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Abstract

In a previous formativevaluationof the PACT Geometrytutor, we found significantlearninggains,
but also some evidence of shallow learning. We hypothedie#c cognitive tutor may be evenmore
effectiveif it requiresstudentsto provide explanationdor their solution steps.We hypothesizedhat
this would help studentsto learn with deeperunderstandingas reflected by an ability to explain
answers, transfer to related but different test items, and an ability to deal with unfamiliar questions.

We conductedwo empirical experimentdo testthe effectivenessof learning at the explanation
level. In eachexperimentwe comparedwo versionsof the PACT GeometryTutor. In the “answer-
only” version of the tutor, students were required only to calculate unknown quantities geeawktry
problem. In the “reason” version, students also needed to proeidectexplanationdor their solution
steps, by citing geometry theorems and definitions. Thegdlioly selectingfrom the tutor's Glossary
of geometry knowledge, presented on the screen.

The results providevidencethat explaininganswerdeadsto greaterunderstandingStudentswho
explained theisolution stepshad betterpost-testscoresand were betterat providing reasondor their
answers. They also digetterat a type of transferproblemin which they were askedto judgeif there
was sufficient informationto find unknown quantities.Also, studentswho explainedsolution steps
were significantly better at steps where quantities sought were difficult to @unestberwords, require
deeperknowledge)while answer-onlystudentsdid betteron easy-to-guesstems indicating superficial
understandingFinally, studentswho explainedanswersdid fewer problems during training, which
suggests that the training on reason-giving transfers to answer-giving.

Introduction

Cognitive scientists and educators have lbegninterestedin the question:How can we get our
students to learn with understanding and acquire robust knowledgé&xactly whatit meansto
learn with understanding somewhatdifficult to pinpoint. Transferto new and unfamiliar types
of problemsis often seenas a key criterion of understanding[Simon, 1987], asis removing
misconceptions [Chiet al., 1989]. An ability to explain or justify problem-solving steps is aso

important indicator.
The reality in many American high schools may be that few studentsachieve a robust

understandingof the more difficult subjectssuch as algebra, physics,or geometry. They learn
well enoughto get a passinggrade on tests,but havedifficulty whendealing with even slightly
unfamiliar problemsand are unableto explain their answers.Shallow learning occursin many
forms of instruction, in many domains. In physics, for example, there are many common
misconceptions, such as confusing mass and weighhe direction of velocity and acceleration.
In geometry, students often rely on the fact that angles look the satime dimgram,evenif they
cannot be showmo be so by reasoninglogically from theoremsand definitions. Such heuristics
are often successful, but mé&sil in more complex problems,asis illustratedin Figure 1. Asked
to find the unknown quantities in the diagram, a student makes the creative but unwarranted



i3 Segment EB is perpendicular to Line AS. If the measure of Angle 1 is 59° and the measure of
Angle 2 is 22°, find the measure of Angle 4.
m{3: Reason:
m/4: Reason:

Figure 1: Example of a student's shallow reasoning

inferencethat the angle on the left hasthe samemeasureasangle 1 on the right. Theseangles
look the same,sure enough,but this inferenceis not justified and leadsto a wrong answer.The
student is alsmot able to provide valid reasonsfor the answersjn termsof geometrytheorems.
The correct reasons would be complementary angles ft8 end angle addition for .

But how to designinstruction that fostersunderstanding?Some take the point of view that
instruction should be anchoredin a rich context [CTGV, 1993]. Others have found that self-
explanation is an important key to learning with understanding glal, 1989].

Cognitive tutors have been shown to be effective in raising students’test scores,both in
laboratory studiesnd in actual classroomuse[Koedinger,et al., 1997]. In spite of this success,
they may not be immune from the shallow learning problem. In this paper, we focus on the
question of whether and how a cognititedor can lead to better understandingand thus be even
more effective. We focusen the PACT GeometryTutor, a cognitive tutor for teachinggeometry
problem-solvingskills developedby our researchgroup This tutor is currently in usein four
schools in the Pittsburgh area as an adjunct to a full-year course of high Guhoel) geometry.
During a previousformative evaluation,we found significant learning gains attributableto the
tutor, combined with classroom instruction. But we dlsond someevidenceof shallowlearning
[Aleven, et al., 1998]. On the post-teststudentswere better at finding answers(i.e., calculating
unknown guantities in geometry problenthan they were at justifying their answersn termsof
geometry theorems and definitionslthough an inability to explain is not necessarilyindicative
of shallow learning, it often is, as illustrated perhaps in the example shown above.

We hypothesized that students would learn with greater understanding if we modifiedothe
so that studentshad to explain their reasoningstepsduring problem solving. We hypothesized
that this would not only help students to learn bettezxplain reasoningsteps,but also that they
would learn better to solve problems, and that there would be transfer to extra-challenging
problems in which they are askéal judge whetherenoughinformation is given to make certain
inferences (e.g., to calculate certain unknowns in a geometry diagram).

If students have to explain their answers, this may force them to apply the rekusitedge
more consciously,and to rely lesson superficial strategies.Teaching studentsto explain their
answerganay havea similar effect as self-explanationwhich leadsto betterlearning [Chi, et al.,
1989; 1994]. Explaining stepswhile solving problems (with a computer tutor) is not unlike
explaining worked-outexamplesexceptfor the fact that studentsexplain their own reasoning
steps, perhaps checked by the tutor, not those provided ex#reples.and that they can receive
feedback from the tutor on whether their explanations are corredhédIself-explanationstudies
mentioned above, students typically do not receive such feedback.)

In fact, an argumentcan be madethat the combinationof problem solving and explanation
with feedbackmay be more effective than unguided self-explanation.One study reports that
merely prompting students to provide self-explanatibakpsimprove understandingChi, et al.,
1994]. A computer tutor can prompt students very consistently. igaChi et al. studiesreport



that self-explanation requires self-regulat@iills and reportsrather large individual differences
with respectto students’ability to self-explain. Our target population may not contain a large
percentage of good self-explainers. It may well be that feedback on reasons is neetiedefuis
without advancedself-explanationskills. Although there is evidencethat self-explanationskills
can be taught [Bielaczyet al., 1995], it remainsdifficult to achievein classrooms(One project
attempting to design a computer tutor for self-explanatig€anati, et al., 1997].) On the other
hand, having to enter explanationsinto a computer interface may provide an obstacle. Also,
selectingreasonsfrom a Glossaryon the computer screenmay not guaranteeor require the
amount of deep processing on the part of the students as is ideal.

In this paper, weresentthe PACT Geometrytutor, redesignedso that it requiresstudentsto
explain their solutions. We also present results from éwpirical experimentsthat we undertook
to test our hypothesis that tutoring at the explanation level improves students’ understanding.

A Tutor that Teaches at the Explanation Level

The PACT Geometry Tutor, is one of the cognittuéors developedby our researchgroup. This
tutor was designetb be an integratedpart of a new high-schoolgeometrycourse,developedin
tandem.The tutor curriculum consistsof five lessonscovering the topics of Area, Pythagorean
Theorem, Angles, Similar Triangles, and Circles. A lesson on Quadrilaterals isdenddopment.
Following new guidelines from the National Council of Mathematics Teachers [NQBBB], the
curriculum emphasizesthe use of geometry as a problem solving tool (unlike the “old”
Geometry tutors [Koedinger & Anderson, 1993], which focused on proof skills). The probiems
the tutor curriculum therefore often involve a real-world problem situation that calls for
geometric reasoning. For example, in ffreblem shownin Figure 2, geometricreasoningis the
tool of choice to help an archeological research team with a vexing identification problem.

The tutor wasdesignedto get studentsto explain their answersand to reasonexplicitly with
the rules and definitionsf the domain. In order to completea problem, studentsmust calculate
the unknown quantities,and must state a reasonfor each solution step, citing a geometry
definition or rulethat wasused.(In other words,they must completethe answersheetshownon
the left in Figure 2. The quantity labels are providsdthe tutor.) When studentsenter valuesor
reasons in the answer sheet, the tutor tells thaheif are right or not. At any point during their
work with the tutor, students catonsulta Glossary,which lists relevantdefinitions and theorems
(Figure 2). When students click on a Glossary item, tetyto seea short descriptionof the rule
and an example,illustrated with a diagram. They can enter a reasoninto the answersheetby
selecting the relevant rule in the Glossary, then clicking on the “Select” b&todentswho are
stuck on a problem can search the Glossary far@that applies.In addition, the tutor provides
hints on request. The tutor's hints encourage studenteacchthe Glossaryfor applicablerules.
As part of its hinting strategy, the tutor may highlight a small set of ruléseiGlossary,in order
to narrow down the Glossary search. The tutor providesadditional tools, not shownin Figure
2. The DiagramTool displays an abstractdiagram representingthe problem and lets students
record information in the diagram. The secondtool, the Equation Solver, lets studentsenter an
algebraic equation that relates the quantities in the problem and helps in solving it step by step.

The PACT Geometry tutor is based on the technology of cognitive tutors, which keawiby
on the ACT-R theory of cognition arldarning [Anderson,1993]. A crucial componentof each
tutor is its cognitive model, which capturesthe skills of an ideal student,expressedas a set of
production rules. The tutor usesthe model to assesshe student’ssolution stepsand to provide
feedbackand hints (through model tracing). Also, the cognitive model is the basisfor student
modeling. The tutor maintainsestimatesf the probability that the studentmasterseach skill in
the model (knowledgetracing). The tutor usesthis studentmodel to assignremedial problems,
targetingskills for which the studenthasnot yet reachedmastery,and to decidewhen a student
may move on to the next section or lesson (namely, upon mastery of all skills).

First Experiment to Evaluate Teaching at the Explanation Level

We conducted two experiments tiest whetherstudentslearn more effectively whenthey explain
their solutions during training. We focused on the third lesson of the tutor curriculum, which
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Figure 2: The PACT Geometry Reason Tutor

deals with geometric properties of angles. Both experiments took placsuinuabanhigh school
near Pittsburgh, which uses the PAGEometrytutor aspart of its regular geometryinstruction.
In both experimentswe comparedlearning with the PACT Geometry ReasonTutor, described
above, against a control condition that involved an “answer ordysionof the sametutor. The
answer-onlycondition was the same as the “reason version”, except that studentswere not
required to statereasonsfor their answers.There was no column for entering reasonsin the
tutor’'s answersheet,asthere is in the reasoncondition. The main difference betweenthe two
experiments washe way in which we tried to control the time that studentsspentwith the tutor.
This is discussed further below.

The first experimentinvolved 41 studentstaking the geometry course (two periods). The
students were assigned to the reasondition or the answer-onlycondition on the basisof their
scores (on quizzes, tests, and homework assignmientsg courseprior to the experiment,so as
to create groups that were balanced in terms of prior ability. 23 of the 41 students corptated
the tutor curriculum and the post-test. The results reported here pertain to those 23 students.

All studentstook a pre-testbefore they startedworking on the tutor's Angles lesson and
completeda post-testafterwards.Studentsstartedand finished the tutor at different times. In
order to complete the tutothe studentshad to reachmasterylevel for all skills targetedin each
of the three sections. (That ihe tutor assignedproblemsuntil masterylevel wasreachedfor all
skills.) The studentsalso receivedclassroominstruction on the topics coveredin the Angles
lesson. Some of that took place before the pre-test, some of it in between pre-test and post-test.

The pre-testand post-testinvolved 6 problems,designedto assesstudents’ ability to solve
geometry problems and to explain their answers.In these problems, studentswere asked to
compute unknown quantities in a diagram and for each hadowdde a reasonwhy their answer
was correct, in terms gjeometrictheorems.(Subsequentlywe refer to theseitemsas“Answer”
and “Reason” items. They are illustrated in Figure 1.) Students were provided shgetlisting
acceptable reasons and definitions and were told that they could freely reference it.



1

If the measure of Angle 2 is 10Ifo you  Line I1 is parallel to line 12. If the measure of
have enough informationo find the Angle 1 is 65°, ..do you have enough informatio
measure of Angle 1? to find the measures of the other angles?

Figure 3: Problems designed to test students’ understanding

In order to investigateissuesof deeplearning,we alsoincluded extra-challengingproblems,
designed to measurgudents’understandingijllustratedin Figure 3. In theseproblems,students
were askedo judge whetherthere wasenoughinformation to compute certain quantities,and if
so, to compute them and state a reason. In some problems, angle measures coutélnotalbed
becausegeometricconstraintswere missing,such asthe constraintthat lines were parallel (as in
the item on the left in Figure 3). In other problems, the vabiaseededpremiseswerenot given
(right item, Figure 3). Items with missing information are subsequentlyreferred to as “Not
Enough Info” items. On these items, superficial visual reasoning asittat illustratedin Figure
1 is likely to lead a studentastray. We predicted that studentsin the reasoncondition would
perform better on the Not Enough Info items. The tutor curriculum does not ingtob&msof
this type. Thus, these problems provide a measure of how well skills learned withotheansfer
to unfamiliar but related problems.

Reasonsvere gradedascorrectif they describedan accurategeometric relationship between
the answer and other angles in the diagram, from which the measure could be determihad. We
6 test forms, assigned randomly to students at pre-test and post-test itoardenterbalancdor
test difficulty.
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Figure 4: Test Scores in Experiment 1 Figure 5: Post-Test Scores in Experiment 1

We found that students’testscores(shownin Figure 4) increasedfrom pre-testto post-test
(F(1,21) = 27.2, p<.0001). Further, there wasignificant interaction betweencondition (answer-
only vs. reason) and test time (pre vs. post) (F(1,21) = 9.19, p<.01), indidadiripe studentsin
the reasoncondition improved significantly more than their counterpartsin the answer-only
condition. Studentsin the reasoncondition also performed significantly better on the post-tests
than students in the answer-only condition (F (1,21) = 6.25, p<.05).

Studentsin the reason condition did better on each of the different types of test items
(Answer, Reason,and Not Enough Information) than studentsin the answercondition. These
results are presented in Figure 5. The analysis shows significant effatésn type (F(2,21)=8.4,
p<.001) and of condition with testitem as a covariant (F(1,21)=7.3,p<.01), but no significant
interaction (F(1,21)=0.97, p>.35).
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The studentsin the reasoncondition spentabout 14% more time working on the tutor than
did the students in the answer-only condition (436 + 169 minutethéoreasoncondition, 383 *
158 for the answer-only condition). The difference is not statistically signifi¢gtit21) = .61, p
= .45). The main reasonfor this differenceis that studentsin the reasoncondition have more
work to do per problem, sincethey haveto provide reasonsfor their solution steps.There was
some evidence that students in the reason condjibddmnmore out of eachproblem: They needed
fewer problems to reach thator's masterylevel criterion: 102 v. 135 problemson the average,
but the difference was not statistically significant F(1,21) = 2.74, p = .11).

At the outset botltonditionswere balancedin termsof their prior gradesin the course.But
of the students (23 in total) who completed the experiment, the reason group shadesiightly
better prior scores (87.3 v82.3), although that difference is not statisticallysignificant (F(1,21)
= 2.19, p = .15). The difference may be due to the fact that the reason coirdittued slightly
more work, so that the better students were more likely to finish before the semester was over.

In conclusion,the resultssuggestthat there are considerableadvantagedo teachingstudents
to explain answerslt seemsto lead to better performancein providing thesereasons.Also, it
transfersto betteroverall performancein both providing answersand making judgmentsabout
whether there is enough information to give an answerth@mther hand, we cannotrule out an
alternativeinterpretation, namely, that the studentsin the reason condition performed better
becausehey spentmore time on the tutor or were a betterthan averagesample.While it seems
unlikely that this would account for ghlost-testdifferencesbetweenthe two conditions,concern
about these issues motivated us to do a second experiment.

Second Experiment

The secondexperimenthad the samegoal asthe first: to testwhetherteaching studentsto give
reasonsimproves their understanding.As in the previous experiment, we compareda reason
condition and aranswer-onlycondition. To make sure that both groups spentthe sameamount
of time on the tutor, we changedthe criterion for finishing the tutor: Insteadof a masterylevel
criterion, we used a time limit of 7 hourEhis wasthe averageamountof time spentby students
in the reasoncondition in the first experiment. The experimentinvolved 53 studentsin two
periodsof a geometry course.43 of thesestudentscompletedthe tutor and the post-test.We
excluded from the analysihe datafrom two students:One who left 75% of the post-testblank,
one who spent less than 7 hours on the tutor. The teacher may have advanced this student early.
Both groups spentan equal amount of time on the tutor (reasongroup: 513+74 minutes,
answeronly group: 501+62). (Thesenumbersare higher than the tutor’s time limit of 7 hours
because they include students’ idle time, whereas the tutor factorédletime in keepingtrack
of the amount of time spent by each student.) The regsmup did significantly fewer problems
than the answer-only group: 76£14 vs. 111+23 (F(1,39) = 32.83, p < .0001).
As in the first experiment,we found significant performancegains acrossall students(F(1,
39) = 19.56, p < .0001). (SeeFigure 6.) The pre-testscoresof both groupswereabout equal:
15% correct in the reason condition, 16% correct in the answer condition. Students in the reason
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condition did better on the post-testthan
students inthe answer-onlycondition (56%
. vs. 48%) and had better gain scores(49%
3 vs. 37%). Looking at the different item
Same As Prem. Different From Prem. types (Figure 7), there is no difference
betweenthe conditionson the answeritems
(59% vs. 59%). In contrast,on the items testing deeperlearning, the reason condition does
substantiallybetter,both on the reasonitems (51% vs. 36%) and on the not enough info items
(57% vs. 42%). Comparing the performance of the conditions on the answer items vdedese
items (which we averagedtogether),we found a statistically significant interaction of condition
and item type (F(1,39)= 5.4, p < .05). As predictedreasonstudentsare doing significantly
better on problems requiring deeper reasoning.

In order to further investigateissuesof deep learning, we divided the post-testitems into
easier-to-guess items and more-difficult-to-guess items. A quantity sought is easy tovigee#s
is equalto a quantity on which it depends(“Same As Prem.”), and that it is difficult to guess
when it is different from all premises (“Different From Prem.”). This follows from our
observationthat studentsoften use a shallow rule “if it looks the same,it is the same” as
illustratedin Figure 1. Sucha rule is successfubn “Same As Prem.” items despitethe lack of
understanding it reflects. As shown in Figure 8, the reason condition students perbattieed n
the more demanding“Different From Prem.” itemswhile the answer-onlystudentsperformed
better on the “Same As Prem.” items (F(1, 39) = 6.10, p<.001). This suggests thaiddetsin
the reason condition had more robust knowledge and relied less on guessing.

An analysis of students’ errorgevealsthat studentsin the answer-onlycondition make more
errors of commission(as a percentageof their total number of errors), whereasstudentsin the
reasoncondition havea larger proportion of errorsof omission.In other words, studentsin the
answer-only condition are more likely to guess, whereas students in the reason canditimre
likely to either know they know the answeror elseleaveit blank. This is true for “Same as
Prem.” items (reasongroup: 54% commissionerrors; answergroup: 78% commissionerrors)
and “Different from Prem.” items (69% v. 85%). This confirms that studentsin the reason
condition may have learned better to avoid shallow heuristics.

Discussion and conclusion

We conductedtwo experimentsto evaluateif a cognitive tutor can be improved if it requires
students to provide reasons for their problem-sohdteps.We hypothesizedthat this would lead
to better understanding on the part of students. Specifically, that it wouldtuelentsto learn to
provide better reasonsand also that there would be transferto finding solutionsand to extra
challenging problems where superficial strategieslikely to fail. We comparedtwo versionsof
the PACT Geometry Tutor: an “answer-only” version and a “reason” version.

In both experimentswe found significant learning gains attributableto the tutor, combined
with classroom instruction. We found strong evidence for our hypothesis stated abdbe.filst
experiment, the students who had explained their problem-solving steps ttarmgg did better
on all relevant post-test measutbsan studentswho had not explainedsteps.They were better at
finding answers, giving reasons, and handling not enonfgtmation items. However,we cannot
attribute these differences entirely to the training in reason gibiagausewe also found that the
reason group had a slight advantage in terms of time on tutor and prior ability.

! The gain score is defined as (post-test score — pre-test score) / (1 — pre-test score).



In the second experiment, the two groups spent equal timbedmitor. We again found that
teaching students to give reasons improves their understanding. The studemteplainedtheir
answers during training hdgetter post-testand gain scoresthan the studentswho did not. This
better performance was detected in iteassessingleeperunderstanding. Studentsin the reason
group were better both in justifying their answers with reasonsoartdansfer problemsdesigned
to detect shallow reasoning. As a further indication of deeper learning in the reason cowmdition,
found that reason students wdyetter at harder-to-guesstems, whereaghe answer-onlystudents
were better at easier-to-guesgems. In other words, studentsusing the reasontutor learned with
more understanding and learned better to avoid shallow reasoning.

Becausethe two groups spentequal time on the tutor, the resultsof the secondexperiment
cannotbe attributedto time on task. However,our resultsprovide further supportthat time on
taskis a critical variablein instruction. This was indicated by the improvementin the answer
condition performancefrom the first experimentto the second (from 38% to 48%). As a
methodological point, experimentsthat do not control for time on task can be difficult to
interpret. This issue creates a serious dilemmaiffigr‘less is more” instructionaldesignwhere
an effort is made to achieve deeper learning through fewer, but richer proddeansvities. Our
second experimental design provides a good model for addressing this dilemma.

In both experimentswe found strong evidencethat explaining reasoningstepstransfersto
improved problem-solvingskills (i.e., finding answers).At the post-test,studentsin the reason
condition were as good as, or even better than, students in the answer conditidmgtanswers,
in spite of the fact that they had significantly less practice on answer-givingduring training
(because they solved fewer problems). Moreover, the fact that the amgnstudentsappeared
to be better at explaining answers is important in its own right. Justificatiosaebningstepsis a
cornerstoneof mathematics.Curricular guidelinesfrom the National Council of Mathematics
Teachers emphasize communication of results and reasoning as an important teaching objective.

As a practical matter, our results suggidstt having studentsexplain their answerss a viable
way of improving a cognitive tutor. Improving studengsist-testscoresand understandings no
easymatter,but we believethat experimentslike theseare the only scientifically reliable way to
reach this important goal.

Acknowledgments

Chang-Hsin Chang, Colleen Sinclair, adatlyn Snydercontributedto this researchThe researchis sponsored
by the Buhl Foundation,the Grable Foundation,the Howard Heinz Endowment,the Richard King Mellon
Foundation, and the Pittsburgh Foundation. We gratefully acknowledge their contributions.

References

Aleven, V., K. R. Koedinger, H. C. Sinclair, and J. Snyder, 1998. Combatting Shallow Learning in a Tutor for
Geometry Problem Solving. IRroceedingsITS ‘98, editedby B. P. Goettl, H. M. Halff, C. L. Redfield,andV. J.
Shute, 364-373. Berlin: Springer.

Bielaczyc, K., P. L. Pirolli, and A. L. Brown, 1995. Training in Self-Explanationand Self-Regulation Strategies:
Investigating the Effects of Knowledge Acquisitidittivities on Problem Solving. Cognition and Instruction, 13
(2), 221-252.

CTGV, 1993. (Cognition and Technology Group at Vanderbilt.) Anchametfuction and situatedcognition revisited.
Educational Technology33 (3), 52-70.

Conati, C., J. Larkin, And K. VanLehn, 1997. A Compufegameworkto SupportSelf-Explanation.In Proceedingsof
the AI-ED 97 World Conferencegdited by B. du Boulay and R. Mizoguchi, 279-286. Amsterdam: 10S Press.
Chi, M. T. H., M. Bassok, M. W. Lewis, P. Reimann, and R. Glaser, 1988-Explanations:How StudentsStudy and

Use Examples in Learning to Solve Problei@sgnitive Sciencel3, 145-182.

Chi, M. T. H.,N. de Leeuw, M. Chiu, andC. Lavancher,1994. Eliciting Self-ExplanationsimprovesUnderstanding.
Cognitive Sciencel8, 439-477.

Koedinger, K. R., and J. R. Anderson, 1993. Reifying implicit planning in geometr§. Lajoie and S. Derry (eds.),
Computers as Cognitive Tool$5-45. Hillsdale, NJ: Erlbaum.

Koedinger, K. R., Anderson, J.R., Hadley, W.H., & Mark, M. A. (1997). Intelligent tutoring goes to Snhth@ big
city. International Journal of Artificial Intelligence in Education, 8, 30-43.

NCTM, 1989. Curriculum and Evaluation Standardsfor School Mathematics National Council of Teachersof
Mathematics. Reston, VA: The Council.

Simon, H. A., 1987. The Information-Processing ExplanatioiGestaltPhenomenaln: Models of Thought, Volume
2, 481-493. New Haven, CT: Yale University Press.



