurrently with the applica-
tion program, the semantics of the timer
interrupt changes to that of a context switch
interrupt that directs the CPU to switch from
the currently running thread to the next
thread selected by the scheduler.

The FPGA support for timers manages ele-
ments of the system timer queue in local mem-
ory on the FPGA, and detects the occurrence
of the next timer event using a combination
of match registers and periodic interval regis-
ters. As an example, we have used the FPGA to
implement a pair of linked registers, jiffy and
sub-jiffy, to support the existing Linux jiffy
timekeeping variable under KURT-Linux.
This approach transfers timer programming
and timer queue management from the CPU
to the FPGA, and optimizes performance in
several ways. Most obviously, it provides the
desired timer resolution up to the FPGA per-
formance limits and modestly reduces over-
head because the system no longer has to
program the timer hardware for every timer
event. More subtly, it maximizes timer accu-
racy at the desired resolution. This is because
the use of the match register ensures that the
calculation required to set the hardware timer
does not affect when the event interrupt
occurs, which is true of the standard timer
hardware in the x86 architecture, for example.

Interrupt processing
FPGA-based timekeeping and timer services

are an important element of support for more
general improvements in system performance.
They do not, however, significantly improve
one of the most important aspects of real-time
system performance: scheduling jitter, or “ran-
dom’’ variation when scheduled system events
actually occur primarily because of how systems
handle asynchronous interrupts and control the
concurrency they represent. Systems generally
control concurrency arising from interrupts by
blocking them. This increases scheduling jitter
because it can delay delivery of a timer inter-
rupt. Some approaches to improving real-time
performance under Linux (http://www.fsmlabs.
com/products/rtlinuxpro) use a dual-executive

50

EMBEDDED SYSTEMS

IEEE MICRO

Data bus

Request Release

Thread_5

Thread_3

Thread_2

Owner

Spin lock controller

Thread queue manager

Figure 8. Blocking-semaphore implementation.

51JULY–AUGUST 2004

approach, which disable interrupts for the short-
est possible periods, but run Linux as a non-
real-time, best-effort computation (http://www.
aero.polimi.it/~rtai/).

Our approach under Kurt-Linux also mini-
mizes the periods during which interrupts are
disabled at the hardware level and integrates
interrupt processing under group scheduling.11

This approach notes when interrupts occur, but
defers the interrupt-handler execution until the
group-scheduling framework chooses to exe-
cute the deferred interrupt handler according to
the policies chosen by the developer. The cur-
rent software version of this approach signifi-
cantly reduces scheduling jitter and provides a
dramatically improved worst-case scheduling
latency. However, it still briefly considers each
interrupt whenever it occurs, which is a form of
randomized interference with CPU use by the
computation components that the group-
scheduling framework selects.

FPGA support will improve this in two
ways. First, it will provide direct support for
the group-scheduling framework. Second, the
FPGA will directly support the tracking of
interrupt occurrences required to integrate
interrupt processing under the group-sched-
uling framework. The combination of FPGA
support for interrupt tracking and group
scheduling will all but eliminate scheduling
jitter from our existing Kurt-Linux kernel,
because it will ensure that the computational
component using the CPU is never inter-
rupted except when it should be stopped in
favor of another. The only remaining sources
of scheduling jitter will be the few, remaining
brief periods when interrupts are disabled at
the hardware level. These include small sec-
tions of code where KURT-Linux reconfig-
ures memory management hardware registers
and reconfigures the interrupt handling hard-
ware. In addition, the CPU itself disables
interrupts in response to interrupts and excep-
tions, but KURT-Linux quickly re-enables
them in its interrupt and exception handling
code.

Significant advances in fabrication technol-
ogy are providing new COTS components

that combine a general-purpose CPU and
FPGAs. These new devices are a significant
step toward realizing a single component that
can support both the generalization of COTS

components and the specialization required
for individual embedded applications. Work
is currently underway in developing unified
programming models that allow computations
within and across hybrid components
expressed using the familiar multithreading
programming paradigm. Creating a system-
level multithreaded programming capability
requires new hardware-software codesign
approaches to supporting operating system
and application functions. When complete,
this capability will enable these new devices to
be accessible by the broad community of sys-
tem programmers and provide increases in
operating-system efficiency. Enabling the mul-
tithreaded model across the hybrid compo-
nents will ultimately provide shorter design
times and lower development costs. MICRO

Acknowledgment
The work in this article is partially spon-

sored by National Science Foundation EHS
contract CCR-0311599.

References
1. E. Lee, “Overview of the Ptolemy Project,”

tech. memo., Mar. 2001, http://ptolemy.
eecs.berkeley.edu.

2. P. Alexander and C. Kong, “Rosetta:
Semantic Support for Model Centered
Systems Level Design,” Computer, vol. 34,
no. 11, Nov. 2001, pp. 64-70.

3. S. Gupta et al., “SPARK: A High-Level
Synthesis Framework for Applying
Parallelizing Compiler Transformations,”
Proc. 16th Int’l Conf. VLSI Design, IEEE
Press, 2003, pp. 461-466.

4. M.B. Gokhale et al., “Stream-Oriented FPGA
Computing in the Streams-C High Level
Language,” Proc. 8th Ann. IEEE Symp. Field-
Programmable Custom Computing
Machines (FCCM 02), 2000, pp. 49-56.

5. E. Lee, “What’s Ahead for Embedded
Software?” Computer, Sept. 2000, pp. 18-26.

6. D. Butenhof, Programming with POSIX
Threads, Addison-Wesley, 1997.

7. D.L. Andrews, D. Niehaus, and P. Ashenden,
“Programming Models for Hybrid
CPU/FPGA Chips,” Computer, vol. 37, no. 1,
Jan. 2004, pp. 118-120.

8. D.L. Andrews, D. Niehaus, and R. Jidin,
“Implementing the Thread Programming
Model on Hybrid FPGA/CPU Computational

Components,” Proc. 1st Workshop on
Embedded Processor Architectures, Proc.
10th Int’l Symp. High Performance Computer
Architecture (HPCA 10), Feb. 2004.

9. R. Jidin, D. Andrews, and D. Niehaus, “Imple-
menting Multithreaded System Support for
Hybrid FPGA/CPU Computational Compo-
nents,” Pro. Int’l Conf. on Engineering of Re-
configurable Systems and Algorithms,CSREA
Press, June, 2004. pp. 116-122.

10. D. Niehaus and D. Andrews, “Using the
Multithreaded Computation Model as a
Unifying Framework for Hardware-software
Codesign and Implementation,” Proc. 9th
Int’l Workshop on Object-Oriented Real-
Time Dependable Systems (WORDS 03),
IEEE Press, 2003, pp. 317-324.

11. M. Frisbieet al., “Group Scheduling in
Systems Software,” Proc. 18th Int’l Parallel
and Distributed Processing Symp. (IPDPS
18), IEEE CS Press, 2004, pp. 120-127.

12. B. Srinivasan et al., “A Firm Real-Time
System Implementation Using Commercial
Off-the-Shelf Hardware and Free Software,”
Proc. 4th Real-Time Technology and
Applications Symp., IEEE CS Press, 1998,
pp. 112-120.

David Andrews is an associate professor in the
Electrical Engineering and Computer Science
Department at the University of Kansas. His
research interests include embedded systems
architectures, and parallel and reconfigurable
computing. Andrews has a BS and an MS,
both in electrical engineering, from the Uni-
versity of Missouri, Columbia, and a PhD in
computer science from Syracuse University.
He is a senior member of the IEEE.

Douglas Niehaus is an associate professor in
the Electrical Engineering and Computer Sci-
ence Department at the University of Kansas.
His research interests include the design and
implementation of real-time and distributed
systems, operating systems, system and net-
work performance evaluation, and tools for
programming environments. Niehaus has a
PhD in computer science from the Universi-
ty of Massachusetts, Amherst.

Razali Jidin is a research assistant at the Infor-
mation and Telecommunication Technology
Center and a PhD candidate in electrical engi-

neering at the University of Kansas. His
research interests include embedded system,
hardware-software codesign, and computer
architecture. Jidin has an MSEE from the
University of Bridgeport, Connecticut, and
an MSEE from the University of Leeds, Eng-
land. He is a member of IEEE.

Michael Finley is pursuing an MS in com-
puter science at the University of Kansas. His
research interests include the use of FPGAs to
simplify system software by moving tradi-
tional software functionality to within
FPGAs. Finley has a BS in electrical engi-
neering from the University of Kansas.

Wesley Peck is a research assistant at the Infor-
mation and Telecommunication Technology
Center and a PhD candidate in computer sci-
ence at the University of Kansas. His research
interests include algorithm design, hardware-
software codesign and real-time operating sys-
tems. Peck has a BS in computer science from
the University of Kansas.

Michael Frisbie is a staff engineer at Garmin
International Inc. His research interests
include embedded systems software and oper-
ating systems design. Frisbee has an MS and
a BS in computer science from the Universi-
ty of Kansas.

Jorge Ortiz is a PhD candidate and is a
research assistant in electrical engineering at
the University of Kansas. His research inter-
ests include hardware-software codesign and
reconfigurable hardware for real-time and
embedded systems. Ortiz has a BS and an MS
in computer engineering from the University
of Kansas.

Ed Komp is a research engineer at the Infor-
mation and Telecommunication Technology
Center at the University of Kansas. His research
interests include specialized computer language
design for application-specific domains, func-
tional programming, software development
environments, and networking. Komp has a
BA in mathematics and an MS in computer
science from the University of Kansas.

Peter Ashenden is director of Ashenden
Designs Pty Ltd. His research interests include

52

EMBEDDED SYSTEMS

IEEE MICRO

electronic design automation and computer
architecture. Ashenden has a BS and a PhD
in electrical engineering from Adelaide Uni-
versity, South Australia. He is a senior mem-
ber of the IEEE and a member of the ACM.

Direct questions and comments about this
article to David Andrews, Information and
Telecommunication Technology Center, Uni-

versity of Kansas, 2335 Irving Hill Rd.,
Lawrence, KS 66045-7612; dandrews@ittc.
ku.edu. Further information on the Hybrid
Threads project can be found at www.ittc.
ku.edu/hybridthreads.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

53JULY–AUGUST 2004

CERTIFIED SOFTWARE DEVELOPMENT PROFESSIONAL PROGRAM

Apply now for the 1 September – 30 November test window.
(Deadline to apply: 30 September.)

G E T C E RT I F I E D

Visit the CSDP web site at www.computer.org/certification

or contact certification@computer.org

Doing Software Right

� Demonstrate your level of ability in relation to your peers

� Measure your professional knowledge and competence

Certification through the CSDP Program differentiates between you
and other software developers. Although the field offers many kinds
of credentials, the CSDP is the only one developed in close
collaboration with software engineering professionals.

“The exam is valuable to me for two reasons:

One, it validates my knowledge in various areas of expertise within the software field, without
regard to specific knowledge of tools or commercial products...

Two, my participation, along with others, in the exam and in continuing education sends a
message that software development is a professional pursuit requiring advanced education
and/or experience, and all the other requirements the IEEE Computer Society has established. I
also believe in living by the Software Engineering code of ethics endorsed by the Computer
Society. All of this will help to improve the overall quality of the products and services we
provide to our customers...”

— Karen Thurston, Base Two Solutions

