RI-Small: Statistical Relational Models for Semantic
Robot Mapping

1 Introduction

In the last decade, the mobile robotics community has made tremendous progress in the develop-
ment of efficient yet robust techniques for dealing with noisy sensor data. A major reason for this
progress is a better understanding of probabilistic algorithms, which have become the most suc-
cessful and most widely applied tools for dealing with uncertainty in mobile robotics [11], 23, [144].
The key idea of these techniques is to represent uncertainty using probability distributions and to
make use of structural independences to make inference tractable. Bayesian filtering techniques,
for example, have been applied with great success to state estimation problems ranging from robot
localization [26), [65] [40] [8, 124] to map building [31), 142} [102], 113} 506, [147] to people and object
tracking [103] 37, 129, [74].

However, current robot systems are still very limited in their capabilities to reason about en-
vironments in high-level concepts such as places and objects. Such concepts are extremely im-
portant especially for applications that require robots to interact and collaborate with humans,
such as health care [34, [I51], 99 [150], personal assistants for the elderly [10, [101], or search and
rescue [72, [9T]. For instance, in search and rescue tasks, a mobile robot that can reason about
objects such as doors, and places such as rooms is able to coordinate with first responders in a
much more natural way, being able to accept commands such as “Search the room behind the third
door on the right of this hallway”, and conveying information such as “There is a wounded person
behind the desk in that room”. As another example, consider autonomous vehicles navigating in
urban areas. While the recent success of the DARPA Urban Challenge [21], [146] demonstrates that
it is possible to develop autonomous vehicles that can navigate safely in constraint settings, the
successful application of such systems in more realistic, populated urban areas requires the ability
to distinguish between objects such as cars, people, buildings, trees, and traffic lights.

The goal of this project is to develop a reasoning and learning framework that enables robots
to build rich, semantic maps of their environments. Semantic maps describe environments in terms
of places, such as rooms, hallways, streets, or parking lots, and objects, such as doors, walls,
cars, people, or trees. Current mapping techniques lack the expressive power necessary to gener-
ate such representations. Our framework, called Relational Semantic Maps (RS-Maps), overcomes
limitations of existing mapping techniques by building on recent advances in statistical relational
learning [52]. Relational models extend (propositional) probabilistic models such as Bayesian net-
works [114], 29] 53|, 106], Markov Random Fields |49} [7, 155], or Conditional Random Fields [79] [138]
to (first-order) relational domains. By using first-order logical languages to specify the structures
of the underlying probabilistic models, relational techniques are extremely expressive and flexible.
However, building semantic maps still requires us to address various research challenges:

o Compler sensor data: RS-Maps will combine camera and laser range-data to detect and
model different object and place types. In addition to high-dimensional, continuous feature
vectors extracted from these sensors, RS-Maps will leverage visual object detectors trained
on existing object recognition datasets. So far, statistical relational learning techniques have
not been applied to such complex, continuous feature sets, and we will develop new learning
algorithms that can incorporate such features into relational models.

e Complex relationships: Individual objects are difficult to recognize when analyzed in isola-
tion [108, [149] 123]. Therefore, a semantic mapping technique has to reason about individual



objects, their spatial relationships to other objects, and their spatial context, such as the
types of places they can be found in. This can result in large, strongly connected graphical
models in which efficient inference and learning is extremely challenging.

o Uncertain model structure: The number of objects and places in an environment is unknown
initially and needs to be inferred from sensor data. Due to such uncertainties, the structure
of the underlying probabilistic models can change during inference. For instance, different
segmentations of space result in different numbers of places with different properties. While
relational techniques are designed to reason about changing model structures, scalable infer-
ence in such models is still an open problem.

e Learning from experience: A robot must be able to learn from previously explored envi-
ronments and apply this knowledge to unknown environments. Thus, the parameters of
semantic maps must be learned in a manner that is transferable between different environ-
ments. Furthermore, the learned concepts must be compatible with the human perception of
environments. While this can be achieved using human-labeled training data, the complexity
of the learning task requires the incorporation of additional, unlabeled data.

Research Projects

In this project, we will develop Relational Semantic Maps (RS-Maps), a statistical relational frame-
work for building high-level maps of indoor and outdoor spaces.

e Building RS-Maps: We will develop and implement the RS-Map framework in the context
of building maps of indoor environments and urban spaces. Indoor data will be collected
by a mobile robot equipped with an omni-directional camera and a 3D laser range-scanner;
outdoor data will be collected by a car equipped with multiple cameras and laser scanners.
Our RS-Maps build on and substantially extend Relational Markov Networks, a statistical
relational technique developed in the context of web page classification [139]. To deal with
the complexity of sensor data, we will develop learning techniques that can automatically
extract useful feature combinations from thousands of continuous features describing the
shape, appearance, and relationships of objects and places. In order to perform scalable
inference in RS-Maps, we extend Relational Markov Networks by introducing computational
clique templates, a novel framework that performs different types of inference (exact, sampling,
Gaussian, etc.) in different parts of the probabilistic model. Structural uncertainty will be
handled by building on recent advances in Markov Chain Monte Carlo sampling techniques.
The parameters of RS-Maps will be learned from partially labeled data, leveraging training
data sets for visual object recognition.

o Task-related evaluation of RS-Maps (undergraduate research projects): While the graduate
level research focuses on extracting RS-Maps from sensor data, we will also evaluate the
usefulness of RS-Maps in the context of tasks inspired by indoor office delivery and search
and rescue scenarios. One undergraduate research project will be to develop a path planner
for RS-Maps. Using this planner, the task of the robot could be to find a specific object using
guidance of the form: “Take a picture of the desk in the room at the end of the hallway”.
Another project will be to guide a person to a specific location or object using high-level
information extracted automatically from an RS-Map: “Go down the hallway, go into the
second hallway on the left, and enter the room next to the fire extinguisher”.

Before we present our proposed framework for semantic mapping, we first discuss related work in
mobile robot map building and Relational Markov Networks (RMN).



2 Research Background

2.1 Mobile Robot Mapping

Generating rich representations of environments is a fundamental problem in mobile robotics. Over
the last decade, much of the research in map building has focused on the simultaneous localization
and mapping (SLAM) problem, i.e., the problem of estimating the joint posterior over the robot’s
location and the map of the environment. This research has produced various techniques that are
able to efficiently build maps of large scale, cyclic environments [55], B1], 24, 102} 142] 143, 1111 [57,
15], 33, 113, 69, 611, 68, B3, 57, 144] 43]. However, existing mapping techniques have only limited
expressive power. For example, occupancy grids and related techniques [104], [156] 134}, 54, [61] are
metric maps that represent whether or not a small patch in an environment is occupied by an
obstacle. Even recently introduced 3-D volumetric maps extracted from laser range-scans do not
provide information beyond occupancy grid cells or planar surfaces [105] [143], 90, [58].

Most Kalman filter based SLAM techniques rely on landmarks to represent environments [27,
811, [3T), 102}, 111} T13]. Typically, these landmarks are lines or point features such as corners, and no
meaning is associated with the features. Topological and hybrid approaches use richer landmarks to
specify distinctive locations such as hallways or intersections [65] [67) 24], [70], T41], 148, 121, [95] 12].
However, these approaches only extract very coarse structural information by ignoring valuable
metric information, and the parameters of these models are typically tuned manually. Vision-based
mapping algorithms rely on low-level features not directly related to the physical structure of an
environment [110, [63], 152} 130, 19} 125].

Recently, several research groups have applied machine learning techniques to classify objects
and places in both indoor and outdoor environments. Anguelov and colleagues use hierarchical
Bayesian reasoning to detect doors in a building [5, [6]. In our own work we developed an approach
based on Relational Markov Networks to classify lines extracted from 2D laser scans into doors
or walls in single hallways [89]. Posner and colleagues combine 3D laser range data with camera
information to classify surface types such as brick, concrete, grass, or pavement in outdoor envi-
ronments [116, 117]. While they label every laser scan return independently of other laser returns,
we showed how to use Conditional Random Fields to jointly classify beams in 2D laser scans into
seven object types (car, person, wall, tree trunk, foliage, grass, other) by combining laser shape
information and camera information [32].

For indoor place labeling, Martinez and colleagues apply AdaBoost and associative Markov net-
works to distinguish between different types of places [95, [96]. We developed Conditional Random
Fields for indoor place labeling [47]. Figure [I| shows an occupancy map of the Intel Research Lab
along with the different places detected by our approach. The middle panel indicates the different
types of places classified by the Conditional Random Field, the parameters of which are learned
from labeled training maps. During learning, the Conditional Random Field automatically selects
useful features from several hundred geometric features extracted from the occupancy map. The
labeling can be used to generate a topological-metric map of the environment, describing rooms,
hallways, their connections and their spatial layout (right panel).

While these existing techniques demonstrate the feasibility of laser and camera based object
detection and place labeling, they only focus on limited, isolated aspects of the semantic mapping
task. None of these approaches aims at building semantic maps that describe environments in terms
of places and objects. Building such maps for large scale environments can involve thousands
of objects of a variety of types and complex relations between them. To extract such object
and place descriptions from raw sensor data, it is necessary to use probabilistic models that are
flexible and compact, and at the same time support efficient inference and learning. Currently used



Figure 1: Map of the Intel Research Lab in Seattle: (left) Occupancy grid map built via SLAM along
with automatically extracted Voronoi graph. (middle) The Voronoi graph labeled via a Conditional Random
Field defines a place type for each point in the map [47]. Hallways are colored gray (red), rooms light gray
(green), doorways dark grey (blue), and junctions are indicated by black circles. (right) Topological-metric
map extracted from the labeled graph.

techniques are not able to solve this task. This is due to the fact that these models are propositional
representations of a domain, that is, they only reason about a fixed, instantiated set of objects,
and fixed relations between them. The goal of this project is to overcome these limitations by
developing a novel inference and learning framework for semantic mapping. This framework builds
on Relational Markov Networks, which we describe next.

2.2 Relational Markov Networks

Statistical relational models were introduced to overcome limitations of propositional probabilistic
models [50, 4, 126, 139,122, [52]. Relational models combine first-order logical languages with proba-
bilistic graphical models. Intuitively, a relational probabilistic model is a template for propositional
models such as (dynamic) Bayesian network, Markov Random Fields, or Conditional Random Fields
(similar to how first-order logic formulas can be instantiated to propositional logic). Templates are
defined over object classes through logical languages such as Horn clauses, frame systems, SQL,
and full first-order logic. Given data, these templates are then instantiated to generate proposi-
tional models, on which inference and learning is performed. Relational probabilistic models use
high level languages to describe systems involving complex relations and uncertainties. Since the
parameters are defined at the level of classes, they are shared by the instantiated networks.
Relational Markov Networks (RMN) are undirected relational models. Since their introduction,
RMNs have been used successfully in a number of domains, including web page classification [139],
link prediction [I40], information extraction [I8], and activity recognition [88]. RMNs describe
specific relations between objects using clique templates specified by SQL queries: each query
C selects the relevant objects and their attributes, and specifies a potential function, or clique
potential, ¢, on the possible values of these attributes. Intuitively, the clique potentials measure
the “compatibility” between values of the attributes. Clique potentials are defined as log-linear
combinations of feature functions, i.e., ¢c(ve) = exp{w}, - fo(ve)}, where v are the attributes
selected in the query, fo() is a feature vector for C, and Wg is the corresponding weight vector.
To perform inference, an RMN is wunrolled into a Conditional Random Field (CRF) [139, [79],
in which the nodes correspond to object attributes. The connections among the nodes are built
by applying the SQL templates to the data; each template C' can result in several cliques, which
share the same feature weights. Given observations x, the cliques generated by an RMN factorize



the conditional distribution over the labels y as follows [139] 89, [138]:
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Here, Z(x) is the normalizing partition function defined as Z(x) = >, [[cec Hvlcec dc(ve).
Thie first product in Eq. [I| ranges over all clique template queries, and the second product over
all cliques generated by each template. As noted above, the instantiated network is a CRF. CRFs
were originally developed for labeling sequence data [79], and have been shown to outperform
generative approaches such as HMMs in areas such as natural language processing [79] and computer
vision |71}, [118]. CRFs directly model the conditional distribution over the hidden variables y. Due
to this structure, they can handle arbitrary dependencies between the observations x, which gives
them substantial flexibility in using very high-dimensional, overlapping feature vectors [13§]

Exact inference algorithms in RMNs often become intractable except for some special graph
topologies, such as sequences or trees. In general, it is necessary to use approximate techniques
such as loopy belief propagation [I39] or Markov Chain Monte Carlo (MCMC) [87, 89]. The goal
of parameter learning in RMNs is to find the weight vector we for each SQL template so as to
maximize the overall conditional log-likelihood L of the training data:

WTW
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The rightmost term in Eq. [2]is a regularization to avoid overfitting. It imposes a Gaussian shrinkage
prior with variance v on each component of the weight vector [139]. Since Eq. [2 can be shown to
be convex, the global optimum of L can be found using modern numerical optimization algorithms,
such as conjugate gradient or quasi-Newton techniques [I31]. However, maximizing the conditional
likelihood requires running the inference procedure at each iteration of the optimization, which can
be very expensive. An alternative is to maximize the pseudo-likelihood of the training data [13].
This approximate technique can be evaluated extremely efficiently and has been shown to perform
well in several domains [71], 122 [88].

Liw) = logp(y | x,w)—

3 Relational Semantic Maps (RS-Maps)

In this section we propose RS-Maps, a new framework for building semantic place and object-level
descriptions of environments. While RS-Maps describe objects mainly by their 2D outline, they
use 3D information extracted from laser range-scans and camera images to estimate the presence
and types of objects and places.

RS-Maps are based upon and extend Relational Markov Networks (RMN) [139]. They describe
environments by hierarchical collections of geometric primitives, objects, places, and the relation-
ships between them. Like RMNs, RS-Maps can be instantiated into Conditional Random Fields
(CRF) that describe probability distributions over objects and places. Figure [2|illustrates the con-
cept of such a CRF instantiated for an indoor environment. Nodes in the network correspond to
objects and places, and undirected edges represent probabilistic constraints between them. In this
hierarchical structure, geometric primitives extracted from sensor data are modeled at the lowest
level. The next levels describe basic and aggregated objects such as doors, sections of walls, or
pieces of furniture. Higher levels estimate spatial areas such as hallways and rooms, and their
connectivity relations. In this network, for instance, the geometric primitive with ID g, is part of
object dg, which is of type door. This door corresponds to connector co, which connects places ps
and py. The connector “generates” a probabilistic relationship between ps and p4, indicated by a
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Figure 2: Part of an indoor RS-Map instantiated into a Conditional Random Field using sensor data and
an RS-Map schema. Each node corresponds to an object or place in an indoor environment. Edges indicate
undirected, probabilistic constraints between objects. The lowest level of the RS-Map contains geometric
primitives extracted from the data. Each primitive is associated to an object such as a door or a chair.
Objects can be aggregated into larger objects, and are associated to places, which are linked via connector
objects.

link. The door is in spatial relationship to the wall object w;, which itself is part of the boundary
of place po.

3.1 Relational Schemata

Similar to RMNs, our RS-Maps will be defined by relational schemata and clique templates. In
general, a relational schema defines the entity types (i.e., classes) in a domain and their reference
relationships. Relational database theory, especially the entity-relationship and the relational data
model, provides us with powerful tools for building compact and consistent relational schemata
for real domains [I19]. In RS-Maps, we propose to organize entities in a multi-level structure, as
illustrated in Figure

Entity types

We will categorize the entities in RS-Maps into the following four categories.

Geometric primitives are the basic building blocks of RS-Maps. In our system, primitives such
as lines, circles, planes, and points are extracted from 2D or 3D laser range-finder scans. As
shown in the relational schema in Figure [3) each primitive has a unique ID, a description
of its geometry (location, length, radius, etc.) and appearance (color, texture, etc.), and its
type (person, door, wall segment, tree trunk, etc.). The appearance of primitives is computed
by aligning camera information with laser scans. We will additionally introduce primitives
that are nodes in a spatial graph representation of an environment. Such a graph could
be a Voronoi graph of an indoor environment (see left panel in Figure , or a street and
walkway map of an outdoor area. We found such graphs very useful to compactly represent
the connectivity structure of environments and for reducing the complexity of probabilistic
inference [47, 35].

Objects are generated hierarchically, with basic objects being built from primitives, and more
complex objects being generated by physical aggregation from other objects. Each object has
a specific type, such as person, door, wall segment, wall, chair, desk, car, or tree. Depending
on their type, objects can have different properties and relationships. Figure |3| illustrates
the relational schema of the three object types door, wall segment, and wall in an indoor
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Figure 3: Part of an RS-Map entity-relationship schema. Boxes describe entity types, and dashed lines
indicate reference relationships.

environment. For instance, a wall segment is a basic object that consists of a single line
segment annotated with appearance information. walls consist of several wall segments. Such
more complex objects are generated by a process we call physical aggregation, which extracts
both geometric and appearance descriptions from the aggregated objects. To handle dynamic
objects, each object type can have additional properties describing if and how it can change
its location (e.g., doors rotate around their hinge points, trees don’t move, cars might drive).

Places describe spatially coherent areas such as hallways, rooms, parking lots, or streets. While
such places can be defined accurately for indoor environments (e.g., Figure , the boundaries
between places in outdoor environments is less clear and we will investigate different types
of places suitable for outdoor mapping. Each object in an environment is associated with at
least one place. It can either be located in a place (e.g., chair in a room, car on the street),
or be part of the boundary of a place (e.g., wall). The link between objects and places is
important, since the interpretation of geometric primitives strongly depends on the place they
are in. For instance, it is extremely unlikely to find a tree in the middle of a street.

Connectors: In order to reason about connectedness and neighborhood on a place level, we pro-
pose to introduce the notion of connectors, which are special entities that describe transitions
between places. They can be either associated to physical objects such as doors, or place
concepts such as hallway or street intersections. Structures such as Voronoi graphs or street
maps provide a convenient way to define such connectors.

Reference relationships

Relational schemata specify the reference relationships among the entities using reference attributes
(i.e., foreign keys). For example, in Figure [3| the attributes Placel and Place2 in class connector
refer to a pair of places that are linked by the connector. Different reference attributes can have
different semantic meanings. They can imply the relation of physical aggregation; for example, the
“Part of” attribute in wall segment indicates a wall object is generated by a set of wall segments.
They can also indicate “Is A” relation so as to represent class hierarchies; for example, the connector
attribute in class door indicates that door is a kind of connector, just like junctions and other kinds
of connectors.

Structural uncertainties

In RS-Maps, the schema can involve structural uncertainties, such as existence uncertainties over
both objects and links [51]. For example, the numbers of objects and places in an environment are



unknown initially and have to be inferred by probabilistic reasoning. Link uncertainty is due to
the fact that the unknown type of an object specifies which other objects it is connected to.

3.2 Defining Features via Clique Templates

We now discuss how to define the feature functions that are used by RS-Maps to estimate semantic
representations of an environment. A key advantage of the Conditional Random Fields underlying
RS-Maps is their ability to incorporate large numbers (many thousands) of features, even when
there are strong dependencies among the individual features [79] [I38]. This ability adds substantial
flexibility to RS-Maps.

In order to perform probabilistic inference in RS-Maps, the relational schemata and the data
are used to generate a Conditional Random Field that models the probability distribution over
the objects in an environment. This process of unrolling includes generating the nodes and the
link structure of a CRF, along with the functions that describe the potentials of the cliques in the
network. We propose to define RS-Map cliques and their potentials via clique templates specified
by SQL queries on the object database. Clique templates provide an extremely flexible and concise
language to define network structures and features. We will develop the following types of features.

Local features describe the geometry and appearance of objects and places. In RS-Maps, such
features can be modeled by generating a clique for each object and the corresponding at-
tribute. As done in current techniques, we will extract various shape features from both 2D
and 3D laser range scans [117, [32 120, 96]. The right panel in Figure {4 illustrates how a
2D laser scan can be enhanced with image information by projecting the scan points into a
camera image (such a projection can also be performed for 3D scans [117]). In [32] we showed
that such a combination of laser shape and visual appearance information can achieve su-
perior classification results on individual laser returns. Due to the flexibility of Conditional
Random Fields, RS-Maps will be able to incorporate thousands of low level visual features
such as color histograms, SIFT descriptors [92], steerable pyramids [132], Haar features [154],
or surface geometry [59, [60].

Local features can also be defined for aggregated objects and places. For example, a wall
object can have a feature that measures the alignment of its wall segments. Such a feature
allows an RS-Map to ensure that only well aligned line segments are associated to a wall. A
local feature of a place could be a description of its shape and size, for instance.

Visual object detectors will be incorporated to leverage existing large, annotated vision data
sets (e.g., [3, [ 2]), thereby reducing the need for labeling data collected with our robots.
Vision data sets can be used to learn specialized detectors for objects such as people, faces,
cars, or parts thereof. The output of such detectors can then be incorporated as additional
information into the RS-Maps. The combination of low level features and detectors will result
in strong overlap and dependencies between individual feature components. Fortunately, this
will not pose a significant challenge to our approach, since the ability to deal with such
dependencies is a key property of the Conditional Random Fields underlying RS-Maps, in
contrast to generative approaches such as Bayesian networks or Markov Random Fields.

Spatial features describe spatial dependencies between objects and places. For example, trees
are extremely unlikely to be found on streets, desks are more likely to be found in rooms,
and doors are very likely to be near doorways. Such dependencies will be modeled in RS-
Maps by incorporating links between nearby objects and places into the underlying graphical



Figure 4: (left) One of the vehicles we will use to collect data for semantic mapping in urban environment.
The vehicle, built by the Australian Centre for Field Robotics, is equipped with multiple cameras and laser
range-finders. (right) Camera image along with a projected laser scan. Colors of mapped laser returns
indicate the type of object each return points at (see also [32]).

model. The potentials of the resulting cliques then depend on the specific spatial relationships
between specific objects and places (e.g., distance, relative angle, is-inside).

Global features will be used to describe properties of objects that are potentially far apart. For
instance, an important class of global features are those that measure regularities within an
environment. Such a feature might describe how similar the widths, indentations, or colors
of the doors in a certain hallway are. An example of how a global door width feature can be
described using the SQL language we will develop for RS-Maps is

SELECT Variance(d.Width)
FROM Door d, Wall w
WHERE d.AttachedTo=w.Id

Global features are very powerful for expressing complex relationships between objects, but
they also pose challenging problems for efficient inference, since they generate large cliques
in the unrolled Conditional Random Fields.

4 Inference and Learning in Relational Semantic Maps

In addition to developing the general framework and features used in RS-Maps, an important
contribution will be the development of suitable learning and inference mechanisms.

4.1 Inference
Hierarchical inference under structural uncertainty

The key to scaling our approach to large environments with many objects and places is to develop
techniques that make use of the hierarchical structure underlying RS-Maps. Hierarchical repre-
sentations [36] 107, [I7] have been shown to enable very efficient inference and learning techniques
in various domains, including activity recognition [16] 85 [88], robot mapping [141], and speech
recognition [I4]. However, these existing approaches assume that the structure of the hierarchical
model is fully specified, which is not the case for RS-Maps. For instance, different segmentations
of an environment might generate a different number of hallways and rooms in an RS-Map, which
would be instantiated into CRF's with different place nodes. A robust inference system for RS-Maps
must thus be able to reason about multiple structures representing an environment.



While MCMC sampling techniques are well suited to perform inference under structural uncer-
tainty [89, 07, 98, 115], they do not scale to very complex models. We will therefore investigate
an alternative approach for efficiently reasoning about multiple model structures. Initially, this
approach instantiates an RS-Map only partially. It then performs inference in the resulting CRF
model and generates a set of likely interpretations of the data. These interpretations can be gen-
erated efficiently using either k-best belief propagation [157] or MC-SAT, a recently introduced
MCMC technique that combines probabilistic sampling with SAT solving [I15]. MC-SAT is par-
ticularly well suited to handle deterministic dependencies such as transitive closure: “if primitives
i and j are part of the same object, and primitives j and k are part of the same object, then primi-
tives ¢ and k& must also be part of the same object”. Each sampled interpretation can then be used
to instantiate additional parts of the RS-Map, thereby generating larger CRF models. For instance,
if we start by segmenting an environment into places, then k-best inference will generate different
segmentations, which produce different CRF models. Once place nodes are known, it is possible
to connect all geometric primitives to the places (nodes) they are located in, thereby generating
more complex CRFs. We can repeat this process of adding nodes based on inference until a set of
complete CRFs is generated, inference in which will produce multiple possible interpretations of an
environment.

The key advantage of this approach is that at every iteration, the structure of the individual
CRF models is completely known, which enables the use of efficient inference techniques such as
belief propagation. In essence, our proposed approach performs efficient search in the set of possible
models by iteratively constructing more and more complex structures based on likely interpretations
of the data.

Computational clique templates

The Conditional Random Fields instantiated during RS-Map inference will contain a variety of
cliques with different complexity and containing both continuous and discrete states. However,
current inference techniques are defined over a complete network, applying the same approach
to all parts of the network. They are thus not flexible enough to adjust to local substructures
typically present in the large networks instantiated by RS-Maps. To overcome this limitation, we
will develop a hybrid inference framework that performs different types of inference in different
parts of a network. The RS-Map inference system will be based on (loopy) belief propagation,
which is an inference technique that sends local messages between neighbors in a network in order
to infer posterior probabilities or maximum a posteriori (MAP) assignments [109) 157, 88]. Each
node computes a message to a neighbor based on messages it receives from other neighbors, the
clique potential that specifies the connection to this neighbor, and the clique potentials modeling
the impact of local features.

We propose to develop a hybrid inference system in which the messages sent between cliques
are computed depending on the structure of the clique. For instance, while exact inference might
be adequate to compute messages for rather small cliques of an RS-Map, such inference does not
scale to large cliques; as those needed to compute global features. In such cliques, MCMC sam-
pling such as MC-SAT [115] might be more adequate, or aggregation via Fast Fourier Transform
techniques [86]. Messages involving continuous hidden states can be handled via Gaussian approx-
imations or sampling, as done in non-parametric belief propagation [137].

To specify such locally optimized inference techniques in a single framework, we will extend
the relational language underlying RS-Maps and RMNs by adding computational clique templates.
Such templates not only specify the structure of cliques in an RS-Map, but also which type of
inference should be performed within this clique in order to compute the probabilistic messages
sent in belief propagation. The resulting relational model will enable highly efficient inference, since
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each clique computes its messages using the most adequate algorithm.

Reasoning about dynamic objects

Certain types of objects, including people, cars, doors, and furniture, are dynamic and might move
after or even during the mapping process. While handling such dynamics will not be the focus of this
project, we will investigate techniques for object-level tracking once the basic RS-Map framework
is developed. A key component of tracking is temporal data association, which is the process of
determining which measurements are caused by the same object. An advantage of the object level
representation of RS-Maps is that we can perform data association at the object level, taking shape
and appearance information into account. We recently showed how Conditional Random Fields
can match individual beams of laser range-scans using shape and appearance information [120].
We will extend this technique to object-level matching and incorporate it into RS-Maps. Modeling
dynamics within the RS-Map framework will enable it to take into account which types of objects
can move (e.g., people, cars, chairs), and which ones are fixed (e.g., walls, buildings, and trees). As
a result, the fact that an object is moving can help to determine its type.

4.2 Learning

Since inference is an inherent part of learning in Relational Markov Networks, the approaches
used for scaling up inference can be readily applied to speed up learning. Furthermore, as shown
in different contexts, pseudo-likelihood is an extremely scalable and robust method for learning
parameters of complex models [13, 47, 122 [71]. However, RS-Maps pose additional challenges
which we propose to address as follows.

Dealing with continuous features

The majority of relational techniques have only been applied to discrete, non-physical domains,
in which features are mainly boolean indicator functions. However, RS-Maps need to consider
many continuous features, such as visual appearance and geometry of objects, relative locations
of objects, and shapes of places. While the log-linear models underlying RS-Maps could incorpo-
rate thousands of continuous features, the resulting probability distributions would correspond to
uni-modal Gaussian likelihoods in generative models [I12]. Since the relationships between hid-
den states and features are typically far more complex, such a straightforward incorporation of
continuous features is thus not flexible enough to achieve good classification results.

Recently, several research groups found that boosting [46] can be used to infer features in the
context of Conditional Random Field training [149] B0 47, [83]. These approaches learn discretiza-
tions of features that result in good CRF classification performance. While these techniques achieve
very promising initial results, they are not able to model or learn the complex cliques found in our
RS-Maps. For instance, they cannot learn neighborhood cliques that depend on features observed
at different nodes in the model. Such types of cliques are crucial to model spatial relationships
between objects, which is an important component of RS-Maps.

In this project, we will build on boosting-based CRF training to develop complex feature in-
duction techniques for Relational Markov Networks. We will additionally investigate the use of [y
regularization for feature learning [I53]. The key idea of this approach is to define a very large
set of features and replace the regularization term in Eq. [2| by /1 regularization on the model
weights so as to learn only a small subset of features with non-zero weights. While Vail and col-
leagues demonstrated that this approach works very well in the context of activity recognition using
~1,000 features, we will investigate how it can be scaled to thousands of continuous features used
in RS-Maps.
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Learning from partially labeled data

The probabilistic models underlying RS-Maps are trained discriminatively [139} 138]. While such an
approach has advantages over generative training techniques [112], it typically requires fully labeled
training data, which can be extremely tedious to generate. In the context of Conditional Random
Fields, several researchers showed that learning techniques such as expectation maximization (EM)
or entropy regularization can be applied successfully to discriminative models [64] 133, 221 93] [80],
and we will investigate their application to RS-Maps. To further reduce the burden of manual data
labeling, we will use existing vision datasets to train a variety of object detectors. The output of
these detectors can be readily incorporated as additional features into RS-Maps.

Knowledge transfer through hierarchical Bayesian features

A very important question with respect to learning is the ability to transfer information between
different environments. While Relational Markov Networks are well suited to learn models that can
be applied to different environments, current techniques do not model regularities between different
environments in a satisfying way. For instance, while the widths of doors might differ substantially
between different environments, they typically are extremely similar within one particular hallway.
While such information can be captured using variance features, it might be more adequate to
use feature functions that take these variabilities into account. For instance, instead of using
the raw value of the door width as a feature, one can use the log-likelihood of the door width
under a Gaussian distribution estimated from test environments. In order to capture variability
between environments, we intend to extend this Gaussian feature function to a hierarchical Gaussian
model [48, 20, 128, [82]. Such a model can capture both the variability between environments and
the variability within a hallway, for example. In addition to Gaussian models, we intend to use log-
likelihoods under discrete distributions, which can be handled within a hierarchical model using
Dirichlet distributions [100, 44]. The parameters of these feature functions can be adapted to
unknown environments, thereby increasing the flexibility of RS-Maps.

5 Experimental Evaluation

The key goal of this project is to develop a relational learning and inference framework that enables
the generation of semantic maps of both indoor and outdoor environments. To build such maps,
we will equip our existing indoor robots with an omni-directional camera and a manipulator that
allows us to collect 3D laser scans. For building semantic outdoor maps, we will focus on urban
settings and data collected by cars equipped with various types of laser range-finders and cameras.
For instance, the left panel in Figure [4 shows a vehicle developed by the Australian Centre for
Field Robotics. We have permission to collect data with this vehicle, which carries several 2D laser
scanners and cameras. Furthermore, the PI of this project is in close contact with several of the
teams that participated in the DARPA Urban Challenge, and we will be able to use data collected
by their vehicles, including data collected with Velodyne scanners (http://www.velodyne.com/lidar/).
These sensors provide extremely rich 3D laser scans, and played an important role in the successful
outcome of the Urban Challenge [146].

We propose to assess the results of our research using several performance criteria. Different
aspects of RS-Maps will be evaluated using standard approaches such as classification and detection
accuracy, confusion matrices, and string edit distance, which provides a measure of segmentation
error [47, 94]. Using such measures, we will evaluate how many different types of objects the
approach can distinguish when using different feature functions and relations, how robust the
approach is with respect to changing lighting conditions, or how the quality of the learned models
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decreases with the sparseness of the labeled training data.

While the accuracy in labeling individual objects and places is an important measure of per-
formance, we will perform additional evaluations that are focused on the potential applications
of RS-Maps. For instance, we will evaluate the accuracy and usefulness of the learned models
with respect to guiding people to locations and objects, or following human path descriptions to a
specific object. These evaluations will be performed as undergraduate research projects, the goal
of which will be to implement and test a high-level planner for RS-Maps. This planner will be
used to perform robot tasks inspired by indoor office delivery and search and rescue scenarios. Key
questions will be how well the place and object information contained in RS-Maps enables a robot
to perform tasks specified semantically, such as “Take a picture of the desk in the room at the
end of the hallway”, and how well it enables robots to guide people to specific locations, such as
“Follow this hallway, go into the second hallway on the left, and enter the room next to the fire
extinguisher”. To perform tests using real robots, the high-level planner will be connected to our
existing robot exploration and navigation system [43].

6 Results from Prior NSF Support

Title: CAREER: Probabilistic Methods for Multi-Robot Collaboration
Award number: 1IS-0093406; amount: $440,000; period of support: March 2001-2006

The goal of this CAREER project was to bridge the gap between the success of probabilistic meth-
ods for single-robot systems and their successful application to collaborative multi-robot systems.

Technical contributions: We developed novel adaptive, real-time particle filter approaches for
state estimation [38, 39, [77, [76], (78, 84, [127], reinforcement learning for active sensing [75], and
Rao-Blackwellised particle filters for target tracking [74] and map building [57]. We furthermore
developed an efficient, decision-theoretic technique that allows multiple robots to explore environ-
ments from different, unknown start locations. The approach avoids the exponential complexity
of this most difficult instance of the exploration problem by actively verifying hypotheses for the
relative locations of robots [66] 69, 135], [44) [43]. Our proposed work will use the SLAM mapping
techniques developed in this project to combine sensor information in a spatially consistent way.
Furthermore, the high-level planner we will develop for RS-Maps will use the navigation routines
of this project to support low level navigation tasks.

RoboCup as undergraduate research opportunity: The PI mentored 14 undergraduate
students during their participation in the RoboCup robot soccer challenge (AIBO legged robot
league). This undergraduate teaching and research effort included participation in the RoboCup
competitions 2001-2004 [9} 28, (73], [74].

Teaching and curriculum development: The PI introduced a graduate course on “Proba-
bilistic mobile robotics”, and developed an undergraduate project course entitled “Mobile robotics
capstone”. This lecture focuses on a hands-on experience in robotics using robots such as legged
AIBO robots or an autonomous blimp as teaching platforms. With S. Thrun and W. Burgard, the
PI wrote a textbook entitled “Probabilistic Robotics” [144].

7 Education and Outreach Plan

Curriculum Improvement and Outreach

In this project we will build on the PI’s robotics course to develop an advanced graduate level
course on statistical relational techniques for real-world data analysis. This course will provide an

13



in-depth treatment of relational learning techniques in the context of areas such as robotics and
activity recognition. The proposed research will play an important role in assessing the key lessons
learned from applying relational reasoning to these novel domains.

Robotics is an ideal tool to educate the wide public about how exciting engineering research
can be. Furthermore, we believe that robotics researchers have the obligation to keep the public
informed about the potential benefits robots can provide to society, but also about which progress
is realistically achievable within the next decade. Thus, we will demonstrate our research at public
events such as the annual SRS Robothon (http://www.seattlerobotics.org/robothon), a national event
that showcases robotics.

In addition to these local activities, we will deepen our collaboration with Dr. Andrew Williams
at Spelman College, with whom the PI of this project recently started a collaboration as part of
“ARTSI: Advancing Robotics Technology for Societal Impact”, an NSF Broadening Participation
in Computing Alliance Grant. The goal of the ARTSI project is to expose female African-American
students to research in robotics, artificial intelligence, and computer science. In addition to the
activities funded under the existing grant, the PI will give guest lectures in Dr. Wiliams’ course and
guide the integration of a particle filter software package for ARTSI related activities. We believe
that methods such as particle filters are ideally suited to provide an intuitive idea of fundamental
problems in robotics and Al, thereby motivating young students to get stronger involved in these
research areas.

Dissemination of Data Sets

This project will generate data sets that go well beyond those typically available for research
in mobile robotics. While the Robotics Data Set Repository [62] contains data sets of various
environments, it typically provides laser range-data only. Our sets will contain 2D and 3D laser
range-finder data along with aligned camera information. Many of these data sets will be labeled
manually, which will make them extremely useful for other research groups. All data sets will be
made available to the research community via our own web site and via our contribution to the
Robotics Data Set Repository [62].

8 Research Project Work Plan

We will focus on building RS-Maps from a combination of laser range-data and camera images. To
collect such data, we will acquire an omni-directional camera and a manipulator that allows us to
collect 3D laser-scans in indoor environments. Camera data will be used to enhance both 2D and
3D laser shape information with rich appearance information, similar to [I16] and our preliminary
work on classifying 2D laser beams into seven different outdoor object classes (car, person, wall,
tree, foliage, grass, other) [32]. We will collect outdoor data with the vehicle shown in the left panel
of Figure 4 We will have access to additional 3D laser and camera data collected by the CMU,
Stanford, and Cornell DARPA Urban Challenge vehicles. While such laser data could be used to
build complex, 3D volumetric models of an environment, we will restrict RS-Maps to generating
2D layouts models of objects. The 3D data will still be extremely useful to provide rich shape
information for object detection and classification.

To generate spatially consistent data sets, we will use existing SLAM and scan alignment tech-
niques (e.g., [33, b7, 58|, 25, 43, [145]). The reliance on pre-aligned data is not due to a conceptual
limitation of RS-Maps or the algorithms we will develop, but rather due to the time constraints of
the project.

The two graduate students funded by this project will collaborate to develop the general RS-Map
framework. One student will work on indoor environments, with a focus on reasoning about spatial
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relationships between objects and places. An important aspect of this work will be the development
of inference techniques suitable for the complex, hierarchical structure underlying RS-Maps. These
techniques will be integrated into the RS-Map framework by introducing computational clique
templates, which enhance Relational Markov Networks to reason about continuous hidden states
and to perform different inference algorithms in different parts of an RS-Map.

The second student will work on outdoor environments with an initial focus on extracting
features from 2D and 3D laser data and from camera images. In addition to generating a variety
of low-level features, this student will leverage labeled vision data sets to learn specific object
detectors (e.g., [3, [I, 2]). The student will then develop boosting related learning techniques that
can incorporate these features and detectors into RS-Maps. To further reduce the burden of manual
data labeling, the student will also investigate semi-supervised learning techniques for RS-Maps.

Once the RS-Map framework is developed, the relational structure underlying our approach
will enable us to rapidly explore different features, spatial relations, and learning and inference
techniques. At this stage, we will also start the undergraduate research project that aims at
investigating the usefulness of RS-Maps for high-level planning and human robot communication.
Toward the end of the project, the graduate students will enhance the basic RS-Maps to detect
and track moving objects and to allow more complex, 3D shape models for objects.

9 Broader Impact

If successful, the techniques developed in this project will greatly increase the reasoning and inter-
action capabilities of robotic systems. Such capabilities will have significant impact on a variety
of robotic applications. For instance, in search and rescue tasks, a mobile robot equipped with
RS-Map reasoning will be able to communicate with first responders in a much more natural and
therefore much more effective way [72, [01]. As another example, the ability to distinguish a variety
of objects is crucial for safe navigation in populated urban areas, with the potential to avoid a large
number of fatalities due to unsafe human driving [21], [146].

Beyond enabling more capable and robust robotic systems, the research performed in this project
will have impact on several other research communities. It will further enhance the capabilities
of statistical relational models by developing novel learning and inference techniques that make
them applicable to domains characterized by complex, continuous relationships between objects,
and by high-dimensional, continuous sensor data. Specifically, the computational clique template
framework and the boosting-related learning approach developed in this project will be completely
independent of the specific application, and will thus be readily applicable to other areas involv-
ing probabilistic reasoning. We conjecture that the techniques developed in this project will be
particularly useful in areas such as sensor-based human activity recognition [136] and computer
vision [108] [149].

In addition to the general benefit to robotics and related areas, our project promotes teach-
ing and training both at the graduate and undergraduate level. Besides the graduate research
projects, we will support undergraduate projects in the area of high-level planning and human
robot communication. To improve the understanding of the concepts underlying this research, we
will offer research seminars and develop the curriculum of a new graduate level course on relational
probabilistic models for real-world reasoning. We will also collaborate with Dr. Andrew Williams
at Spelman College to enhance lectures and existing software infrastructure in the context of the
NSF-funded project “ARTSI: Advancing Robotics Technology for Societal Impact”. Furthermore,
the outcome of this research will be presented to the broad public at events such as the annual SRS
Robothon, a national event that showcases developments in robotics.
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