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Abstract— This paper presents a general probabilistic frame- a mapping solution [3, 9, 20, 23, 29]. Such representations
work for multi-sensor multi-class object recognition based on can be extremely valuable since they enable robots to parfor
Conditional Random Fields (CRFs). The proposed methodology pig-jevel reasoning about their environments and theotbje
learns a model for spatial and temporal relationships which is . . . .
able to integrate arbitrary sensor information by automatically therein. For instance, in sgarch and rescue tasks, a mobib¢ r
extracting features from data. Spatial and temporal reasoningare ~ that can reason about objects such as doors, and places such
unified in the framework as various instances of the more general as rooms, is able to coordinate with first responders in a much
structured classification problem. We demonstrate the benefitsfo  more natural way. It can accept commands such as “Search the
a spatio-temporal probabilistic model for the problem of detecting room behind the third door on the right of this hallway”, and

seven classes of objects in an urban environment using laser and d inf fi h “Th - ounded verson behind
vision data. We describe how this framework can be used with S€Nd Information such as ereIs a wou p !

partially labeled data, thereby significantly reducing the burden the desk in that room” [16]. As another example, consider
of manual data annotation. Finally, we show how this framework autonomous vehicles navigating in urban areas. While the re-

can be applied to the generation of large-scale semantic maps. cent success of the DARPA Urban Challenge [5] demonstrates
that it is possible to develop autonomous vehicles that can
navigate safely in constrained settings, successful tiparan
Reliable object recognition is an important step for emapli more realistic, populated urban areas requires the atdity
robots to reason and act in the real world. A high-level percedistinguish between objects such as cars, people, budiding
tion model able to integrate multiple sensors can signiflgantrees, and traffic lights.
increase the capabilities of robots in tasks such as olestacl As a step towards the long-term goal of equipping a robot
avoidance, mapping, and tracking. with the ability to understand its environment, we propose a
Although object recognition has been a major research tomiassification framework based on Conditional Random Eield
in the computer vision community, direct application of th¢CRFs). CRFs are discriminative models for classificatibn o
algorithms to robotics problems is not always feasible.r&hestructured (dependent) data [17]. We show how CRFs provide
are three main reasons for this. First, robotics applioatioa flexible framework in which different types of spatial and
require real-time object recognition. While real-time algotemporal dependencies can be represented demonstrading th
rithms for face detection do exist [40], real-time recommt these probabilistic models stand as a general solutioneo th
of general objects is still under development. Second, teob@roblem of classification in robotics applications.
can be equipped with different types of sensors including The flexibility of CRF-based representations is presented
ranging and visual. The integration of these sensors for alising various models of increasing complexity integrating
ject recognition can complement the visual information bgD laser scans and imaging data. We start with a simple
providing additional geometric properties of observedeoty. chain CRF formed by linking consecutive laser beams in the
Multi-sensor fusion for object recognition is thus a ddsiea scans. This configuration models the geometrical struattire
feature to be considered in robotics perception. Third,rwha scan and captures the typical shapes of objects. We then
navigating, robots observe the same objects from differentorporate temporal information by adding links between
locations and at different times. This is conceptuallyeati#int consecutive laser scans based on the correspondencesedbtai
from most object recognition algorithms in computer visioby a scan matching algorithm. This leads to a network in
where observations are considered independent. Pratiabiliwhich estimation is equivalent to a filtering algorithm, shu
models able to integrate observations at different time$ ataking into account temporal dependencies in addition to
positions are expected to perform more robustly in complepatial information. This network, and its associatednesti
outdoor environments with variable illumination and multition machinery, also have the particularity to allow tengbor
scale observations. smoothing as the network grows with the registration of in-
In order to address these three aspects of the object recogoming scans. Finally, we show that a CRF can be used to
tion problem, several groups in the robotics community hawapture the various structures characterizing a geometje.
developed techniques in which classification is integratéal This involves defining a network on a set of already aligned

I. INTRODUCTION



laser scans and running estimation as a batch process.&/iavimich can disregard important neighborhood information. A
obtained map sized network, classification is performeatiypi other researchers have shown, classification results can be
across the whole laser map and can, in turn, exploit the dargeproved by jointly classifying laser beams using techeigu
geometric structures in order to improve local classifawati such as associative Markov networks [39] or conditional
By building on the recently developed Virtual Evidenceandom fields [8].
Boosting (VEB) algorithm [18], the algorithm used to traivet ~ Structured classification is also demonstrated in [29] wher
various models is able to automatically select featuremdur objects are classified based on monocular imagery and 3D
the learning phase. The expert knowledge about the probléamer data. This approach does not incorporate temporal in-
is encoded as a selection of features capturing particotge-p formation and while it is designed to handle multi-modal
erties of the data such as geometry, color and texture. Givedata, user-specified inputs are required for each modality.
labeled training set, VEB computes weights for each of thes&uctured model is also used in [2] where the segmentation
features according to their importance in discriminatihg t of objects from 3D laser scans is based on a Markov Random
data. Additionally, an extension of VEB for semi-superdiseField. The model is trained discriminatively using a max-
learning is presented to address partially labeled dataset margin objective function. The features used were simpée ge
This paper is organized as follows. Related work is dignetric features capturing plane properties of groups offgoi
cussed first, in Section II. Section Il provides a shortadtric- The authors considered four classes: ground, building tre
tion to CRFs as well as a description of the associated legrniand shrubbery. Friedman and colleagues introduced Voronoi
and inference techniques. The various models at the coreR#ndom Fields, which generate semantic place maps of indoor
the proposed framework are presented in Section V. This@gvironments by labeling the points on a Voronoi graph of a
followed by a description of the features used for clasdifica laser map using conditional random fields [14].
Experimental results are presented in Section VI. Finally, = The particularity of this work is to combine multi-modal
conclude in Section VII. data fusion, structured reasoning and temporal estimation
one class of models. This paper builds on previous work by
Il. RELATED WORK addressing the classification problems tackled in [8, 9hwit
Object recognition is a long-standing problem in robotica single modeling approach. Its key contribution is the pre-
and computer vision. Most of the approaches in computer @entation of a probabilistic framework based on CRFs which
sion aim at recognizing objects from single images. Classifi unifies spatial and temporal reasoning as various instamices
are trained on labeled data and used to either classify isnagiee more general structured classification problem.
as containing or not an instance of the object, or to segment
the object in the image [10, 38, 40]. In robotics, the problem _ : } ) o .
is different. Recognition can be performed in a sequence of 1 NiS Séction provides a brief description of conditionai-ra
images, in many cases combined with other sensor modalitid@™ fields (CRFs) and their associated learning and inferenc
Within the robotics community, recent developments hafgchniques.
created representations of the environment integratingeme\. Model Description

than one sensor modality. In [26], a 3D laser scanner andConditionaI random fields (CRFs) are undirected graphical

loop closure dete_ction bas_ed on photometri(_: informaticm hodels developed for labeling sequence data [17]. CRFs
brought together into the Simultaneous Localization an@Madirectly model p(x|z), the conditional distribution over the

bing (SLAM) framework. This approaph does not generajfyqen, variables given observations. CRFs factorizey(x|z)
a semantic representation of the environment which can pe

obtained from the same multi-modal data using the approach 1
proposed here. p(x|z) = 7@ I ¢c(z. %), 1)
In [32], a robust landmark representation is created by-prob 2) e
abilistic compression of high-dimensional vectors cant®l \yhereZ(z) = 3 [Loce ¢e(2,x.) is the normalizing partition
laser and camera information. This representation is usedinction. C is the set of cliques in the CRF graph. Theare
a SLAM system and updated on-line when a landmark is rgique potentialswhich are functions that map variable config-
observed. However, it does not reason about landmark elasggytions to non-negative numbers. Intuitively, these iiidés
and therefore does not support the higher-level objectdete capture the compatibility among the variables in the clidbe
described in this work. _ larger the potential value, the more likely the configunatio
Object recognition based on laser and video data h@gtentials are constrained to log-linear functions, aadniag
been demonstrated in [24]. Using a sum rule, this approaghcrF requires learning the weights of these functions.
combines the outputs of two classifiers, each of them beingrnhe proposed framework employs pairwise CRFs, a partic-

assigned to the processing of one type of data. More receng|yyy type of CRFs which can be formulated as follows:
Posner and colleagues combine 3D laser range data with

camera information to classify surface types such as bric (x|2)

1
; - =—exp|w Az, z) +w I(Xe1, Teo, Z
concrete, grass, or pavement in outdoor environments [30, Z p( AZZ.: ( ) Ize: (@1, @ez )>
31]. The authors classify each laser scan return indepdéigden (2

IIl. CONDITIONAL RANDOM FIELDS

)



Here, the term1/Z is the normalization factor; ranges  More recently, Liao and colleagues introduced virtual evi-
over the set of nodes and over the set of edges. Thedence boosting (VEB), which incorporates feature diszaeti
functions A and I are the association and interaction potertion into CRF training [18]. VEB jointly learns an appropea
tials, respectively. An association potentidlis a classifier discretization of continuous features, the weights of ¢hes
which estimates the object type of node using the set of features, and the weights of neighborhood potentials of the
observationsz but does not take into account informatiorCRF. In essence, this is obtained by performing boosting on
contained in the structure of the neighborhood. An intéoact both the features and the neighborhood potentials of the CRF
potential/ is a function associated to each edgef the CRF VEB has demonstrated superior performance on both syatheti
graph, wherer.; andz., are the nodes connected by edge and real data. Furthermore, the automatic feature digatein
Intuitively, interaction potentials measure the comphtybbe- makes VEB extremely flexible and allows the incorporation
tween neighboring nodes and act as smoothers by correlatigarbitrary, continuous and discrete features. Since inode

the estimation across the network. flexibility is crucial in the context of our object recogmiti
task, we chose to use VEB for learning the parameters of our
B. Inference CRFs.

Inference in CRFs can estimate either the marginal distribu Through VEB, a CRF model can not only be learnt with
tion of each hidden variabte; or the most likely configuration fully labeled data but also with partially labeled data. sTts
of all hidden variablex (i.e, MAP estimation), as defined achieved by disregarding the unlabeled data when learhing t
in Eg. 1. Both tasks can be solved using belief propagatitwyitboost classifiér which plays the role of the association
(BP) [28], which works by sending local messages through tpetential A in Eq. 2. However, once learnt, this association
graph structure of the model. Each node sends messages tpdtential A can be applied to every single node, whether it is
neighbors based on the clique potentials and on the messdgbted or not, in order to generate a local distribution athea
it receives. node. This local belief is then propagated in the network via
BP provides exact results in graphs with no loops, su@P. In that sense, unlabeled nodes do not contribute to the
as trees or polytrees. However, since the models used in tarning of the interaction potential but do contribute to the
approach contain various loops due to temporal relatigsshilearning of the quantitie$, w4 andw; in Eq. 2.
we apply loopy belief propagation (loopy BP), an approxinat The slightly modified VEB training is described in Algo-
inference algorithm that is not guaranteed to converge fithm 1. As specified by the condition at line 3, the local
the correct probability distribution [25]. Fortunatelyy bur logitboost learning does not use unlabeled data. Howelver, t
experiments, convergence of loopy BP was observed in fésarned logitboost classifier is applied at all the netwakes
iterations for most cases. An empirical convergence aisalyglabeled and unlabeled) as the association poteriiathich
is provided in Section VI-E. generates each node’s local estimate. These local essirmigEe
then propagated in the network via BP (line 6 of the algorjthm
to provide the joint probability over the set of hidden ssate
Learning a CRF model involves determining the quantities.
A, I, wy andw; in Eq. 2. CRFs are trained discriminatively
by maximizing the conditional likelihood (Eq. 1) of labeledAlgorithm 1 SemiSupervisedVEB
training data. This optimization is typically performed bylnput: CRF connectivity structure}/ number of rounds of VEB, training
gradient-based techniques such as L-BFGS, where gradiefats @:,z:), for unlabeled nodes;=nan
are computed using inference in the CRF model [35]. [@utput: F
order to avoid computationally complex inference for geadli 1 form=1,..., M

C. Learning via Virtual Evidence Boosting

computations, several researchers applied pseudohdadi 2 fori=1,...,N
training, which does not require running inference [19]. 3 if z; 7 nan

While CRFs can handle high-dimensional continuous arid Compute boosting weights 4 (z;);
discrete features, the integration of continuous featige®t 5 Compute boosting working responsg(z;);
straightforward. This is due to the fact that the incorporat 6 Run BP using F to obtain virtual evidencése; };
of raw, continuous features in CRFs is similar to uni-modal Computefrm ({ve;,zi}) by least square regression
Gaussian likelihood models in generative approaches such  of ri(z;) to {ve;,z;} using weightsw (z;);
as hidden Markov models. Such simple likelihoods are ndt UpdateF = F + fpm;

well suited to model more complex, multi-modal features and

sensor data. Recently, researchers have applied boosting ia semi-supervised version of VEB was also proposed in
order to discretize continuous features into binary thosh 221 The main difference with the approach proposed here
functions, called decision stumps [14]. The thresholds ain the formulation of the conditional likelihood of the tda
learned by minimizing an exponential loss function of th@hich is optimized during learning. The algorithm above max

training data [12]. The decision stumps are then used asybinginjzes the standard conditional likelihood in Eq. 1 while th
features in a CRF, and the weights for these features are

learned using regular CRF training [14]. ILogitboost is the version of boosting used in the VEB aldomit



formulation in [22] involves an additional term represegti ~ From a classification point of view, the structure of urban
the conditional entropy of the unlabeled data. As mentionesvironments is characterized by the proximity of lasennret
by the authors, one drawback of this latter formulation &t thin the same objects. Thus, the first representation aims at

the resulting objective function is no longer convex. capturing such spatial dependencies. This is obtained by
instantiating the CRF model as a chain network representing

IV. FROM LASER SCANS TO CONDITIONAL RANDOM a particular laser scan, as illustrated in Fig 1(a). Thesliok
FIELDS this chain network encode the spatial dependencies between

cessive returns.

y performing probabilistic inference, the classes of all
laser returns in the scan are jointly estimated. Local
servations are passed onto each node via the association
é)otentialsA (Eq. 2) and the resulting local estimates are
propagated in the network via the pairwise potentials

This section shows how the connectivity structure of a CRF/C
can be generated from laser data. Each node of the resultj
networks corresponds to a laser return whose hidden sttg:i]
ranges over the objects types: car, trunk, foliage, peoydd, 0
grass and other (the class other representing any otheofyp
objects).

This section is organized according to the increasing coB: Temporal Reasoning
plexity of the networks. The representation of spatialtieta Due to the sequential nature of robotics applications, a
ships is first introduced by modeling single laser scans asichgpstantial amount of information can be gained by takig in
CRFs. Then, consecutive scans are connected according¢gount temporal dependencies. Using the same elementary
their alignment to model temporal relationships and efffett components of CRFs, i.e. nodes and links, we now build a
implement operations such as filtering and smoothing. Kinaly,ggel achieving temporal smoothing in addition to exphajti

three types of networks for the generation of semantic MagR geometric structure of laser scans. This model is itibsd
are described. in Fig. 1(b).

In this work, the links modeling the temporal dependen-
cies are instantiated such that they represent the assosiat
obtained by the Iterative Closest Point (ICP) matching algo
rithm [42]. The resulting network connects successive rchai
networks and is characterized by a cyclic topology. This
network models spatial correlations via links connectihg t
nodes within one scan and temporal correlations via links
connecting the successive chain networks.

Corresponding to different variants of temporal state-esti
mation, our spatio-temporal model can be deployed to parfor
three types of inference:

« Off-line smoothing: All scans in a temporal sequence

are connected using ICP. Loopy BP is then run in the
Fig. 1. (a) Graphical model of a chain CRF for a single time stibgct whole network to estimate the class of each laser return
recognition. Each hidden node represents one (non out of range) return in in the sequence. During loopy BP, each node sends
e oo e ammatey " 10 1S neighbors the messages through structural and
the spatio-temporal model. Nodes ; represent theé-th laser return observed temporal links (vertical and horizontal links in Fig. 1(b),
at time j. Temporal links are generated between time slices based dGkhe respectively).
matching algorithm. « On-line fixed-lag smoothing: Here, scans are added to
the model in an on-line fashion. To label a specific scan,
the system waits until a certain number of future scans
becomes available. It then runs loopy BP which combines

CRFs were selected as the basis for the proposed framework past and future observations to estimate the network’s
due to their aptitude to encode structure in the classitinati labels.
process. By “structure” we refer here to two different types « On-line filtering: In this case the spatio-temporal model
of dependencies: spatial and temporal. Spatial depersfenci includes scans up to the current time slice resulting in an
come from the natural organisation of the data in subsets of e€stimation process which integrates prior estimates.
samples with the same label: spatially close samples alylik An example of on-line fixed-lag smoothing is presented
to have to same label. Temporal dependencies come from over-Fig. 2. It can be seen in this figure that the sets of
lapping observations performed at successive times: smmpiodes corresponding to the car and the cyclist are correctly
generated by the same object and acquired at successivg tintassified when a CRF is used to integrate spatial and tepora
will be dependent. In the context of a CRF network, theseformation. The estimates given by local estimatiom,,
different types of dependencies are represented by vasitgs estimation which does not take into account the information
of links. provided by the network links, are only partially correct.

(b)

A. Spatial Reasoning
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Fig. 2. Example of classification improvements obtained with shatio-temporal CRF. Fig. (a) shows the estimates obtairtkdlacal classificationi(e.,
using only theA functions in Eq. 2). Fig. (b) shows the estimates obtainedguai CRF as the model displayed in Fig. 1(b). The right part ehdaure
shows a sequence of laser scans projected in a global frareeesiimates are indicated by the color of each return: reddioacd blue for other. The black
links represent the temporal edges of the underlying netwink left part of each figure displays the last image of the eegel as well as the projection in
the image of the corresponding laser returns. In the sequéeses to generate this figure, a car is moving toward our vehistea cyclist is moving away
from our vehicle. Based on local classification (Fig. a), sahthe returns are mis-classified since all the returns aataatio the cyclist should be blue and
all the returns associated to the car should be red. Basettumiused classification (Fig. b), only a very small number etfirns are mis-classified.

Since these type of spatio-temporal network contains sycle 2) Delaunay CRF with link selectionStructured classi-
inference is based on loopy BP and is as a result only apprdication as performed by CRFs is expected to improve on
imate. Alternatives to approximate techniques are diszlgs local classification since independence is not assumed,

Section IV-C.3. neighborhood information is modeled through interaction p
o tentials. However, as illustrated by the experimentalltesthe
C. Map Building Delaunay CRF previously described does not improve on local

We now show how a larger scale CRF network can gdassification. A too coarse modeling of the spatial cotiehes
built in order to generate semantic maps. The proposed niggesponsible for this result. The termisof Eq. 2 are learnt
building approach requires as an input a set of already edigrin this first type of network as a constant matrix instantate
2D laser scans. In our implementation, the ICP algorith@f €ach of the links. This gives the network a smoothing
was used to perform scan registration_ However, in Spﬁtiaﬂﬁ:ect on tOp of the local classification. Since all the links
more complex data sets containing loops, consistentlyatlg are represented with the same matrix, only one type of node-
scans can be generated using various existing SLAM tedR-node relationship is encoded, for example: “neighbateso
niques [37]. should have the same label”. While this type of links may be

In this section, we present three types of CRFs whid@ppropriate for modeling a single scan or in very structured
will be compared to better understand how to model spat@rts of the environment, it may over-smooth the estimates i
dependencies. We explain how the three different models c@fi§as where the density of objects increases.
be instantiated from aligned laser data and indicate which|n order to model more than one type of node-to-node rela-
inference technique is used in each case. Training of thaRshships, the network is augmented with an additional node
three networks is performed with partially labeled data. Ap tor every pair of nodegz;, z;} as displayed in Fig. 3. The
in the previous models, the hidden states represent thetobj@ate of this node specifies which type of link is instantiate
types of the laser returns. For this second type of network, we consider two types of

1) Delaunay CRF:In this first type of network, the con- |inks encoding the following node-to-node relationshifisy
nections between the nodes are obtain ed using the DelauRalghbor nodes have the same label, (2) neighbor nodes have
triangulation procedure [7] which efficiently finds a triang a different label. Node T receives an observation S which is
lation with non-overlapping edges. The system then removg output of a logitboost classifier learned to estimatethgre
links which are longer than a pre-defined threshold (50 chbde z; and z; are similar based on their respective local

in our application) since distant nodes are not likely to bghservatiory; andz;. The observation S is a direct observation
strongly correlated. The resulting network is displayedaasof the state of node T.

set of blue edges in Fig. 4. si hi q ¢ K ins | -
Since a Delaunay CRF contains cycles, inference is per- Ince this second type of network contains loops, inference

formed with loopy BP. is also performed using loopy BP.
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Fig. 3. The Delaunay CRF is presented on the left. On the ,right
representation of the additional infrastructure requireda Delaunay CRF
to perform link selection.

3) Tree-based CRFThe previous two types of netWorkslii . 4. Representation of a Tree based CRF in one region afEhgrenerated

contain cycles, which implies the use of an approximaigm data. The trajectory of the vehicle is displayed in garLaser returns
inference algorithm. We now present a third type of networkse instantiated as nodes in the network and connected tisin@elaunay

which is cycle free. To design non-cyclic networks we staffai oSS B Eeaes S et nodes are
from the following observation: laser returns in a scan M@&p aotted in green. Root nodes are connected to all nodes ioltister but for
naturally organized into clusters. These clusters can éetiid clarity this is represented by a rectangle enclosing theteiu
fied by analysising the connectivity of the Delaunay graph
and finding its disconnected sub-components. Disconnected
components appear when removing longer links of the origin@oW the use of logitboost (as a component of VEB), allows
triangulation. In Fig. 4, the extracted clusters are inideby the selection of the most effective features with respe¢héo
green rectang|esl classification task.

Once the clusters are identified, the nodes of a particu[gr

cluster are connected by a tree of depth one. A root node _ ) )
is instantiated for each cluster and each node in the clustef5€0metric features capture the shape of objects in a laser

becomes a leaf node. The trees associated to the cluster§G@N- The geometric feature vector computed for one laser
Fig. 4 are represented by green volumes. A tree-based CIRfIM has a dimensionality o231 and results from the
does not encode node-to-node smoothing but rather perforf@gicatenation of 38 different multi dimensional featurée
smoothing based on the identified clusters of laser retifims. Present here only the features which are the most useful for

root node does not have an explicit state. Its role is to allo@@ssification and explain in Section V-C how such a ranking
the instantiation of a network which does not contains aycl@f the features can be obtained. Some of these 38 features are

and permit the use of an exact inference technique: with tife following:
third type of network, belief propagation is used for infese. ¢, — [f, 1.0, fminangle, fesplinerit, femigvalt , Fmaxriteers - -], (4)
The possibility of using exact inference is a strong advan-
tage since in the case of approximate inference (based o he featuresfangie and fiinangle respectively refer to
loopy BP for example) the convergence of the algorithm {§€ norm and the minimum of a multi-dimensional angle
not guarantied. descriptorf,,zi. Which has been designed for this application.
As suggested in [25], while convergence of loopy BHS k" dimension is computed as:
in cyclic networks is not proven, it can be experimentally o .
checked. To evaluate the convergence of the inference proce fangie (k) = 1 (Fi=ss, Timias) | ©)
dure in the two previous networks, an empirical convergenegherer; refers to theit” return of the scan being processed
analysis is presented in Section VI-E. and k varies from—10 to +10. The dimensionality of both
foanele and finanele fEatures is one. In the various models
V. FEATURESFOR OBJECTRECOGNITION Iearﬁt across our 2xperiments, the features computed fiem t
As formulated in Eq. 2, the computation of the posteriof, .. feature were amongst the best for the recognition of
probability requires the set of observatioasin this work, the classes tree trunk and pedestrian. In the case of these tw
z consists of high-dimensional feature vectérsomputed for classes, these features capture typical curvilinear shapen
each scan returif.results from the concatenation of two typesor example the scan hits these objects at about one meter
of features which are geometric features and visual festureabove the ground.
£ = [£re0, Fuioa] 3) The featured spiineris aNdf gigvai1 Characterize the_ s_hape
’ ’ of a cluster of returns. Clusters are extracted within one
Geometric features are first described. We then show heean based on a simple distance criteria: returns closer tha
visual features can be extracted via the registration of thethreshold (we used one meter in our applications) are
laser data with respect to the imagery. Finally, we explaessociated to the same cluster. Based on the identifiecedust

Geometric Features



various quantities are computed. Featfikgineris iS Obtained useful in classifying cars which from most point of views bav
as the error of the fit of a 2D spline to the cluster of returna. relatively low texture maxima due to their smooth surface.
Featuref.gigvan is the largest eigen value of the covariance fi, andf,g, contain a 3D histogram of the RGB and HSV
matrix describing the cluster. While not being ranked ambngsata in the ROI, respectively. HSV and RGB histograms were
the very first features, cluster based features turned outstected in the representation of each of the seven classes.
be useful in classifying all of the seven classes we havef, are histograms of gradients types of features [27].
considered in this work. Note that all the returns of onetelus These features were selected by the learning algorithm for
receive the same cluster features. the modeling of the classes car, pedestrian and grass.

The featuref,,,.xrilter IS Obtained as the maximum response f},,,, contains Haar features computed in the return's ROI
of a filter run in a window centred on a given return. Thiaccording to the integral image approach proposed in [40].
filter is essentially a low pass discrete filter processing Haar features were useful in classifying the classes treetr
scan represented as a sequence of angles. This filter psovigied foliage.

a multi-dimensional filter feature whose various dimension fj;,.s contains a set of quantities describing the lines found
have proven useful in detecting the class car and the cldgsa line detector [1] in the ROI. These quantities include th
pedestrian. number of extracted lines, the maximum length of these lines

While our approach for feature design is not related to tland a flag which indicates whether the line of maximum length
work presented in [4], the underlying philosophy is similaiis vertical. These features have been useful in classifgihg
Future work will investigate some of the features proposest the seven considered classes.
in [4] for sub-maps matching in order to use them in a f; contains the Sift descriptor [21] of the ROI's center
classification system. as well as the number of Sift features found in the ROI. Sift
features were selected during the training of various nwodel
B. Visual Features to represent the classes grass and other.

As will be further detailed in the next section, a CRF ) ) . ) )
learned with a logitboost based algorithm can not only if=- Feature Selection and Dimensionality Reduction
tegrate geometric information but also any other type ohdat The VEB algorithm which is used in this work to learn
and, in particular, visual features extracted from monaculthe parameters of the CRF models is based on the logitboost
color images. As a consequence, the proposed framework gisocedure. More precisely, VEB is based on a version of log-
includes procedures to extracts visual features. A regibn ithoost which uses decisions stumps as weak classifiers. Wit
interest (ROI) is defined around the projection of each lastiis type of learning algorithm, the dimensions of the featu
return into the corresponding image and a set of featurgsctor can be ranked according to their ability to discrianén
is computed within this ROI. The parameters required the various classes in the data. Given one dimension of the
carry out the projection are defined through the camera lageature vector, a decision stump defines one threshold and
calibration procedure developed in [41]. The size of the ROl two values in order to best separate the samples according
changed depending on the range of the return. This providestheir labels and returns a number evaluating how well the
a mechanism to deal with changes in scales across imaggsa is separated. During the training phase, logitbooisdsu
It was verified that the use of a size varying ROl improves decision stump for each dimension of the feature vector
classification accuracy by%. and uses the quality estimate of each decision stump totselec

In order to obtain a visual feature vectfys,, of constant the feature which best improves the classification accuracy
dimensionality despite a size varying ROI, we design visiokieeping track of the successive features selected by loagth
features which are independent of the patch’s size. Thisgeovides a way to identify the most useful features pointad o
achieved by features which are distributions (e.g. an gisim in the two previous sections.
with a fixed number of bins) and whose dimensionality is Feature selection as performed by logitboost based on
constant (e.g. equal to the number of bins in the histograniecision stumps can also be seen as a dimensionality reducti
A larger ROI leads to a better sampled distribution (e.g. grocedure. One hundred rounds of logitboost will resulhia t
larger number of samples in the histogram) while the actusglection of one hundred dimensions of the original feature
feature dimensionality remains invariant. vector. This implies that during the testing phase only ¢hes

The overall visual feature vectdis, associated to eachone hundred selected features need to be computed allowing
return has a dimensionality of239 and results from the the computations times to be maintained acceptable with
concatenation of 51 multi-dimensional features computed iespect to real-time requirements; see table VI. In aduitio
the ROI. We only describe here the subset of features whisimce the dimensions of the feature vector are processed one
turned out to be the most useful: at a time, no overall normalization of the feature vector is
©6) required which is an advantage with respect to more standard

dimensionality reduction techniques such as [11, 15, 3B, 36

f,,r contains texture information encoded as the steerableAnother interesting aspect of logitboost is linked to its
pyramid [34] coefficients of the ROI as well as the minimunability to process multi-modal data. Features computechfro
and the maximum of these coefficients. These extrema am additional modality can be concatenated to the overall

fvisu = [fpyn thV7 frgb7 fhog7 fhaar, flin057 fsiftu .. ]



feature vector as it was done with laser and vision featuresly, third using both geometric and visual features, anuitfo
in section V-A and V-B. The feature vector in that sense playgith geometric and visual features integrated over a pesfod
the role of a proxy between the various modalities and th® times slices. The second line of table | indicates the rarmb
learning algorithm. of time slices in the network used to perform classification.
Logitboost has the advantage of finding the best featurti means that a network as presented in Fig. 1(a) was used.
within a given set but does not compensate for non inforreatiV 10 " refers to the classifier shown in Fig. 1(b) instantiated
features. This explains why, as suggested by the previoos twith 10 unlabeled scans prior and posterior to the labelad.sc
sections, the features have to be carefully engineered. Two types of classifiers were used: CRFs and logitboost
classifiers. While a CRF takes into account the neighbor-
hood information to perform classification, logitboostrieaa
A. Experimental Setup classifier that only supports so called independent idalhyic

Experiments were performed using outdoor data collectéigtributed classificationi.e., which does not use neighbor-
with a modified car traveling at a speed of 0 to 40 km/Rood information [13]. This is equivalent to using only the
in a university campus and in the surrounding urban areat.functions in Eq. 2. Logitboost is used here for comparison
The scenes typically observed contained buildings, wedlss, Purposes in order to investigate the gain in accuracy obdain
bushes, trees and lawn fields. We present results using W’I a classifier that takes into account the structure of the
different datasets in order to demonstrate the generafity &an.
the proposed framework. One dataset was acquired in Sydneyl he first three columns of table | show that classification
Australia while the other was one acquired in Boston, MA€sults are improving as richer features are used for legrni
US. Each of the two datasets approximate|y Correspondshtd:an also be seen that the CRF models consistently lead to
20 minutes of logging with a monocular color camera and 28)ightly more accurate classification.
laser scanners. To acquire the two datasets different leshic In addition, as presented in Section IV-B, a CRF model can
and different sensor brands were used. readily be extended into a spatio-temporal model. Therlatte

The evaluations of the various classifiers are performé@Rds to an improvement of almosi; in classification accu-
using n-fold cross validation. This involves breaking dowfacy (right column of table I). This shows that the proposed
the dataset into n subsets of equal size in order to trainSgatio-temporal model, through the use of past and posterio
classifier on n-1 subsets and test it on the remaining subdaformation, performs better object recognition. The sras
Training and testing are repeated n times by isolating eal¢ bottom right of the table refers to the fact that logititoo
time a different subset for testing. All the results present does not allow the incorporation of temporal informatiorain
below are averaged over the n cross validation tests (n beRifightforward manner.

VI. EXPERIMENTAL RESULTS

either 5 or 10 depending on the experiments). In order to evaluate the difficulty of the classification task
] ] we also performed logitboost classification using visuahHa
B. Spatial and Temporal Reasoning features, which results in the well-known approach progose

1) Sydney datasetin this first set of experiments we by Viola-Jones [40]. The accuracy of this approach is 77.09%
consider two classes: car and other. Seven classes resailtandnich shows that even our single time slice approach (83)26%
presented in Section VI-D. Table | summarizes the experimeputperforms the reference work of Viola & Jones. The im-
tal results in terms of classification accuracy. The acdasacprovement in accuracy obtained in our tests comes from use
are given in percentages and computed using 10-fold cradsricher features as well as the aptitude of a CRF to capture
validation on a set of 100 manually labeled scans selectednigighborhood relationships.
the Sydney dataset. For each cross validation, differemtetso  Fig. 5 shows four examples of classification results. It
were trained with 200 iterations of VEB. VEB was computedan be seen that the spatio-temporal model gives the best
allowing learning of pairwise relationships only afteréagon results. While the logitboost classifier tends to alternatesct
100. We found that this procedure increases the weights asfd incorrect classification across one scan, the ability of
local features and improves classification results. the CRF classifiers to capture the true arrangement of the

labels {.e. their structure) is illustrated by the block like
Training set | geo only | visu only | geo+visu| geo+visu distribution of the inferred labels. Figure 5(b) shows theee

sl’;éi??frt,?; f;n;?jel ! ! ! F10 classifiers failing in a very dark area of the image (rightfu t
CRF 68.9 818 83.3 88.1 image). In the rest of the image which is still quite dark, as
logitboost 67.6 81.5 83.2 X well as in images with various lighting conditions (Fig. h(a
TABLE | 5(c) and 5(d)) the spatio-temporal model does provide good
CLASSIFICATION ACCURACY FOR A CAR DETECTION PROBLEM(IN %) classification results.

2) Boston dataset:To demonstrate the generality of the
proposed framework, the comparisons between the different
The first line of table | indicates the types of features used $etups involved in table | were also performed using the
learn the classifier. Four different configurations wereettis Boston dataset. The corresponding results are indicatdbia
first using geometric features only, second using visualifea Il and were obtained from 5-fold cross validation on a set of
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Fig. 5. Examples of classification results. The label of tharres are displayed with the marketsin yellow ando in magenta for the class car and the
class other respectively. The height of the bar above edamrespresents the confidence associated with the inféaed. The color of the bar indicates the
inferred label: red means that the inferred label is car arah egfers to the label other. The classifiers used to gentratdifferent estimates are precised
on the left.

400 manually labeled scans. For this second set of tests, thescan links in these networks do not strictly correspond
classes of interest were also car and other. to temporal links (since the 6 lasers fire at the same time)
Fig. 6 shows an example of image extracted from the Bostdtese networks can be thought of as belonging to the category
dataset. The laser scanner used to acquire this data is a“gDrline filtering” described in Section IV-B. Having 6 lase
lidar sensor composed of 64 2D laser scanners positionedsganners looking downwards, each of them with a slightly
the device with increasing pitch angle. To perform this sérger pitch angle than the previous one, is approximativel
of experiments we used the data provided by 6 of these 6guivalent to having one downward looking scans obtained at
lasers. Unlike in the Sydney dataset, these lasers are daninwB consecutive time steps. As a consequence, this setuglpeovi
looking. Examples of scans generated by these 6 lasers @agévorks of the type “on-line filtering”.
displayed in Fig. 6. The results in table Il show the same trends as table I.
The 6 selected lasers are characterized by a slightly differ As more features are added (moving from the left column
pitch angle which allows us to build networks from the lasdp the right column of the table), the classification accuyrac
returns such as the one displayed in Fig. 6. While the scanereases. Classification accuracy is also increased wéiag u



Training set geo only | visu only | geo+visu | geo+visu
Number of time 1 1 1 -5
slices in the model
CRF 81.8 85.0 88.5 90.0
>\>,>\>>>2 logitboost 814 82.6 88.0 X
TABLE Il

CLASSIFICATION ACCURACY FOR A CAR DETECTION PROBLEMIN %)

demonstrates the ability of the modified version of VEB
presented in algorithm 1 to perform semi-supervised legtni

In Fig. 7(b), the total number of scans used is kept constant
and the proportion of unlabeled returns is increased. Kig). 7
shows that the original accuracy is maintained with only 40%

Fig. 6. An example of image from the Boston dataset displayetl the  of |abeled data. This second result demonstrates that a semi
associated projected laser returns (in yellow). A part ef @RF network built

from these laser returns in displayed in blue in the insehéntop left comer. SUPErvised approach can be expected to critically dectbase
The image in this inset corresponds to a magnification of the micated required amount of labeled training data thereby redudieg t

by the arrow. burden associated with manual annotation.

CRFs, which unlike logitboost, enforces consistency in thi =
sequence of estimates. “-5” in the right column refers to thiz=
“on-line filtering” networks which are built by connecting 5 3.
unlabeled scans before each labeled scan. As with the Sydrg S /28N WU S S
dataset, temporal information further improves perforoesn

It is interesting to remark that the classification accugsci
achieved on this second dataset for the car detection proble : : : :
are similar to the ones achieved on the Sydney dataset: t ° umber of added uniabeled seans * " oluniabeled training pts
overall accuracy is about 90% in Boston dataset and 88% in @) (b)
the Sydney dataset. The resolution of the imagery as well as _ ) _ _
the density of the laser returns was quite different betweéﬁ' 7. 'Be_hawor of the semi-supervised learner in a car tieteproblem.

) . . ; ach point in the two plots corresponds to the average paefioce of 10 one-

the two datasets: the image size is [240x376] in the Bost@Re-slice models learnt by cross validation. () The numbdalodled scans
dataset and [756x1134] in the Sydney dataset; on average 800ed to 30. As more unlabeled scans are added to the traggihdabeled

laser returns were available per image in the Boston data$8fs are spread evenly across the training set while thl number
iS maintained constant. This plot shows that the classifinaticcuracy is

against 100 in the Sydney dataset. In spite of these diff®®n increased by adding unlabeled samples. (b) The trainingceetsin 90 scans
the proposed framework provides comparable results whiaf the testing sets contain 10 scans. The x coordinate means% of
demonstrates its applicability to various datasets randomly chosen returns in each of the 90 scans are unlabEtesl.plot

. . . ’ . shows that classification accuracy is maintained with onBt 4 the original

With respect to the first experiments, the lower resolutibn @peled set.

the vision data on one hand, and the larger number of returns
available per image on the other hand, lead to a vision ¢lassi
W@th an accuracy (8_2_.6%) only slightly above the one obthingy Map Building
with the laser classifier (81.4%). In the Sydney dataset, ehmu ) ) o
richer imagery compared to the scan density resulted ir943.9 'NiS section presents the classification performances ob-
difference in accuracy between the vision only and the lag@ned with the three models introduced in Section VI-D. For
only classifiers. As the gap between the information cordént tese three networks, the hidden state of each node ranges ov
the two modalities decreases, the respective classifiplagis "€ S€ven object types: car, trunk, foliage, people, wailsg,
comparable performances while the proposed framework p@Rd other (other referring to any other object type). Result
mits maintaining the overall accuracy by exploiting the thef0r local classification are first presented in order to pievi

Classification accuracy

classificat

3

of each modality. a baseline for comparison. All the evualtions were perfarme
) ) ) using 10-fold cross validation.
C. Semi-Supervised Learning The characteristics of the training and testing data aesfag

Fig. 7 presents car detection results obtained with modeiger the 10-fold cross validation sets are provided in tdlble
learnt on datasets containing a progressively increasimauat The Sydney dataset was used for these experiments since it
of unlabeled data. The Sydney dataset was used for this eettains horizontal 2D laser scans which can be registered
of experiments. Fig. 7(a) shows that adding unlabeled datsing ICP. The registration of downward looking scans is a
while maintaining the number of labeled returns constantore complex problem which explains why these mapping
improves classification accuracy. This result experinlBntaexperiments were not reproduced using the Boston dataset.



Length vehicle | # scans| # nodes

rajectory total total b) CRF with built-in link selection: the accuracy
_ labeled | labeled achieved by this second type of network is 91.4% which
Training set| 2.6 km sl B corresponds to 1.0% improvement in accuracy. Since the
Testing set 290 m 427 7511 local accuracy is already high, the improvement brought by
8 le the network may be better appreciated when expressed as a
TABLE il reduction of the error rate of 10.4%. This result validates t
CHARACTERISTICS OF THETRAINING AND TESTING SETS claim that a set of link types encoding a variety of node-to-

node relationships is required to exploit the spatial datiens
in the laser map.

1) Local Classification:A seven-class logitboost classifier 3) 1€€ based CRF classificationthe two types of net-
is learned and instantiated at each node of the network 4&rks evaluated in the previous section contain cycles and
the association potential (Eq. 2). Local classificationi,e, '€duire the use of an approximate inference algorithm. The
classification which does not take neighborhood informmatid"®e based CRFs presented in Section IV-C.3 avoid this issue
into account is performed and leads to the the confusi@hd @llow the use of an exact inference procedure (BP in its
matrix presented in table IV. This confusion matrix disgiay NN 100y version). _
strong diagonal which corresponds to an accuracy of 90.4%. AThis third type of network achieves an accuracy of 91.1%
compact characterization of the confusion matrix is givgn Bvhich is slightly below the accuracy given by a Delaunay CRF
precision and recall values. These are presented in tableWjth link selection while still improving on local classitition.
Averaged over the seven classes, the classifier achievekioyvever, the major improvement brought by this third type of

precision of 89.0% and a recall of 98.1%. network is in terms of computational time. Since the network
has the complexity of a tree of depth one, learning and
Truh \ Infered | _Car_|_Trunk | Foliage | People | Wall | Grass | Other inference, in addition to being exact, can be implementey ve
car (1974 A LT 2 3 e o efficiently. As displayed in table VI, a tree based CRF is 80%
Foliage 25 8 1451 0 24 0 71 faster at training and 90% faster at testing than a Delaunay
People 6 2 2 145 | 0 0 6 CRF. Since both network types use as their association po-
Wall 6 6 21 0 513 1 39 . . .
Grass 0 0 1 1 1 126 ) tential the seven-class logitboost classifier, they useséime
Other 54 5 123 3 24 0 811 features which are extracted from a scan and its associated
TABLE IV image in 1.2 secs on average. As shown in table Ill, the test
LOCAL CLASSIFICATION: CONFUSIONMATRIX set contains 7511 nodes on average which suggests that the

tree based CRF approach is in its current state very close to
real time, feature extraction being the main bottleneck.

In % Car | Trunk | Foliage | People | Wall | Grass | Other Feature Extraction Teamm Inference
Precision | 96.6 81.7 91.3 90.1 87.5 95.4 79.5 traini 9 . test st
Recall | 97.0 | 993 | 964 | 99.7 | 985 | 999 | 954 (per scan) (training sef) | (test sef)

. - . - - - - Delaunay CRF 1.2 secs 6.7 mins 1.5 mins

TABLE V (with link selection)
Tree based CRF 1.2 secs 1.5 mins 10.0 secs
LocAL CLASSIFICATION: PRECISION AND RECALL
TABLE VI

COMPUTATION TIMES
2) Delaunay CRF Classification:
a) CRF without built-in link selection:the accuracy
achieved by this first type of network is 90.3% providing no 4) Map of Objects:This section presents a visualization of
improvements on local classification. As developed in ®ectisome of the mapping results. It follows the lay out of Fig. 8
IV-C.2, the modeling of the spatial correlation is too cearsn which the vehicle was travelling from right to left.
since it contains only one type of link which cannot accuyate At the location of the first inset, the vehicle was going up a
model the relationships between all neighbor nodes. Asstaight road with a fence on its left and right, and, from the
consequence, the links end up representing the predominfaneground to the background, another fence, a car, a garkin
relationship in the data. In the dataset, the predominaneter and bush. All these objects were correctly classifigu w
neighborhood relationships are of the type “neighbor nod#® fences and the parking meter identified as other.
have the same label”. The resulting learned links enforceln the second inset, the vehicle was coming into a curve
this “same-to-same” relationship across the network headifacing a parking lot and bush on the side of the road. Four
to over-smoothed estimates and explaining why this class returns mis-classified as other can be seen in the backgajund
networks fails to improve on local classification. To vetifjat  the image. The class other regularly generated false pesiti
a better modeling of the CRF links improves the classificatiovhich is possibly caused by the dominating number of trginin
performance, we now presents results generated by Delausaynples of this class. Various ways of re-weighting theingj
CRFs equipped with additional link selection nodes (as showamples or balancing the training set were tried without
in Fig. 3). significant improvements.



While reaching the third inset, a car driving in the opposite 0005
direction came into the field of view of our vehicle's sensors
The trace let by this car in the map appears in the magnified ol
inset as a set of blue dots along side our vehicle’s trajgctor
Dynamic objects are not explicitly considered in this work.
They are assumed to move at a speed which does not preven
ICP from performing accurate registration. In campus tygfes
areas where this data was acquired, this assumption hasrprov
to be valid. In spite of a few mis-classifications in the bush
on the left side of the road, the pedestrians on the side walk
as well as the wall of the building are correctly identified.

Entering the fourth inset, our vehicle was facing a second
car, scene which appears in the map as a blue trace inteigecti 0875
our vehicle’s trajectory. Apart from one mis-classifieduret
on one of the pedestrians, and one mis-classified returneon th - ,
ree in the right o the image, the inferred labels are adeuraf,% &, EMPITca anasi of e comiergence of ooy BF, B kel
Note that the first right return is correctly classified ith@$ing  function of the number of loopy BP iterations. On the right torresponding
the accuracy of the model at the border between objects. computation times. The red plots refer to local classification
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E. Convergence Analysis of the Inference

As mentioned in Section IlI-B, convergence in graphs with
cycles is not guaranteed but can be experimentally chetiedgqding unlabeled samples to the training set. Using partial
this section, the converge of loopy BP is e>_<p|ored. The B")St%beling, our approach can be applied to far larger and hence
dataset was used for this last set of experiments. The b#hayjiyerse sets of laser scans and images, which results ierbett
of loopy BP in a cyclic network was analyzed using a set 4Q@bneralization performance. Three different types of neites
manually labeled scans and 5-fold cross validation.  \yere introduced to build semantic maps and evaluated on

The evaluation is summarized in Fig.9. Inference is peg seven-class classification problem where an accuracy of
formed in each of the networks involved in the cross val@ati 9104 was achieved. The mapping experiments brought some
with a varying number of loopy BP iterations. The accuraciggsights on the smoothing role of CRF links and we showed
provided correspond to the classification of the two classgg, over-smoothing can be avoided by creating networks
car and other. The networks used for these tests are the oRgfh automatically select the types of links to be used.
described in section VI-B.2. Computation times were evaluated showing that the larger

The left plot of Fig. 9 shows that on average loopy BRetworks involved in our study are close to being real-time
convergences after about 5 iterations where the accuragyuiring about 11 seconds for inference on a set of 7500
reaches a plateau and is higher than the accuracy obtaiRgfes. Finally, an empirical study of the inference aldonit

with local classification. The right plot of Fig. 9 shows thas  yerified its convergence which was observed to be reached in
expected, the inference time increases linearly with theb®r 504t 5 iterations.

of loopy BP iterations. Knowing that loopy BP convergences _ _
in about 5 iterations permits maintaining the computation These various experimental results have demonstrated that

times as small as appropriate. CRFs stand as a general solution to the problem of classifica-

tion in robotics applications.
VIl. CONCLUSIONS )
I . . While the proposed framework was developed for 2D laser
A general probab|l!§t|c framework for mul'q-class rnult"s.cans, the set of experiments on the Boston dataset (Sec-
sensor object recognition was presented. '_I'h|3 frameyvorktil n VI-B.2 and VI-E) present a first simple extension to 3D
based on CRFs which were used as a flexible modeling 192 er data and suggest that this CRF framework is not only
applicable to 2D laser points.

to automatically select the relevant features extracteswh fihe
various modalities and represent different types and alatd
temporal correlations. Current investigations aim at developping CRF models able

Based on two datasets acquired with different sensots, deal in real-time with 3D lidar data such as the one
eight different sets of results were presented. The beraffitsavailable at [6]. 3D lidars can provide up to 1.5 million
modeling spatial and temporal correlations was first demodata points per second which makes a point-wise reasoning
strated on a car detection problem where an increaset@® computationally intensive. We are working on grid based
accuracy of up to 5% was obtained. The experimental studpproaches where the classifier is designed to estimate the
of the proposed semi-supervised version of VEB suggestiatbels of the grid cells rather than the labels of individual
that the classifier accuracy can be maintained using onBturns, using the grid as a way to compress the incoming
40% of the original labeled set and can be increased Bgw of laser returns.
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Fig. 8. Visualization of 750 meters long portion of the estietmap of objects with total length of 3km. The map was generated) ihe tree based CRF
model. The legend is indicated in the bottom left part of the@&ne. The color of the vehicle’s trajectory is specifiedhie bottom right part of the same
plane. The coordinate in the plane of the map are in meters. iBaehis magnified and associated to an image displayed witmfeeed labels projected
back onto the original returns. The location of the vehislstiown in each magnified patch with a square and its orientatiticated by the arrow attached
to it. The laser scanner mounted on the vehicle can be seem ibattom part of each image.
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