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Abstract— Establishing collaborative behavior is an important
factor in coordinating teams of robots. Multi-robot task allocation
is one aspect of group coordination that deals with the assignment
of robots to subtasks. Toward this end, we propose Multi-
Robot Belief Propagation (MRBP), a synthesis of distributed
probabilistic inference and notions of theory-of-mind for the
purpose of multi-robot task allocation. MRBP does not rely upon
a central planner or fixed decision hierarchy, but allows to infer
task assignments locally through Bayesian belief propagation.
The belief propagation algorithm provides us with a tool to
incorporate task-related intentions and beliefs of robots into
the assignment process. An assignment process in which each
individual robot probabilistically decides, based on its own
observations and the intentions and beliefs of other robots, which
task it should allocate itself to. As a result, MRBP provides a
means for collaborative group behavior without explicit protocols
and command hierarchies. We present a sample implementation
of MRBP for the chain-of-sight task allocation problem and show
the results obtained from physically simulated robot teams.

Index Terms— Multi-robot Task Allocation, Belief Propagation,
Theory of Mind

I. INTRODUCTION

Robotic technology is being deployed in greater numbers
through mass-production efforts, for entertainment and service,
and for realizing the grand ambitions of society, such as space
exploration. As the deployment increases, so does the impor-
tance of the question on how to coordinate groups of robots
to perform common tasks. If such groups are to collaborate
autonomously on the group level as well as the individual
robot level, then synchronization and communication of some
sort must be in place between individual robots. The problem
of multi-robot task allocation (MRTA) pertains directly to
this issue and asks how a collection of N robots should be
allocated to a set of M subtasks such that a common goal is
achieved. The straightforward approach to MRTA is to use a
single central planner that compiles all relevant information,
generates a plan, and unilaterally allocates robots to subtasks.
However, this approach possesses two major weaknesses:
First, as the number of robots grows, communication and
planning costs grow beyond tractability. Second, a fault in
the central planner or the failure of individual robots requires
protocols for recovery which can be difficult to implement in
practice and are often error-prone.

In light of these issues, it seems natural that an individual
robot should be its own decision maker and decide by itself
on what subtask it should be allocated. Although human
society forms into decision making hierarchies, individual
people choose their own pursuits based on their sensibility
and the beliefs they have about others. In analogy to this,
MRTA should allow for robots to allocate themselves based
on their innate behavior and their beliefs about other robots.
That way MRTA does not have to rely on the dictates of
central planners and can recover from unexpected events in
a flexible manner. Additionally, a belief-based method offers
the flexibility of allocating with uncertainty, when situational
ambiguity prohibits making hard decisions.

Toward these ends, we propose Multi-Robot Belief Propa-
gation (MRBP), a probabilistic method for distributed multi-
robot task allocation that incorporates notions from the theory-
of-mind concept [9]. In MRBP we cast the MRTA problem as
a distributed statistical inference problem in which each robot
computes a probability distribution over the possible subtasks
it could be allocated to. These distributions correspond to
marginal probabilities of “hidden” variables on a Markov
random field (MRF) [6] and are approximated in a distributed
fashion using the Bayesian belief propagation algorithm (BP)
[14]. In the MRF model that we present each robot infers this
marginal from its own observations of the world and messages
based on beliefs of other robots.

We demonstrate MRBP through application to the chain-of-
sight (COS) problem with physically simulated robot teams.
The chain-of-sight problem involves a set of robots arbitrarily
distributed in an environment which start to form a chain of
visibility between a particular start and goal location. We use
chain-of-sight as a sample application to demonstrate the po-
tential for other areas, such as search & rescue operations and
the maintenance of communication in mobile mesh networks.

II. BACKGROUND

Our approach is a synthesis of different perspectives on
group coordination that appear in three distinct areas of Al:
multi-robot task allocation, distributed probabilistic inference,
and cognitive models of development and shared belief. In the
following paragraphs we present a brief review of each area
and highlight their connections.



Multi-robot task allocation approaches have been pro-
posed in great variety, such as by [11], [1], [8]; however, here
we guide our focus to two specific formulations: The optimal
assignment problem (OAP) and auctions. [7] cast MRTA as
a centralized optimal assignment problem where, given an
M x N utility matrix, combinatorial optimization finds the
allocation with the maximal utility. [5] phrase MRTA as a
market economy where leaders develop plans for a group of
robots and uses them to bid for tasks against other bidding
robots at an auction. Since every robot acts as to maximize
its utility (or profit), an MRTA solution emerges from the
group economy. While these methods address MRTA for
heterogeneous robots, they impose a hard phrasing of robot-
to-task utility and a rigid leadership structure. Instead, we
aim for a soft, probabilistic representation of utility and group
inference that utilizes interaction without imposing a decision
hierarchy.

Distributed probabilistic inference is related to the prob-
lem of constructing a joint probability distribution over a set
of latent variables through the pairwise interaction of such
variables. Each latent variable maintains a “belief” about its
assignment that is conditionally dependent on its own observed
variables and the beliefs of its neighboring latent variables.
Such a model is a good fit for MRTA in that each robot
will maintain a belief about its assignment to a known set of
subtasks using its own observations and communications with
other robots. To perform inference, we model the variables and
their dependencies as a Markov random field and run loopy
belief propagation on it. Convergence and general properties
of BP have been described by [14]. Yedidia et al. also
discuss the tight relationship to Ising models which are used
by [13] for describing and coordinating macroscopic group
behavior. [10] describe a probabilistic finite state automata
approach to MRTA where group behavior emerges implicitly
from environmental interaction but no explicit message passing
mechanism or group coordination is carried out.

Cognitive models of development attempt to bring under-
standing of human behavior both as individuals and groups.
In terms of developmental robotics, such models can inform
the development of robot controllers to function individually
and in groups. Specifically, development helps robotics to
understand what functions should be innate (preprogrammed),
adaptive (learned), and informed by social interactions. We pay
specific attention to Leslie’s Theory of Mind (ToMM) model
[9] that provides a framework for describing how intentionality
drives decision making. Such intentionality is embodied by an
individual’s innate self-direction towards goals and influenced
by the perception of shared beliefs with others (as emotions).
Although the validity of ToMM in reality cannot be formally
stated, it does have a form suitable to integration with MRTA
and MRFs. This inspiration was founded on previous works of
Scassellati [12] and Breazeal [3] in their application of ToMM
to human-robot interaction with humanoid robots. Our work
aims to generalize these concepts through incorporation into
the probabilistic MRF framework. The expression of innate
behavior and shared belief of ToOMM has a very convenient

breakdown into the message passing formulation on MRFs,
which we explain in later sections. Alternative to ToMM,
Bratman’s Belief-Desire-Intention (BDI) model [2] is another
approach to modeling decision making in groups with a greater
emphasis on deliberative reasoning and planning.

Fig. 1.  Chain-of-sight arrangement of three robots on a building floor.
The two hexagons represent the goal object and starting location whereas
the circles represent the robots.

III. CHAIN-OF-SIGHT EXAMPLE

To ground our discussion of MRBP, we consider the chain-
of-sight (COS) problem as an example of how MRBP can be
utilized. In COS, we assume that multiple robots spread out
in an environment where there is a known start location and
a goal object at an unknown location. The group of robots
searches for the goal object and once found, forms a visibility
chain between the start and the goal. Individual robots can
communicate within some range and perceive other robots and
the goal location through their field of view.

The task allocation problem consists of assigning robots
to discrete locations in order to build the visibility chain.
We assume there are a fixed enumeration of valid robot
locations on the map available for allocation. Fig. 1 shows
an instance of this problem with the robots already positioned
in a valid configuration. Real-world applications where this
kind of behavior could be of interest are ad-hoc formation of
communication networks where the sight criterion is substi-
tuted by a signal range criterion, or search & rescue missions
in a post-disaster scenario. Our implementation assumes that
each robot has a map of the terrain and perfect localization on
it, but in principal, task allocation could be complementary to
simultaneous localization and mapping (SLAM).



IV. MULTI-ROBOT BELIEF PROPAGATION

A. MRTA as a Statistical Inference Problem

Casting MRTA into MRBP, we consider each robot ¢ to
maintain two random variables: y;, an observed variable repre-
senting a robot’s own perception, and x;, a hidden variable rep-
resenting the probability of allocation to all possible subtasks.
Although these variables can either be discrete or continuous,
we assume x; is a discrete enumeration over the set of possible
subtasks. For COS, z; enumerates over locations on the map.
The probability of robot ¢ being allocated to certain tasks,
which we refer to as the belief b;(x;) of 4, depends on 4’s
observations y; and “advice messages” from other robots in
its communication neighborhood, where the set of neighbors
of robot i is denoted by N (¢). Fig. 2 illustrates these variables
and dependencies in a graphical model. The belief propagation
algorithm allows us to approximate the marginal z; through
passing of advice messages (referred to as belief messages
by [14]). The belief b;(x;) of robot ¢ is then given by the
following product:
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where Z is a normalization constant that ensures the belief
sums to one. ¢(z;,y;) is called the local evidence function
and expresses the likelihood of robot ¢ being allocated to a
specific subtask based on its own observations y;. mj,i(xi)
is a belief message from robot j to robot i suggesting how
1 should be allocated. Each robot j forms such a message
to all robots ¢ in their neighborhood N(j) as a product of its
local evidence, the compatibility between task allocations, and
incoming messages from its neighborhood (except for those
coming from ), summed over all possible allocations of x;:
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¥;i(xj, ;) is a compatibility function that expresses how
much robot 7 would recommend a specific allocation of z;
given its own possible allocation ;.

It has been shown that belief propagation finds exact
marginals in graphs without loops and approximations in
graphs with loops [15]. Since our model has loops we have to
settle for approximations.

B. MRBP and Theory of Mind

To this point, we have only provided a framework for
distributed inference on allocation, leaving several terms that
still need to be defined. In particular, we need to define the
local evidence function ¢;(x;,y;) and compatibility function
¥; j(xs, ;). To define these functions, we take inspirations
from ToMM [9] about how innate goal-directed behavior and
social communication can inform robot control, such as in
uses by Scassellati [12]. An illustration of the cognitive model
behind MRBP is presented in Fig. 3.

Fig. 2. An instance of the graphical model of MRBP. Robot i’s hidden
variable x; depends on the observed variable y; and the hidden variable x;
of each robot j in ¢’s neighborhood. A message passed from ¢ to j, that is
4’s belief about j, is depicted by m; ;(x;). In this graph each robot has two
neighbors. In general, however, the actual neighborhood graph is problem-
specific.

We cast ¢;(x;, y;) as a robot’s innate goal-directed behavior.
This function combines all factors that relate the robot’s per-
ceptions to its innate individual behavior. In case of COS, this
behavior can be formulated as the product of three functions:

di(xi,yi) = D(xs, yi)G (x5, i) O, y5) 3)

Although these factors are described at more depth in the
COS implementation section, we briefly outline their function-
ality. The factor D(x;,y;) represents traveling distance and
expresses a robots preference for closer locations, G(z;,y;)
stands for goal attraction and assures that a robot does not
move if it sees the goal and O(x;,y;) expresses occupancy of
locations by other robots or obstacles.

We cast 1; ;j(x;,2;) as a robot’s mechanism for social
interaction regarding task allocation. This function allows
robot % to evaluate how suitable allocations of x; are to its
own allocations. In the chain-of-sight example, this function
expresses a high compatibility between locations that are
visible to each other and lie on the shortest path toward the
start location.

In sending messages to robot ;7 and making its decisions,
robot ¢ could use a notion of shared belief about robot j.
We use the term b;(x;) to express the belief robot ¢ has
about the belief of robot j. Robot ¢ can use this belief to
anticipate the actions of robot j, regulate the “insistence”
(entropy) of its messages to j, or adjust its own plans. Note,
b;(x;) is not the actual belief of robot j about itself, but
rather robot ¢’s estimation of what j’s belief about itself is.
In the COS example, we assume shared beliefs are observed
exactly, through exchange of the true belief b;(x;) between
robots, but this need not always be the case. Shared beliefs
could be considered latent variables that are learned from
prior experience with certain other robots, or inferred over
the course of interaction.



To what task should I allocate myself?

ba(za) < ¢a(ra,ya) * mpa(xa)*mea(za)
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Fig. 3. An illustration of the cognitive model behind MRBP in terms of beliefs, intentions and advice between three humans, centered at “Andrew”. Andrew
has to decide which task he should allocate himself and forms a belief b4 (z 4) about his allocation. This belief is formed as a combination of what allocation
“makes sense” to him (¢(x4,y4)), based on its own perception of the world (y 4), and the advice he receives from Ben and Claudia. Ben and Claudia form
their advice for Andrew in terms of how beneficial it would be for them if Andrew would allocate himself to certain tasks.

C. Practical Considerations

Thus far, we described the basic MRBP method but have not
addressed how robots communicate to each other and how they
form neighborhoods. For message passing any form of directed
communication is acceptable. In order to be standard compli-
ant and allow integration of heterogeneous robots we suggest
the usage of a well-established network layer protocol such as
IP. On top of IP the transport protocol UDP is reasonable for
message passing if a single message fits into a single datagram.
If a message is fragmented into several datagrams and a single
datagram is not successfully transmitted, then the message
is incomplete and must be disregarded. In these cases TCP
might be a better choice. On the lower data link and physical
layers the choice of an ad-hoc technology seems more robust
to failures and unforeseen events than a fixed infrastructure
network. Popular ad-hoc options include wireless local area
networks in ad-hoc mode and Bluetooth Piconets.

If an application scenario allows to predefine which robots
can and should exchange belief messages between each other,
that is if all neighborhoods are known a priori, and unexpected
changes can be ruled out, then there is no need to dynamically
build neighborhoods. For the COS problem and many other
interesting scenarios, however, the relations between robots are
not known a priori and vary during execution of tasks; robots
move in and out of communication range or they fail to work.
Hence, robots have to explore and update their neighborhoods

continuously. A natural way to accomplish this consists of
periodically broadcasting “beacon” data packets containing the
sender’s identification and maintaining a list of neighboring
robots based on received beacons. If no beacon is received
from a robot over a certain period of time it is removed from
the neighborhood. By removing a robot from the neighborhood
we also discard the last message we received from it and
consequently, that robot’s belief is not incorporated into Eq. (1)
and (2) anymore. If a beacon is received from a robot that is
not in the neighborhood, then that robot is added.

V. CHAIN-OF-SIGHT IMPLEMENTATION

In the COS problem, the different subtasks a robot can
be allocated to are positions on the map shown in Fig. 1.
Assuming discrete location values we could look at each
pixel of the map as a potential location. However, since the
location space £ can be considerably large, depending on the
dimensionality of the map, we regard only every m™ pixel as
a valid location. It is now our goal to find the most probable
location for each robot under the COS constraint, which is
equivalent to approximating the marginals of each robot’s
hidden node z;.

Recall the meaning of the local potential function ¢(z;,y;)-
It expresses a robots own belief of being allocated to certain
tasks, or in this case locations. We define this belief to be
composed of the distance a robot would have to travel to get to



a particular location, the desire not to move to another location
at all because the robot is currently seeing the goal object,
and the fact of a location being occupied (cf. Eq. 3). In Eq. 3
the term D(xz;,y;) denotes a “reciprocal” traveling distance,
G(z;,y;) represents goal attraction and O(z;,y;) expresses
occupancy of locations by other robots or obstacles. For the
reciprocal traveling distance we map path lengths from the
robot’s current location [ to any location in £ linearly such that
we obtain 1 for the shortest path and almost O for the longest
path. Goal attraction is achieved by placing a Gaussian bell
curve around the robot’s current location if the goal object has
been spotted. If no goal is spotted, G(x;, y;) is uniform across
all possible locations. The occupancy function is defined as

O(wi i) = M(z;) [] 1—bilx) “
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where M (x;) returns O if a particular location is occupied
by an obstacle, such as a wall or an object sensed through
a range finder, and 1 if the location is not occupied. The
second term of Eq. (4) allows for the incorporation of other
robot’s intentions. b;(xy) encodes belief distributions about
where other robots will probably be allocated. By taking this
information into account robot % can avoid to allocate itself
to locations which are already assigned to other robots. If for
some reason the intentions of other robots are not available,
b;(xy) can be regarded as uniform across all locations.

In order to define the potential function v; ;(x;,z;), we
address where robot ¢ would like to see another robot j
assuming robot ¢ is at a particular location. Thus, for each
possible location [ that x; can take on the potential function
; j(x;,x;) returns a distribution that is 1) highly peaked
around the location that is visible to [ and 2) at the same
time furthest away from [ toward the starting location. We
assume distances between locations and the starting point can
be calculated using Dijkstra’s shortest path algorithm. In order
to determine visibility between [ and all other locations we
construct a visibility polygon around [ and test if a particular
location lies inside this polygon. Notice that once the location
space and terrain map is known, v; ;(x;, z;) can be completely
precomputed.

Each robot is constantly processing incoming messages
and sending out messages to robots in its neighborhood.
Processing a message involves the recomputation of a robots
own belief and an allocation to the position that has the highest
probability, that is, where the robots own belief is highest.
When sending a message, a robot chooses the recipient at
random from its neighborhood.

A. Player Specifics

We implemented MRBP as explained above for the Player
framework [4] and physically simulated the behavior of five
robots on the map shown in Fig. 1 using Gazebo. Each robot
was controlled by its own process and communicated with
other robots through UDP/IP. Once allocated to a location,
a robot uses Player’s wavefront planning proxy to navigate
from its current position to the desired location. Local collision

avoidance is performed through Player’s vector field histogram
proxy using laser range data.

VI. RESULTS AND DISCUSSION
A. Simulation Results

We conducted a total of 50 COS trials in simulation with
five robots, achieving a successful allocation in all of these
runs. The 50 trials consisted of test runs on five different
configurations of start, goal and robot locations, resulting in
10 trials per configuration. The start and goal locations as well
as the position of the robot facing the goal object were chosen
manually whereas the remaining four robots were positioned
randomly. Depending on the complexity of the problem, that
is how many robots were needed to construct a minimal
COS, more messages had to be propagated to obtain a valid
arrangement. The number of total messages transmitted before
a correct arrangement arose ranged from 10 messages, in
situations where only two robots were required for the COS,
to 80 messages for complicated arrangements. The number
of messages needed also varied over multiple runs on the
same scenario, an indication for the randomness underlying the
message recipient selection. The allocations typically changed
to some extent as the robots moved toward their assigned
locations, most probably due to the varying traveling distance
component in the local evidence function. Once the group
found a stable configuration the allocations rarely changed in
a negative way, and when they did, they reconverged. Fig. 4
graphically shows the decomposition of a robot’s belief during
a test run.

In 10 of these 50 trials, a strategically important robot was
purposely shut down to test dynamic recovery abilities of
the system. When such faults occurred, the robots properly
adapted their beliefs, which resulted in reallocations that
“filled” the gaps. Note that for obvious reasons the group can
only recover from such a failure if there are enough robots
left to physically span a chain. In cases where there a more
robots in a group than are needed to span a minimal COS,
the “redundant” robots do not impede normal execution and
allocate themselves along the chain-of-sight path.

B. Open Issues

Specifically to the COS problem there are the open issues of
how to handle multiple goal objects and how to keep multiple
robot’s from being attracted to the same goal object. Also, it
has not been discussed how to transition from the search phase
in which robots spread out to the chain formation phase.

A general issue with MRBP is that there is no way for
a robot to find out to what extent other robots followed its
advice and allocated themselves according to its messages;
at least not through MRBP as described here. Another issue
relates to the problem of multiple robots being allocated to the
same task. If multiple robots receive exactly the same message
from a particular robot it can happen that several of those
robots allocate themselves to the same task. In case of COS
this means that a group of robots clusters around a specific
location. As mentioned, we counteracted this behavior by
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Fig. 4. Visualization of robot number 2’s belief and its decomposition into local evidence and incoming messages during a test run of the COS implementation
with three robots. Black pixels indicate low probability whereas white pixels indicate high probability. The goal and start location are marked by the upper and
lower white square, respectively. The two white circles highlight the locations of robot 1 and 3 which are reflected in the local evidence in terms of occupied
locations (hence the dark spots). The upper circle depicts robot 1 and the lower circle robot 3. The gradient from black to white in the local evidence is due
to the traveling distance component. The message received from robot 1 indicates that robot 1 advices the robots in its neighborhood to allocate themselves
to a location in the middle-right part of the map. Robot 2 does not “follow” this advice because that particular spot is already occupied by robot 3 (cf. the
lower white circle in the local evidence). Robot 3’s advice to its neighbors is to allocate themselves to a location in the lower-right corner. Since this spot is

not occupied it yields the highest probability in robot 2’s belief distribution.

including an occupancy term into the local evidence function.
Another interesting solution to this problem could consist of
extending the compatibility function 1); ;(x;,x;) such that it
is specific to the relationship between robot ¢ and j. That is,
robot 7 does not send the same message to all its neighbors
but tailors recipient-specific messages. That way, robot ¢ could
focus its advice to a particular neighbor and thus avoid that
multiple robots might follow a general advice.

COS is only one particular application of MRBP and so
far no experiments have been performed with groups of
real robots. We consider multi-robot belief propagation as a
promising novel approach to distributed task allocation and
note that it is still in its early, experimental stages. Future
comparisons with existing MRTA algorithms and implemen-
tations for other allocation scenarios shall yield more insights
into the robustness and applicability of MRBP.

VII. CONCLUSION

We have presented Multi-Robot Belief Propagation as a
means to perform distributed multi-robot task allocation. We
combine distributed statistical inference with theories of hu-
man development to address the task allocation problem.
Through MRBP, collaborative robot group behavior results that
accounts for both individual decision making and collective
goal achievement. We demonstrated MRBP for an example
chain-of-sight problem, whose generalizations we believe will
be beneficial for a wide variety of multi-robot applications.
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