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Abstract— This paper presents a general probabilistic frame-
work for multi-sensor multi-class object recognition based on
Conditional Random Fields (CRFs). The proposed methodology
learns a model for spatial and temporal relationships which is
able to integrate arbitrary sensor information by automatically
extracting features from data. Spatial and temporal reasoningare
unified in the framework as various instances of the more general
structured classification problem. We demonstrate the benefits of
a spatio-temporal probabilistic model for the problem of detecting
seven classes of objects in an urban environment using laser and
vision data. We describe how this framework can be used with
partially labeled data, thereby significantly reducing the burden
of manual data annotation. Finally, we show how this framework
can be applied to the generation of large-scale semantic maps.

I. I NTRODUCTION

Reliable object recognition is an important step for enabling
robots to reason and act in the real world. A high-level percep-
tion model able to integrate multiple sensors can significantly
increase the capabilities of robots in tasks such as obstacle
avoidance, mapping, and tracking.

Although object recognition has been a major research topic
in the computer vision community, direct application of the
algorithms to robotics problems is not always feasible. There
are three main reasons for this. First, robotics applications
require real-time object recognition. While real-time algo-
rithms for face detection do exist [40], real-time recognition
of general objects is still under development. Second, robots
can be equipped with different types of sensors including
ranging and visual. The integration of these sensors for ob-
ject recognition can complement the visual information by
providing additional geometric properties of observed objects.
Multi-sensor fusion for object recognition is thus a desirable
feature to be considered in robotics perception. Third, when
navigating, robots observe the same objects from different
locations and at different times. This is conceptually different
from most object recognition algorithms in computer vision
where observations are considered independent. Probabilistic
models able to integrate observations at different times and
positions are expected to perform more robustly in complex
outdoor environments with variable illumination and multi-
scale observations.

In order to address these three aspects of the object recogni-
tion problem, several groups in the robotics community have
developed techniques in which classification is integratedinto

a mapping solution [3, 9, 20, 23, 29]. Such representations
can be extremely valuable since they enable robots to perform
high-level reasoning about their environments and the objects
therein. For instance, in search and rescue tasks, a mobile robot
that can reason about objects such as doors, and places such
as rooms, is able to coordinate with first responders in a much
more natural way. It can accept commands such as “Search the
room behind the third door on the right of this hallway”, and
send information such as “There is a wounded person behind
the desk in that room” [16]. As another example, consider
autonomous vehicles navigating in urban areas. While the re-
cent success of the DARPA Urban Challenge [5] demonstrates
that it is possible to develop autonomous vehicles that can
navigate safely in constrained settings, successful operation in
more realistic, populated urban areas requires the abilityto
distinguish between objects such as cars, people, buildings,
trees, and traffic lights.

As a step towards the long-term goal of equipping a robot
with the ability to understand its environment, we propose a
classification framework based on Conditional Random Fields
(CRFs). CRFs are discriminative models for classification of
structured (dependent) data [17]. We show how CRFs provide
a flexible framework in which different types of spatial and
temporal dependencies can be represented demonstrating that
these probabilistic models stand as a general solution to the
problem of classification in robotics applications.

The flexibility of CRF-based representations is presented
using various models of increasing complexity integrating
2D laser scans and imaging data. We start with a simple
chain CRF formed by linking consecutive laser beams in the
scans. This configuration models the geometrical structureof
a scan and captures the typical shapes of objects. We then
incorporate temporal information by adding links between
consecutive laser scans based on the correspondences obtained
by a scan matching algorithm. This leads to a network in
which estimation is equivalent to a filtering algorithm, thus
taking into account temporal dependencies in addition to
spatial information. This network, and its associated estima-
tion machinery, also have the particularity to allow temporal
smoothing as the network grows with the registration of in-
coming scans. Finally, we show that a CRF can be used to
capture the various structures characterizing a geometricmap.
This involves defining a network on a set of already aligned



laser scans and running estimation as a batch process. Via the
obtained map sized network, classification is performed jointly
across the whole laser map and can, in turn, exploit the larger
geometric structures in order to improve local classification.

By building on the recently developed Virtual Evidence
Boosting (VEB) algorithm [18], the algorithm used to train the
various models is able to automatically select features during
the learning phase. The expert knowledge about the problem
is encoded as a selection of features capturing particular prop-
erties of the data such as geometry, color and texture. Givena
labeled training set, VEB computes weights for each of these
features according to their importance in discriminating the
data. Additionally, an extension of VEB for semi-supervised
learning is presented to address partially labeled datasets.

This paper is organized as follows. Related work is dis-
cussed first, in Section II. Section III provides a short introduc-
tion to CRFs as well as a description of the associated learning
and inference techniques. The various models at the core of
the proposed framework are presented in Section IV. This is
followed by a description of the features used for classification.
Experimental results are presented in Section VI. Finally,we
conclude in Section VII.

II. RELATED WORK

Object recognition is a long-standing problem in robotics
and computer vision. Most of the approaches in computer vi-
sion aim at recognizing objects from single images. Classifiers
are trained on labeled data and used to either classify images
as containing or not an instance of the object, or to segment
the object in the image [10, 38, 40]. In robotics, the problem
is different. Recognition can be performed in a sequence of
images, in many cases combined with other sensor modalities.

Within the robotics community, recent developments have
created representations of the environment integrating more
than one sensor modality. In [26], a 3D laser scanner and
loop closure detection based on photometric information are
brought together into the Simultaneous Localization and Map-
ping (SLAM) framework. This approach does not generate
a semantic representation of the environment which can be
obtained from the same multi-modal data using the approach
proposed here.

In [32], a robust landmark representation is created by prob-
abilistic compression of high-dimensional vectors containing
laser and camera information. This representation is used in
a SLAM system and updated on-line when a landmark is re-
observed. However, it does not reason about landmark classes
and therefore does not support the higher-level object detection
described in this work.

Object recognition based on laser and video data has
been demonstrated in [24]. Using a sum rule, this approach
combines the outputs of two classifiers, each of them being
assigned to the processing of one type of data. More recently,
Posner and colleagues combine 3D laser range data with
camera information to classify surface types such as brick,
concrete, grass, or pavement in outdoor environments [30,
31]. The authors classify each laser scan return independently

which can disregard important neighborhood information. As
other researchers have shown, classification results can be
improved by jointly classifying laser beams using techniques
such as associative Markov networks [39] or conditional
random fields [8].

Structured classification is also demonstrated in [29] where
objects are classified based on monocular imagery and 3D
laser data. This approach does not incorporate temporal in-
formation and while it is designed to handle multi-modal
data, user-specified inputs are required for each modality.A
structured model is also used in [2] where the segmentation
of objects from 3D laser scans is based on a Markov Random
Field. The model is trained discriminatively using a max-
margin objective function. The features used were simple geo-
metric features capturing plane properties of groups of points.
The authors considered four classes: ground, building, tree
and shrubbery. Friedman and colleagues introduced Voronoi
Random Fields, which generate semantic place maps of indoor
environments by labeling the points on a Voronoi graph of a
laser map using conditional random fields [14].

The particularity of this work is to combine multi-modal
data fusion, structured reasoning and temporal estimationinto
one class of models. This paper builds on previous work by
addressing the classification problems tackled in [8, 9] with
a single modeling approach. Its key contribution is the pre-
sentation of a probabilistic framework based on CRFs which
unifies spatial and temporal reasoning as various instancesof
the more general structured classification problem.

III. C ONDITIONAL RANDOM FIELDS

This section provides a brief description of conditional ran-
dom fields (CRFs) and their associated learning and inference
techniques.

A. Model Description

Conditional random fields (CRFs) are undirected graphical
models developed for labeling sequence data [17]. CRFs
directly model p(x|z), the conditional distribution over the
hidden variablesx given observationsz. CRFs factorizep(x|z)
as:

p(x | z) =
1

Z(z)

∏

c∈C

φc(z,xc), (1)

whereZ(z) =
∑

x

∏

c∈C φc(z,xc) is the normalizing partition
function.C is the set of cliques in the CRF graph. Theφc are
clique potentials, which are functions that map variable config-
urations to non-negative numbers. Intuitively, these potentials
capture the compatibility among the variables in the clique: the
larger the potential value, the more likely the configuration.
Potentials are constrained to log-linear functions, and learning
a CRF requires learning the weights of these functions.

The proposed framework employs pairwise CRFs, a partic-
ular type of CRFs which can be formulated as follows:

p(x|z) =
1

Z
exp

(

wA

∑

i

A(xi, z) + wI

∑

e

I(xe1, xe2, z)

)

(2)



Here, the term1/Z is the normalization factor,i ranges
over the set of nodes ande over the set of edges. The
functionsA and I are the association and interaction poten-
tials, respectively. An association potentialA is a classifier
which estimates the object type of nodexi using the set of
observationsz but does not take into account information
contained in the structure of the neighborhood. An interaction
potentialI is a function associated to each edgee of the CRF
graph, wherexe1 andxe2 are the nodes connected by edgee.
Intuitively, interaction potentials measure the compatibility be-
tween neighboring nodes and act as smoothers by correlating
the estimation across the network.

B. Inference

Inference in CRFs can estimate either the marginal distribu-
tion of each hidden variablexi or the most likely configuration
of all hidden variablesx (i.e., MAP estimation), as defined
in Eq. 1. Both tasks can be solved using belief propagation
(BP) [28], which works by sending local messages through the
graph structure of the model. Each node sends messages to its
neighbors based on the clique potentials and on the messages
it receives.

BP provides exact results in graphs with no loops, such
as trees or polytrees. However, since the models used in our
approach contain various loops due to temporal relationships,
we apply loopy belief propagation (loopy BP), an approximate
inference algorithm that is not guaranteed to converge to
the correct probability distribution [25]. Fortunately, in our
experiments, convergence of loopy BP was observed in few
iterations for most cases. An empirical convergence analysis
is provided in Section VI-E.

C. Learning via Virtual Evidence Boosting

Learning a CRF model involves determining the quantities
A, I, wA andwI in Eq. 2. CRFs are trained discriminatively
by maximizing the conditional likelihood (Eq. 1) of labeled
training data. This optimization is typically performed by
gradient-based techniques such as L-BFGS, where gradients
are computed using inference in the CRF model [35]. In
order to avoid computationally complex inference for gradient
computations, several researchers applied pseudo-likelihood
training, which does not require running inference [19].

While CRFs can handle high-dimensional continuous and
discrete features, the integration of continuous featuresis not
straightforward. This is due to the fact that the incorporation
of raw, continuous features in CRFs is similar to uni-modal
Gaussian likelihood models in generative approaches such
as hidden Markov models. Such simple likelihoods are not
well suited to model more complex, multi-modal features and
sensor data. Recently, researchers have applied boosting in
order to discretize continuous features into binary threshold
functions, called decision stumps [14]. The thresholds are
learned by minimizing an exponential loss function of the
training data [12]. The decision stumps are then used as binary
features in a CRF, and the weights for these features are
learned using regular CRF training [14].

More recently, Liao and colleagues introduced virtual evi-
dence boosting (VEB), which incorporates feature discretiza-
tion into CRF training [18]. VEB jointly learns an appropriate
discretization of continuous features, the weights of these
features, and the weights of neighborhood potentials of the
CRF. In essence, this is obtained by performing boosting on
both the features and the neighborhood potentials of the CRF.
VEB has demonstrated superior performance on both synthetic
and real data. Furthermore, the automatic feature discretization
makes VEB extremely flexible and allows the incorporation
of arbitrary, continuous and discrete features. Since model
flexibility is crucial in the context of our object recognition
task, we chose to use VEB for learning the parameters of our
CRFs.

Through VEB, a CRF model can not only be learnt with
fully labeled data but also with partially labeled data. This is
achieved by disregarding the unlabeled data when learning the
logitboost classifier1 which plays the role of the association
potential A in Eq. 2. However, once learnt, this association
potentialA can be applied to every single node, whether it is
labled or not, in order to generate a local distribution at each
node. This local belief is then propagated in the network via
BP. In that sense, unlabeled nodes do not contribute to the
learning of the interaction potentialA but do contribute to the
learning of the quantitiesI, wA andwI in Eq. 2.

The slightly modified VEB training is described in Algo-
rithm 1. As specified by the condition at line 3, the local
logitboost learning does not use unlabeled data. However, the
learned logitboost classifier is applied at all the network nodes
(labeled and unlabeled) as the association potentialA which
generates each node’s local estimate. These local estimates are
then propagated in the network via BP (line 6 of the algorithm)
to provide the joint probability over the set of hidden states
x.

Algorithm 1 SemiSupervisedVEB

Input: CRF connectivity structure,M number of rounds of VEB, training

data (xi,zi), for unlabeled nodesxi=nan

Output: F

1 for m = 1, . . . , M

2 for i = 1, . . . , N

3 if xi 6= nan

4 Compute boosting weightswA(xi);

5 Compute boosting working responseri(xi);

6 Run BP using F to obtain virtual evidences{vei};

7 Computefm({vei, zi}) by least square regression

7 of ri(xi) to {vei, zi} using weightswA(xi);

8 UpdateF = F + fm;

A semi-supervised version of VEB was also proposed in
[22]. The main difference with the approach proposed here
is in the formulation of the conditional likelihood of the data
which is optimized during learning. The algorithm above max-
imizes the standard conditional likelihood in Eq. 1 while the

1Logitboost is the version of boosting used in the VEB algorithm.



formulation in [22] involves an additional term representing
the conditional entropy of the unlabeled data. As mentioned
by the authors, one drawback of this latter formulation is that
the resulting objective function is no longer convex.

IV. FROM LASER SCANS TO CONDITIONAL RANDOM

FIELDS

This section shows how the connectivity structure of a CRF
can be generated from laser data. Each node of the resulting
networks corresponds to a laser return whose hidden state
ranges over the objects types: car, trunk, foliage, people,wall,
grass and other (the class other representing any other typeof
objects).

This section is organized according to the increasing com-
plexity of the networks. The representation of spatial relation-
ships is first introduced by modeling single laser scans as chain
CRFs. Then, consecutive scans are connected according to
their alignment to model temporal relationships and effectively
implement operations such as filtering and smoothing. Finally,
three types of networks for the generation of semantic maps
are described.
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Fig. 1. (a) Graphical model of a chain CRF for a single time sliceobject
recognition. Each hidden nodexi represents one (non out of range) return in
a laser scan. The nodeszi represent the features extracted from the laser scan
and the corresponding camera image (observations). (b) Graphical model of
the spatio-temporal model. Nodesxi,j represent thei-th laser return observed
at timej. Temporal links are generated between time slices based on theICP
matching algorithm.

A. Spatial Reasoning

CRFs were selected as the basis for the proposed framework
due to their aptitude to encode structure in the classification
process. By “structure” we refer here to two different types
of dependencies: spatial and temporal. Spatial dependencies
come from the natural organisation of the data in subsets of
samples with the same label: spatially close samples are likely
to have to same label. Temporal dependencies come from over-
lapping observations performed at successive times: samples
generated by the same object and acquired at successive times
will be dependent. In the context of a CRF network, these
different types of dependencies are represented by varioussets
of links.

From a classification point of view, the structure of urban
environments is characterized by the proximity of laser returns
in the same objects. Thus, the first representation aims at
capturing such spatial dependencies. This is obtained by
instantiating the CRF model as a chain network representing
a particular laser scan, as illustrated in Fig 1(a). The links of
this chain network encode the spatial dependencies between
successive returns.

By performing probabilistic inference, the classes of all
the laser returns in the scan are jointly estimated. Local
observations are passed onto each node via the association
potentials A (Eq. 2) and the resulting local estimates are
propagated in the network via the pairwise potentialsI.

B. Temporal Reasoning

Due to the sequential nature of robotics applications, a
substantial amount of information can be gained by taking into
account temporal dependencies. Using the same elementary
components of CRFs, i.e. nodes and links, we now build a
model achieving temporal smoothing in addition to exploiting
the geometric structure of laser scans. This model is illustrated
in Fig. 1(b).

In this work, the links modeling the temporal dependen-
cies are instantiated such that they represent the associations
obtained by the Iterative Closest Point (ICP) matching algo-
rithm [42]. The resulting network connects successive chain
networks and is characterized by a cyclic topology. This
network models spatial correlations via links connecting the
nodes within one scan and temporal correlations via links
connecting the successive chain networks.

Corresponding to different variants of temporal state esti-
mation, our spatio-temporal model can be deployed to perform
three types of inference:

• Off-line smoothing: All scans in a temporal sequence
are connected using ICP. Loopy BP is then run in the
whole network to estimate the class of each laser return
in the sequence. During loopy BP, each node sends
to its neighbors the messages through structural and
temporal links (vertical and horizontal links in Fig. 1(b),
respectively).

• On-line fixed-lag smoothing: Here, scans are added to
the model in an on-line fashion. To label a specific scan,
the system waits until a certain number of future scans
becomes available. It then runs loopy BP which combines
past and future observations to estimate the network’s
labels.

• On-line filtering: In this case the spatio-temporal model
includes scans up to the current time slice resulting in an
estimation process which integrates prior estimates.

An example of on-line fixed-lag smoothing is presented
in Fig. 2. It can be seen in this figure that the sets of
nodes corresponding to the car and the cyclist are correctly
classified when a CRF is used to integrate spatial and temporal
information. The estimates given by local estimation,i.e.,
estimation which does not take into account the information
provided by the network links, are only partially correct.
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Fig. 2. Example of classification improvements obtained with the spatio-temporal CRF. Fig. (a) shows the estimates obtained with local classification (i.e.,
using only theA functions in Eq. 2). Fig. (b) shows the estimates obtained using a CRF as the model displayed in Fig. 1(b). The right part of each figure
shows a sequence of laser scans projected in a global frame. The estimates are indicated by the color of each return: red for car and blue for other. The black
links represent the temporal edges of the underlying network. The left part of each figure displays the last image of the sequence as well as the projection in
the image of the corresponding laser returns. In the sequenceused to generate this figure, a car is moving toward our vehicleand a cyclist is moving away
from our vehicle. Based on local classification (Fig. a), someof the returns are mis-classified since all the returns associated to the cyclist should be blue and
all the returns associated to the car should be red. Based on structured classification (Fig. b), only a very small number of returns are mis-classified.

Since these type of spatio-temporal network contains cycles,
inference is based on loopy BP and is as a result only approx-
imate. Alternatives to approximate techniques are discussed in
Section IV-C.3.

C. Map Building

We now show how a larger scale CRF network can be
built in order to generate semantic maps. The proposed map
building approach requires as an input a set of already aligned
2D laser scans. In our implementation, the ICP algorithm
was used to perform scan registration. However, in spatially
more complex data sets containing loops, consistently aligned
scans can be generated using various existing SLAM tech-
niques [37].

In this section, we present three types of CRFs which
will be compared to better understand how to model spatial
dependencies. We explain how the three different models can
be instantiated from aligned laser data and indicate which
inference technique is used in each case. Training of these
three networks is performed with partially labeled data. As
in the previous models, the hidden states represent the object
types of the laser returns.

1) Delaunay CRF:In this first type of network, the con-
nections between the nodes are obtain ed using the Delaunay
triangulation procedure [7] which efficiently finds a triangu-
lation with non-overlapping edges. The system then removes
links which are longer than a pre-defined threshold (50 cm
in our application) since distant nodes are not likely to be
strongly correlated. The resulting network is displayed asa
set of blue edges in Fig. 4.

Since a Delaunay CRF contains cycles, inference is per-
formed with loopy BP.

2) Delaunay CRF with link selection:Structured classi-
fication as performed by CRFs is expected to improve on
local classification since independence is not assumed,i.e.,
neighborhood information is modeled through interaction po-
tentials. However, as illustrated by the experimental results, the
Delaunay CRF previously described does not improve on local
classification. A too coarse modeling of the spatial correlations
is responsible for this result. The termsI of Eq. 2 are learnt
in this first type of network as a constant matrix instantiated
at each of the links. This gives the network a smoothing
effect on top of the local classification. Since all the links
are represented with the same matrix, only one type of node-
to-node relationship is encoded, for example: “neighbor nodes
should have the same label”. While this type of links may be
appropriate for modeling a single scan or in very structured
parts of the environment, it may over-smooth the estimates in
areas where the density of objects increases.

In order to model more than one type of node-to-node rela-
tionships, the network is augmented with an additional node
T for every pair of nodes{xi, xj} as displayed in Fig. 3. The
state of this node specifies which type of link is instantiated.
For this second type of network, we consider two types of
links encoding the following node-to-node relationships:(1)
neighbor nodes have the same label, (2) neighbor nodes have
a different label. Node T receives an observation S which is
the output of a logitboost classifier learned to estimate whether
node xi and xj are similar based on their respective local
observationzi andzj . The observation S is a direct observation
of the state of node T.

Since this second type of network contains loops, inference
is also performed using loopy BP.
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Fig. 3. The Delaunay CRF is presented on the left. On the right, a
representation of the additional infrastructure requiredin a Delaunay CRF
to perform link selection.

3) Tree-based CRF:The previous two types of networks
contain cycles, which implies the use of an approximate
inference algorithm. We now present a third type of networks
which is cycle free. To design non-cyclic networks we start
from the following observation: laser returns in a scan map are
naturally organized into clusters. These clusters can be identi-
fied by analysising the connectivity of the Delaunay graph
and finding its disconnected sub-components. Disconnected
components appear when removing longer links of the original
triangulation. In Fig. 4, the extracted clusters are indicated by
green rectangles.

Once the clusters are identified, the nodes of a particular
cluster are connected by a tree of depth one. A root node
is instantiated for each cluster and each node in the cluster
becomes a leaf node. The trees associated to the clusters in
Fig. 4 are represented by green volumes. A tree-based CRF
does not encode node-to-node smoothing but rather performs
smoothing based on the identified clusters of laser returns.The
root node does not have an explicit state. Its role is to allow
the instantiation of a network which does not contains cycles
and permit the use of an exact inference technique: with this
third type of network, belief propagation is used for inference.

The possibility of using exact inference is a strong advan-
tage since in the case of approximate inference (based on
loopy BP for example) the convergence of the algorithm is
not guarantied.

As suggested in [25], while convergence of loopy BP
in cyclic networks is not proven, it can be experimentally
checked. To evaluate the convergence of the inference proce-
dure in the two previous networks, an empirical convergence
analysis is presented in Section VI-E.

V. FEATURESFOR OBJECTRECOGNITION

As formulated in Eq. 2, the computation of the posterior
probability requires the set of observationsz. In this work,
z consists of high-dimensional feature vectorsf computed for
each scan return.f results from the concatenation of two types
of features which are geometric features and visual features:

f = [fgeo, fvisu], (3)

Geometric features are first described. We then show how
visual features can be extracted via the registration of the
laser data with respect to the imagery. Finally, we explain

Fig. 4. Representation of a Tree based CRF in one region of a graph generated
from data. The trajectory of the vehicle is displayed in orange. Laser returns
are instantiated as nodes in the network and connected usingthe Delaunay
triangulation. Nodes and edges are plotted in dark and lightblue, respectively.
Identified clusters are indicated by the green rectangles while root nodes are
plotted in green. Root nodes are connected to all nodes in thecluster but for
clarity this is represented by a rectangle enclosing the cluster.

how the use of logitboost (as a component of VEB), allows
the selection of the most effective features with respect tothe
classification task.

A. Geometric Features

Geometric features capture the shape of objects in a laser
scan. The geometric feature vector computed for one laser
return has a dimensionality of231 and results from the
concatenation of 38 different multi dimensional features.We
present here only the features which are the most useful for
classification and explain in Section V-C how such a ranking
of the features can be obtained. Some of these 38 features are
the following:

fgeo = [fnAngle, fminAngle, fcSplineFit, fcEigVal1, fmaxFilter, . . .] , (4)

The featuresfnAngle and fminAngle respectively refer to
the norm and the minimum of a multi-dimensional angle
descriptorfangle which has been designed for this application.
Its kth dimension is computed as:

fangle(k) = ‖6 (ri−kri, riri+k)‖ , (5)

whereri refers to theith return of the scan being processed
and k varies from−10 to +10. The dimensionality of both
fnAngle and fminAngle features is one. In the various models
learnt across our experiments, the features computed from the
fangle feature were amongst the best for the recognition of
the classes tree trunk and pedestrian. In the case of these two
classes, these features capture typical curvilinear shapes when
for example the scan hits these objects at about one meter
above the ground.

The featuresfcSplineFit andfcEigVal1 characterize the shape
of a cluster of returns. Clusters are extracted within one
scan based on a simple distance criteria: returns closer than
a threshold (we used one meter in our applications) are
associated to the same cluster. Based on the identified clusters,



various quantities are computed. FeaturefcSplineFit is obtained
as the error of the fit of a 2D spline to the cluster of returns.
FeaturefcEigVal1 is the largest eigen value of the covariance
matrix describing the cluster. While not being ranked amongst
the very first features, cluster based features turned out to
be useful in classifying all of the seven classes we have
considered in this work. Note that all the returns of one cluster
receive the same cluster features.

The featurefmaxFilter is obtained as the maximum response
of a filter run in a window centred on a given return. This
filter is essentially a low pass discrete filter processing a
scan represented as a sequence of angles. This filter provides
a multi-dimensional filter feature whose various dimensions
have proven useful in detecting the class car and the class
pedestrian.

While our approach for feature design is not related to the
work presented in [4], the underlying philosophy is similar.
Future work will investigate some of the features proposed
in [4] for sub-maps matching in order to use them in a
classification system.

B. Visual Features

As will be further detailed in the next section, a CRF
learned with a logitboost based algorithm can not only in-
tegrate geometric information but also any other type of data
and, in particular, visual features extracted from monocular
color images. As a consequence, the proposed framework also
includes procedures to extracts visual features. A region of
interest (ROI) is defined around the projection of each laser
return into the corresponding image and a set of features
is computed within this ROI. The parameters required to
carry out the projection are defined through the camera laser
calibration procedure developed in [41]. The size of the ROIis
changed depending on the range of the return. This provides
a mechanism to deal with changes in scales across images.
It was verified that the use of a size varying ROI improves
classification accuracy by4%.

In order to obtain a visual feature vectorfvisu of constant
dimensionality despite a size varying ROI, we design vision
features which are independent of the patch’s size. This is
achieved by features which are distributions (e.g. an histogram
with a fixed number of bins) and whose dimensionality is
constant (e.g. equal to the number of bins in the histogram).
A larger ROI leads to a better sampled distribution (e.g. a
larger number of samples in the histogram) while the actual
feature dimensionality remains invariant.

The overall visual feature vectorfvisu associated to each
return has a dimensionality of1239 and results from the
concatenation of 51 multi-dimensional features computed in
the ROI. We only describe here the subset of features which
turned out to be the most useful:

fvisu = [fpyr, fhsv, frgb, fhog, fhaar, flines, fsift, . . .] (6)

fpyr contains texture information encoded as the steerable
pyramid [34] coefficients of the ROI as well as the minimum
and the maximum of these coefficients. These extrema are

useful in classifying cars which from most point of views have
a relatively low texture maxima due to their smooth surface.

fhsv andfrgb contain a 3D histogram of the RGB and HSV
data in the ROI, respectively. HSV and RGB histograms were
selected in the representation of each of the seven classes.

fhog are histograms of gradients types of features [27].
These features were selected by the learning algorithm for
the modeling of the classes car, pedestrian and grass.

fhaar contains Haar features computed in the return’s ROI
according to the integral image approach proposed in [40].
Haar features were useful in classifying the classes tree trunk
and foliage.

flines contains a set of quantities describing the lines found
by a line detector [1] in the ROI. These quantities include the
number of extracted lines, the maximum length of these lines
and a flag which indicates whether the line of maximum length
is vertical. These features have been useful in classifyingall
of the seven considered classes.

fsift contains the Sift descriptor [21] of the ROI’s center
as well as the number of Sift features found in the ROI. Sift
features were selected during the training of various models
to represent the classes grass and other.

C. Feature Selection and Dimensionality Reduction

The VEB algorithm which is used in this work to learn
the parameters of the CRF models is based on the logitboost
procedure. More precisely, VEB is based on a version of log-
itboost which uses decisions stumps as weak classifiers. With
this type of learning algorithm, the dimensions of the feature
vector can be ranked according to their ability to discriminate
the various classes in the data. Given one dimension of the
feature vector, a decision stump defines one threshold and
two values in order to best separate the samples according
to their labels and returns a number evaluating how well the
data is separated. During the training phase, logitboost builds
a decision stump for each dimension of the feature vector
and uses the quality estimate of each decision stump to select
the feature which best improves the classification accuracy.
Keeping track of the successive features selected by logitboost
provides a way to identify the most useful features pointed out
in the two previous sections.

Feature selection as performed by logitboost based on
decision stumps can also be seen as a dimensionality reduction
procedure. One hundred rounds of logitboost will result in the
selection of one hundred dimensions of the original feature
vector. This implies that during the testing phase only these
one hundred selected features need to be computed allowing
the computations times to be maintained acceptable with
respect to real-time requirements; see table VI. In addition,
since the dimensions of the feature vector are processed one
at a time, no overall normalization of the feature vector is
required which is an advantage with respect to more standard
dimensionality reduction techniques such as [11, 15, 33, 36].

Another interesting aspect of logitboost is linked to its
ability to process multi-modal data. Features computed from
an additional modality can be concatenated to the overall



feature vector as it was done with laser and vision features
in section V-A and V-B. The feature vector in that sense plays
the role of a proxy between the various modalities and the
learning algorithm.

Logitboost has the advantage of finding the best features
within a given set but does not compensate for non informative
features. This explains why, as suggested by the previous two
sections, the features have to be carefully engineered.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

Experiments were performed using outdoor data collected
with a modified car traveling at a speed of 0 to 40 km/h
in a university campus and in the surrounding urban areas.
The scenes typically observed contained buildings, walls,cars,
bushes, trees and lawn fields. We present results using two
different datasets in order to demonstrate the generality of
the proposed framework. One dataset was acquired in Sydney,
Australia while the other was one acquired in Boston, MA,
US. Each of the two datasets approximately corresponds to
20 minutes of logging with a monocular color camera and 2D
laser scanners. To acquire the two datasets different vehicles
and different sensor brands were used.

The evaluations of the various classifiers are performed
using n-fold cross validation. This involves breaking down
the dataset into n subsets of equal size in order to train a
classifier on n-1 subsets and test it on the remaining subset.
Training and testing are repeated n times by isolating each
time a different subset for testing. All the results presented
below are averaged over the n cross validation tests (n being
either 5 or 10 depending on the experiments).

B. Spatial and Temporal Reasoning

1) Sydney dataset:In this first set of experiments we
consider two classes: car and other. Seven classes results are
presented in Section VI-D. Table I summarizes the experimen-
tal results in terms of classification accuracy. The accuracies
are given in percentages and computed using 10-fold cross
validation on a set of 100 manually labeled scans selected in
the Sydney dataset. For each cross validation, different models
were trained with 200 iterations of VEB. VEB was computed
allowing learning of pairwise relationships only after iteration
100. We found that this procedure increases the weights of
local features and improves classification results.

Training set geo only visu only geo+visu geo+visu
Number of time 1 1 1 ∓10

slices in the model
CRF 68.9 81.8 83.3 88.1

logitboost 67.6 81.5 83.2 ×

TABLE I

CLASSIFICATION ACCURACY FOR A CAR DETECTION PROBLEM(IN %)

The first line of table I indicates the types of features used to
learn the classifier. Four different configurations were tested:
first using geometric features only, second using visual features

only, third using both geometric and visual features, and fourth
with geometric and visual features integrated over a periodof
10 times slices. The second line of table I indicates the number
of time slices in the network used to perform classification.
“1” means that a network as presented in Fig. 1(a) was used.
“∓ 10 ” refers to the classifier shown in Fig. 1(b) instantiated
with 10 unlabeled scans prior and posterior to the labeled scan.

Two types of classifiers were used: CRFs and logitboost
classifiers. While a CRF takes into account the neighbor-
hood information to perform classification, logitboost learns a
classifier that only supports so called independent identically
distributed classification,i.e., which does not use neighbor-
hood information [13]. This is equivalent to using only the
A functions in Eq. 2. Logitboost is used here for comparison
purposes in order to investigate the gain in accuracy obtained
with a classifier that takes into account the structure of the
scan.

The first three columns of table I show that classification
results are improving as richer features are used for learning.
It can also be seen that the CRF models consistently lead to
slightly more accurate classification.

In addition, as presented in Section IV-B, a CRF model can
readily be extended into a spatio-temporal model. The latter
leads to an improvement of almost5% in classification accu-
racy (right column of table I). This shows that the proposed
spatio-temporal model, through the use of past and posterior
information, performs better object recognition. The cross in
the bottom right of the table refers to the fact that logitboost
does not allow the incorporation of temporal information ina
straightforward manner.

In order to evaluate the difficulty of the classification task,
we also performed logitboost classification using visual Haar
features, which results in the well-known approach proposed
by Viola-Jones [40]. The accuracy of this approach is 77.09%,
which shows that even our single time slice approach (83.26%)
outperforms the reference work of Viola & Jones. The im-
provement in accuracy obtained in our tests comes from use
of richer features as well as the aptitude of a CRF to capture
neighborhood relationships.

Fig. 5 shows four examples of classification results. It
can be seen that the spatio-temporal model gives the best
results. While the logitboost classifier tends to alternate correct
and incorrect classification across one scan, the ability of
the CRF classifiers to capture the true arrangement of the
labels (i.e., their structure) is illustrated by the block like
distribution of the inferred labels. Figure 5(b) shows the three
classifiers failing in a very dark area of the image (right of the
image). In the rest of the image which is still quite dark, as
well as in images with various lighting conditions (Fig. 5(a),
5(c) and 5(d)) the spatio-temporal model does provide good
classification results.

2) Boston dataset:To demonstrate the generality of the
proposed framework, the comparisons between the different
setups involved in table I were also performed using the
Boston dataset. The corresponding results are indicated intable
II and were obtained from 5-fold cross validation on a set of
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Fig. 5. Examples of classification results. The label of the returns are displayed with the markers+ in yellow and◦ in magenta for the class car and the
class other respectively. The height of the bar above each return represents the confidence associated with the inferredlabel. The color of the bar indicates the
inferred label: red means that the inferred label is car and cyan refers to the label other. The classifiers used to generatethe different estimates are precised
on the left.

400 manually labeled scans. For this second set of tests, the
classes of interest were also car and other.

Fig. 6 shows an example of image extracted from the Boston
dataset. The laser scanner used to acquire this data is a 3D
lidar sensor composed of 64 2D laser scanners positioned on
the device with increasing pitch angle. To perform this set
of experiments we used the data provided by 6 of these 64
lasers. Unlike in the Sydney dataset, these lasers are downward
looking. Examples of scans generated by these 6 lasers are
displayed in Fig. 6.

The 6 selected lasers are characterized by a slightly different
pitch angle which allows us to build networks from the laser
returns such as the one displayed in Fig. 6. While the scan-

to-scan links in these networks do not strictly correspond
to temporal links (since the 6 lasers fire at the same time)
these networks can be thought of as belonging to the category
“on-line filtering” described in Section IV-B. Having 6 lasers
scanners looking downwards, each of them with a slightly
larger pitch angle than the previous one, is approximatively
equivalent to having one downward looking scans obtained at
6 consecutive time steps. As a consequence, this setup provides
networks of the type “on-line filtering”.

The results in table II show the same trends as table I.
As more features are added (moving from the left column
to the right column of the table), the classification accuracy
increases. Classification accuracy is also increased when using



Fig. 6. An example of image from the Boston dataset displayed with the
associated projected laser returns (in yellow). A part of the CRF network built
from these laser returns in displayed in blue in the inset in the top left corner.
The image in this inset corresponds to a magnification of the area indicated
by the arrow.

CRFs, which unlike logitboost, enforces consistency in the
sequence of estimates. “-5” in the right column refers to the
“on-line filtering” networks which are built by connecting 5
unlabeled scans before each labeled scan. As with the Sydney
dataset, temporal information further improves performances.

It is interesting to remark that the classification accuracies
achieved on this second dataset for the car detection problem
are similar to the ones achieved on the Sydney dataset: the
overall accuracy is about 90% in Boston dataset and 88% in
the Sydney dataset. The resolution of the imagery as well as
the density of the laser returns was quite different between
the two datasets: the image size is [240x376] in the Boston
dataset and [756x1134] in the Sydney dataset; on average 300
laser returns were available per image in the Boston dataset
against 100 in the Sydney dataset. In spite of these differences,
the proposed framework provides comparable results which
demonstrates its applicability to various datasets.

With respect to the first experiments, the lower resolution of
the vision data on one hand, and the larger number of returns
available per image on the other hand, lead to a vision classifier
with an accuracy (82.6%) only slightly above the one obtained
with the laser classifier (81.4%). In the Sydney dataset, a much
richer imagery compared to the scan density resulted in 13.9%
difference in accuracy between the vision only and the laser
only classifiers. As the gap between the information contentof
the two modalities decreases, the respective classifier displays
comparable performances while the proposed framework per-
mits maintaining the overall accuracy by exploiting the best
of each modality.

C. Semi-Supervised Learning

Fig. 7 presents car detection results obtained with models
learnt on datasets containing a progressively increasing amount
of unlabeled data. The Sydney dataset was used for this set
of experiments. Fig. 7(a) shows that adding unlabeled data
while maintaining the number of labeled returns constant
improves classification accuracy. This result experimentally

Training set geo only visu only geo+visu geo+visu
Number of time 1 1 1 -5

slices in the model
CRF 81.8 85.0 88.5 90.0

logitboost 81.4 82.6 88.0 ×

TABLE II

CLASSIFICATION ACCURACY FOR A CAR DETECTION PROBLEM(IN %)

demonstrates the ability of the modified version of VEB
presented in algorithm 1 to perform semi-supervised learning.
In Fig. 7(b), the total number of scans used is kept constant
and the proportion of unlabeled returns is increased. Fig. 7(b)
shows that the original accuracy is maintained with only 40%
of labeled data. This second result demonstrates that a semi-
supervised approach can be expected to critically decreasethe
required amount of labeled training data thereby reducing the
burden associated with manual annotation.

(a) (b)

Fig. 7. Behavior of the semi-supervised learner in a car detection problem.
Each point in the two plots corresponds to the average performance of 10 one-
time-slice models learnt by cross validation. (a) The number oflabeled scans
is fixed to 30. As more unlabeled scans are added to the trainingset, labeled
returns are spread evenly across the training set while their total number
is maintained constant. This plot shows that the classification accuracy is
increased by adding unlabeled samples. (b) The training setscontain 90 scans
and the testing sets contain 10 scans. The x coordinate means that x% of
randomly chosen returns in each of the 90 scans are unlabeled.This plot
shows that classification accuracy is maintained with only 40% of the original
labeled set.

D. Map Building

This section presents the classification performances ob-
tained with the three models introduced in Section VI-D. For
these three networks, the hidden state of each node ranges over
the seven object types: car, trunk, foliage, people, wall, grass,
and other (other referring to any other object type). Results
for local classification are first presented in order to provide
a baseline for comparison. All the evualtions were performed
using 10-fold cross validation.

The characteristics of the training and testing data averaged
over the 10-fold cross validation sets are provided in tableIII.
The Sydney dataset was used for these experiments since it
contains horizontal 2D laser scans which can be registered
using ICP. The registration of downward looking scans is a
more complex problem which explains why these mapping
experiments were not reproduced using the Boston dataset.



Length vehicle # scans # nodes
trajectory total total

labeled labeled
Training set 2.6 km 3843 67612

72 5168
Testing set 290 m 427 7511

8 574

TABLE III

CHARACTERISTICS OF THETRAINING AND TESTING SETS

1) Local Classification:A seven-class logitboost classifier
is learned and instantiated at each node of the network as
the association potentialA (Eq. 2). Local classification,i.e.,
classification which does not take neighborhood information
into account is performed and leads to the the confusion
matrix presented in table IV. This confusion matrix displays a
strong diagonal which corresponds to an accuracy of 90.4%. A
compact characterization of the confusion matrix is given by
precision and recall values. These are presented in table V.
Averaged over the seven classes, the classifier achieves a
precision of 89.0% and a recall of 98.1%.

Truth \ Inferred Car Trunk Foliage People Wall Grass Other
Car 1967 1 7 10 3 0 48

Trunk 4 165 18 0 4 0 11
Foliage 25 18 1451 0 24 0 71
People 6 2 2 145 0 0 6
Wall 6 6 21 0 513 1 39
Grass 0 0 1 1 1 146 4
Other 54 5 123 3 24 0 811

TABLE IV

LOCAL CLASSIFICATION: CONFUSIONMATRIX

In % Car Trunk Foliage People Wall Grass Other
Precision 96.6 81.7 91.3 90.1 87.5 95.4 79.5

Recall 97.9 99.3 96.4 99.7 98.5 99.9 95.4

TABLE V

LOCAL CLASSIFICATION: PRECISION AND RECALL

2) Delaunay CRF Classification:
a) CRF without built-in link selection:the accuracy

achieved by this first type of network is 90.3% providing no
improvements on local classification. As developed in Section
IV-C.2, the modeling of the spatial correlation is too coarse
since it contains only one type of link which cannot accurately
model the relationships between all neighbor nodes. As a
consequence, the links end up representing the predominant
relationship in the data. In the dataset, the predominant
neighborhood relationships are of the type “neighbor nodes
have the same label”. The resulting learned links enforce
this “same-to-same” relationship across the network leading
to over-smoothed estimates and explaining why this class of
networks fails to improve on local classification. To verifythat
a better modeling of the CRF links improves the classification
performance, we now presents results generated by Delaunay
CRFs equipped with additional link selection nodes (as shown
in Fig. 3).

b) CRF with built-in link selection: the accuracy
achieved by this second type of network is 91.4% which
corresponds to 1.0% improvement in accuracy. Since the
local accuracy is already high, the improvement brought by
the network may be better appreciated when expressed as a
reduction of the error rate of 10.4%. This result validates the
claim that a set of link types encoding a variety of node-to-
node relationships is required to exploit the spatial correlations
in the laser map.

3) Tree based CRF classification:The two types of net-
works evaluated in the previous section contain cycles and
require the use of an approximate inference algorithm. The
tree based CRFs presented in Section IV-C.3 avoid this issue
and allow the use of an exact inference procedure (BP in its
non loopy version).

This third type of network achieves an accuracy of 91.1%
which is slightly below the accuracy given by a Delaunay CRF
with link selection while still improving on local classification.
However, the major improvement brought by this third type of
network is in terms of computational time. Since the network
has the complexity of a tree of depth one, learning and
inference, in addition to being exact, can be implemented very
efficiently. As displayed in table VI, a tree based CRF is 80%
faster at training and 90% faster at testing than a Delaunay
CRF. Since both network types use as their association po-
tential the seven-class logitboost classifier, they use thesame
features which are extracted from a scan and its associated
image in 1.2 secs on average. As shown in table III, the test
set contains 7511 nodes on average which suggests that the
tree based CRF approach is in its current state very close to
real time, feature extraction being the main bottleneck.

Feature Extraction Learning Inference
(per scan) (training set) (test set)

Delaunay CRF 1.2 secs 6.7 mins 1.5 mins
(with link selection)

Tree based CRF 1.2 secs 1.5 mins 10.0 secs

TABLE VI

COMPUTATION TIMES

4) Map of Objects:This section presents a visualization of
some of the mapping results. It follows the lay out of Fig. 8
in which the vehicle was travelling from right to left.

At the location of the first inset, the vehicle was going up a
straight road with a fence on its left and right, and, from the
foreground to the background, another fence, a car, a parking
meter and bush. All these objects were correctly classified with
the fences and the parking meter identified as other.

In the second inset, the vehicle was coming into a curve
facing a parking lot and bush on the side of the road. Four
returns mis-classified as other can be seen in the backgroundof
the image. The class other regularly generated false positives
which is possibly caused by the dominating number of training
samples of this class. Various ways of re-weighting the training
samples or balancing the training set were tried without
significant improvements.



While reaching the third inset, a car driving in the opposite
direction came into the field of view of our vehicle’s sensors.
The trace let by this car in the map appears in the magnified
inset as a set of blue dots along side our vehicle’s trajectory.
Dynamic objects are not explicitly considered in this work.
They are assumed to move at a speed which does not prevent
ICP from performing accurate registration. In campus typesof
areas where this data was acquired, this assumption has proven
to be valid. In spite of a few mis-classifications in the bush
on the left side of the road, the pedestrians on the side walk
as well as the wall of the building are correctly identified.

Entering the fourth inset, our vehicle was facing a second
car, scene which appears in the map as a blue trace intersecting
our vehicle’s trajectory. Apart from one mis-classified return
on one of the pedestrians, and one mis-classified return on the
tree in the right of the image, the inferred labels are accurate.
Note that the first right return is correctly classified illustrating
the accuracy of the model at the border between objects.

E. Convergence Analysis of the Inference

As mentioned in Section III-B, convergence in graphs with
cycles is not guaranteed but can be experimentally checked.In
this section, the converge of loopy BP is explored. The Boston
dataset was used for this last set of experiments. The behavior
of loopy BP in a cyclic network was analyzed using a set 400
manually labeled scans and 5-fold cross validation.

The evaluation is summarized in Fig.9. Inference is per-
formed in each of the networks involved in the cross validation
with a varying number of loopy BP iterations. The accuracies
provided correspond to the classification of the two classes
car and other. The networks used for these tests are the ones
described in section VI-B.2.

The left plot of Fig. 9 shows that on average loopy BP
convergences after about 5 iterations where the accuracy
reaches a plateau and is higher than the accuracy obtained
with local classification. The right plot of Fig. 9 shows that, as
expected, the inference time increases linearly with the number
of loopy BP iterations. Knowing that loopy BP convergences
in about 5 iterations permits maintaining the computation
times as small as appropriate.

VII. C ONCLUSIONS

A general probabilistic framework for multi-class multi-
sensor object recognition was presented. This framework is
based on CRFs which were used as a flexible modeling tool
to automatically select the relevant features extracted from the
various modalities and represent different types and spatial and
temporal correlations.

Based on two datasets acquired with different sensors,
eight different sets of results were presented. The benefitsof
modeling spatial and temporal correlations was first demon-
strated on a car detection problem where an increase in
accuracy of up to 5% was obtained. The experimental study
of the proposed semi-supervised version of VEB suggested
that the classifier accuracy can be maintained using only
40% of the original labeled set and can be increased by
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Fig. 9. Empirical analysis of the convergence of loopy BP. On the left,
classification accuracies obtained on a car detection problem plotted as
function of the number of loopy BP iterations. On the right, the corresponding
computation times. The red plots refer to local classification.

adding unlabeled samples to the training set. Using partial
labeling, our approach can be applied to far larger and hence
diverse sets of laser scans and images, which results in better
generalization performance. Three different types of networks
were introduced to build semantic maps and evaluated on
a seven-class classification problem where an accuracy of
91% was achieved. The mapping experiments brought some
insights on the smoothing role of CRF links and we showed
how over-smoothing can be avoided by creating networks
which automatically select the types of links to be used.
Computation times were evaluated showing that the larger
networks involved in our study are close to being real-time
requiring about 11 seconds for inference on a set of 7500
nodes. Finally, an empirical study of the inference algorithm
verified its convergence which was observed to be reached in
about 5 iterations.

These various experimental results have demonstrated that
CRFs stand as a general solution to the problem of classifica-
tion in robotics applications.

While the proposed framework was developed for 2D laser
scans, the set of experiments on the Boston dataset (Sec-
tion VI-B.2 and VI-E) present a first simple extension to 3D
laser data and suggest that this CRF framework is not only
applicable to 2D laser points.

Current investigations aim at developping CRF models able
to deal in real-time with 3D lidar data such as the one
available at [6]. 3D lidars can provide up to 1.5 million
data points per second which makes a point-wise reasoning
too computationally intensive. We are working on grid based
approaches where the classifier is designed to estimate the
labels of the grid cells rather than the labels of individual
returns, using the grid as a way to compress the incoming
flow of laser returns.
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Fig. 8. Visualization of 750 meters long portion of the estimated map of objects with total length of 3km. The map was generated using the tree based CRF
model. The legend is indicated in the bottom left part of the 2Dplane. The color of the vehicle’s trajectory is specified in the bottom right part of the same
plane. The coordinate in the plane of the map are in meters. Eachinset is magnified and associated to an image displayed with theinferred labels projected
back onto the original returns. The location of the vehicle is shown in each magnified patch with a square and its orientation indicated by the arrow attached
to it. The laser scanner mounted on the vehicle can be seen in the bottom part of each image.
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