Minimization of Tree Pattern Queries

Sihem Amer-Yahia
AT&T Labs—Research

sithem@research.att.com

Laks V. S. Lakshmanan

Concordia University & II'T Bombay

laks@it.iith.ernet.in

ABSTRACT

Tree patterns form a natural basis to query tree-structured
data such as XML and LDAP. Since the efficiency of tree
pattern matching against a tree-structured database depends
on the size of the pattern, it is essential to identify and elim-
inate redundant nodes in the pattern and do so as quickly as
possible. In this paper, we study tree pattern minimization
both in the absence and in the presence of integrity con-
straints (ICs) on the underlying tree-structured database.

When no ICs are considered, we call the process of mini-
mizing a tree pattern, constraint-independent minimization.
We develop a polynomial time algorithm called CIM for
this purpose. CIM’s efficiency stems from two key prop-
erties: (i) a node cannot be redundant unless its children
are, and (ii) the order of elimination of redundant nodes is
immaterial. When [Cs are considered for minimization, we
refer to it as constraint-dependent minimization. For tree-
structured databases, required child/descendant and type
co-occurrence [Cs are very natural. Under such 1Cs, we show
that the minimal equivalent query is unique. We show the
surprising result that the algorithm obtained by first aug-
menting the tree pattern using 1Cs, and then applying CIM,
always finds the unique minimal equivalent query; we refer
to this algorithm as ACIM. While ACIM is also polynomial
time, it can be expensive in practice because of its inher-
ent non-locality. We then present a fast algorithm, CDM,
that identifies and eliminates local redundancies due to 1Cs,
based on propagating “information labels” up the tree pat-
tern. CDM can be applied prior to ACIM for improving
the minimization efficiency. We complement our analytical
results with an experimental study that shows the effective-
ness of our tree pattern minimization techniques.

1. INTRODUCTION

Spurred by the popularity of XML and LDAP directories,
which employ a core tree-structured model for representing
and manipulating data, there is currently a resurgence of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACM SIGMOD 2001 May 21-24, Santa Barbara, California, USA
Copyright 2001 ACM 1-58113-332-4/01/05 ...$5.00.

SungRan Cho

Stevens Institute of Technology

scho@attila.stevens-tech.edu

Divesh Srivastava
AT&T Labs—Research

divesh@research.att.com

interest in tree data models. Not surprisingly, queries in
such data models tend to be expressed in the form of tree
shaped patterns. The idea is one finds all ways of “embed-
ding” the pattern into the database, with the answer set
constructed from the set of all embeddings found. For ex-
ample, “find all books with an editor and an author” and
“find projects under departments whose name has ‘network-
ing’ appearing in it and such that the departments fall under
research” are examples of queries naturally represented as
tree shaped patterns.

Answering such queries requires matching a tree pattern
against a tree-structured database. Since the efficiency of
tree pattern matching depends on the size of the pattern,
it is essential to identify and eliminate redundant nodes in
the pattern and do so as efficiently as possible. A tree query
may fail to be minimal for one of two reasons.

First, there may be inherent redundant “components” in
the query like in classical conjunctive queries. As an ex-
ample, consider the query “find departments that contain
a database project and that contain project managers man-
aging a database project”. Intuitively, the requirement on
the first database project is “subsumed” by the one on the
second and can be dropped, leading to an equivalent mini-
mal query. We call this constraint independent minimization
(CIM) since minimization is achieved in the absence of any
integrity constraints (ICs) on the database. Recall that for
classical conjunctive queries, containment and minimization
are both NP-complete problems [5]. Thus, our first ma-
jor challenge is finding ways of minimizing tree queries effi-
ciently in the absence of any 1Cs.

Just like any database, tree databases naturally come with
application dependent ICs. For tree databases, constraints
that require entries/elements to have child/descendant en-
tries/subelements of specified types, as well as constraints
that require type co-occurrences, are very natural. The sec-
ond reason a query fails to be minimal is that even if it is
irredundant, it may become redundant in the presence of
ICs. For example, consider the query “find the title and
author of books that have a publisher”. 1f the 1C “every
book has a publisher” is known to hold, this query can be
simplified to “find the title and author of books”. The min-
imization we just performed is constraint dependent min-
imization (CDM) as it depends on the knowledge of ICs
that hold for a database. Query minimization under ICs
is traditionally achieved using semantic query optimization
techniques [2]. Existing techniques for semantic query op-
timization base themselves on the notion of a residue using

which one rewrites a query into an equivalent query. While
semantic query optimization can add or delete a subgoal
(node and edge for us), for tree pattern minimization only
deletion is relevant. Unfortunately, given a set of 1Cs, there
are exponentially many ways in which a query can be rewrit-
ten (while removing subgoals). So a direct approach based
on semantic query optimization is inappropriate. Thus, our
second major challenge is finding ways of minimizing tree
queries efficiently in the presence of 1Cs.

1.1 Contributions and Overview

In this paper, we address these two challenges and make
the following contributions:

o We show that when no ICs are present, every tree
pattern query has a unique equivalent minimal query.
We develop a polynomial time algorithm, CIM, based
on containment mappings, for obtaining the minimal
equivalent query that takes worst-case time O(n4:) in
the query size (Section 4).

CIM’s polynomiality stems from two key properties:
(i) a node cannot be redundant unless its children are,
and (ii) the order of elimination of redundant nodes is
immaterial.

e When ICs are restricted to required children, required
descendants, and required co-occurrences, we show that
the equivalent minimal query is unique (Section 5).

In this case, we show the surprising result that aug-
menting a query with redundant nodes and edges in
accordance with given ICs and then applying the CIM
algorithm to the augmented query always produces the
(global) minimal equivalent query (Section 5). This al-
gorithm, which we call ACIM, is also polynomial, and
takes worst-case time O(n®) in the query size.

e To mitigate the expense of ACIM, we develop an effi-
cient algorithm called CDM that labels each tree pat-
tern node with an information content, and propagates
it up the tree pattern (Section 5). This algorithm pro-
duces a locally minimal equivalent query for a given
query, in time O(n?) in the query size. The value of
CDM comes from the fact that applying it as a pre-
filter before ACIM yields the minimal equivalent query,
but much faster than ACIM applied alone.

e To investigate the effectiveness of the techniques pro-
posed in this paper, we implemented our techniques
using hash indices to ensure efficiency, and then per-
formed a series of experiments. Our study demon-
strates both the practicality of CDM and ACIM for
realistic queries, and quantifies the speed-up obtained
by first reducing a tree pattern using CDM before ap-
plying ACIM (Section 6).

Section 1.2 presents the related work. Section 2 contains
the background material. Formal statements of the prob-
lems studied in this paper are given in Section 3. Sections 4
and 5 contain the core of our work (CIM, ACIM and CDM).
Implementation details and experiments are presented in
Section 6.

1.2 Related Work

The problem of minimizing a query with or without 1Cs
is a fundamental problem in query optimization, and much

work has been done on this topic for various data models.
Tree pattern queries are essentially specialized conjunctive
queries on a tree-structured domain. Containment and min-
imization of relational conjunctive queries are known to be
NP-complete [5]. Saraiya [18] shows 2-containment, the re-
striction of the containment problem where there are at most
two occurrences of any predicate in the query, can be solved
in polynomial time, while 3-containment is NP-complete.
Kolaitis et al. [11] show that containment for conjunctive
queries with disequalities (#) is II5-complete and is co-NP-
complete for 2-containment. Kolaitis and Vardi [12] estab-
lish a fundamental connection between conjunctive query
containment and constraint satisfaction in Al. Florescu et
al. [8] show that containment of conjunctive queries with reg-
ular path expressions over semistructured data is decidable,
using some form of the chase technique. Under some restric-
tions they show that the problem is NP-complete. Chan [4]
characterized containment and equivalence of conjunctive
queries for OODBs and provided a minimization algorithm
for a restricted class, called terminal conjunctive queries.
His formulation focuses on type inheritance in OODBs and
as such his results are not directly applicable to the prob-
lems studied in this paper. Levy and Suciu [13] show that
equivalence and weak equivalence for conjunctive queries
for OODBs are decidable and show that equivalence with
grouping and aggregates is NP-complete. Millstein et al. [15]
study the problem of containment relative to available data
sources in the context of data integration and show that it
is decidable.

Semantic query optimization has a long history and we
only mention a few papers. Chakravarthy et al. [2] proposed
a technique based on the notion of a residue of an IC against
a query for optimizing non-recursive relational queries, Cal-
vanese et al. [1] consider the problem of conjunctive query
containment in an abstract setting that covers relational and
OO models, under a class of special inclusion dependencies
over complex expressions. They establish decidability re-
sults for this problem when the query has no regular ex-
pressions or no number restrictions and show the problem
is undecidable when disequalities are allowed.

Techniques like predicate elimination and join minimiza-
tion are used in cost-based optimization. This kind of op-
timization is based on algebraic rewritings which generate
exponential search spaces. While such algebraic techniques
can also be used in our setting, the search space of equiv-
alent algebraic expressions remains exponential. None of
the works that are about query optimization for XML such
as [14] and [6] consider 1C-based optimization. A logic-based
approach is adopted in [17] where queries and constraints are
represented in first-order logic. Chasing and backchasing are
used to rewrite queries considering [Cs. Because of the high
complexity of these rewritings, [16] uses a stratification tech-
nique to reduce the search space during query optimization
time.

2. BACKGROUND
2.1 Data Model and Queries

We consider a data model where information is repre-
sented as a forest of trees. Each node has an associated
type. Depending on the application, node order in trees may
be important. Two main applications inspiring this model

are XML and LDAP-style network directories [9]. In XML,

data is modeled as a forest of ordered trees, each node corre-
sponding to an element and the edges representing element-
subelement relationships. For LDAP directories, sibling or-
der is not important, and the edges may represent inherent
hierarchies such as organizational or geographical.

Queries in languages such as XML-QL [7] and Quilt [3] are
based on a notion of a tree pattern using which they extract
relevant portions of XML data. Directory queries ask for en-
tries that stand in specified structural relationships (parent,
descendant, etc.) to other specified entries and are naturally
represented as trees [10]. We express queries as tree patterns
where nodes are types and edges are child/descendant rela-
tionships. We do not consider order in our queries. Section 3
contains concrete examples of queries.

2.2 Integrity Constraints

For tree structured databases, ICs that deal with the tree
structure are very natural. Consider the example XML
Schema specification shown in Figure 1(a). From this spec-
ification, we can infer that every Book element must have
an immediate (i.e., child) subelement of type Title. We
can infer that every Book element must have a LastName de-
scendant subelement, if the schema specification says that
every Author element must have a LastName child. More
generally, whenever type B appears (as a subelement) in ev-
ery XML Schema specification for type A, we can conclude
every element of type A must have a child of type B, and
hence a descendant of type B. In addition, suppose every
specification for type A contains an element type C; in it
such that type C; is known to require a (descendant) sub-
type B, we conclude type A must have a descendant subtype
B. Inferring required parent and ancestor constraints is more
involved, and requires examining all occurrences of a type
in the schema.

Consider a directory database maintaining organizational
white pages information. In this context, it is natural to ex-
pect that every department entry must have some manager
entry below it, and that every employee entry must also
belong to the type person.

The preceding examples illustrate the naturality and util-
ity of integrity constraints corresponding to required chil-
dren/descendants and required co-occurrences of types. Fig-
ure 1(b) shows the notation for these kinds of ICs.

3. PROBLEMS STUDIED

In this section, we formally state the problems studied in
this paper and illustrate the issues involved in solving them,
using realistic examples. The examples are depicted in Fig-
ure 2. Each query is shown as a tree with two kinds of edges:
single edges (called child edges) represent direct containment
(or immediate subelement) relationship between the parent
and the child; double edges (called descendant edges) rep-
resent transitive containment relationship between the two
nodes in question. Descendants are defined via transitive
closure of the child relation, as usual. By way of termi-
nology, whenever there is a child or descendant edge (u,v)
in the tree pattern query, we say that v is a child of u. We
stress this terminology should not be confused with the kind
of edges, which are viewed purely syntactically for the pur-
pose of this definition. When it is necessary to distinguish
between different kinds of children of a node in a query, we
speak of c-child and d-child with their obvious meanings. In
each query, one node is marked with a “*”. For directory

applications, this is interpreted to mean only entries corre-
sponding to the marked node are returned as the answer set.
For example, in Figure 2(h), only OrgUnit entries would be
included in the answer set. For XML applications, the “*” is
interpreted to mean that the subtree rooted at the marked
node is returned as part of the answer set. For example, in
Figure 2(a), whole Article elements would be returned.

3.1 Constraint Independent Minimization

Given a tree query, we would like to minimize it. Let the
size of a tree query stand for the number of nodes in it. A
query @7 is contained in a query @2, Q1 C @Q2, provided
for every tree database D, Q1(D) C Q2(D). Equivalence is
two-way containment. A query @ is menimal if there is no
equivalent query which has a proper subset of nodes of Q.
Then, our minimization problem is as follows.

Problem P;: Given a tree pattern query @, find
an equivalent query of the smallest size.

As an illustration, consider Figure 2(h). This query asks
for all entries of type OrgUnit (organizational unit) that im-
mediately contain a department immediately containing a
researcher who manages a database project, as well as a de-
partment descendant that contains some database project.
Since the two query branches can map to the same database
branch, it can be seen that this query is equivalent to the
one shown in Figure 2(i). However, if Figure 2(h) were mod-
ified to put the “*” on the Dept node in the right branch,
the queries in Figures 2(h) and 2(i) would not be equivalent.

Recall that classical conjunctive query containment and
minimization are NP-complete. One source of complexity
in this case is repeated occurrences of the same relation in
the query. It is worth noting this source is also present in
tree query containment in the form of repeated occurrences
of the same type in a query. So it is not obvious how we can
solve this problem in polynomial time.

3.2 Minimization Under Constraints

The class of ICs we are interested in were described in
Section 2. Given a set of constraints C taken from this class,
we say a query ()1 is contained in a query Q2, Q1 Cp Q2,
provided for every tree database D that satisfies the con-
straints C, Q1(D) C Q2(D). Again, equivalence under ICs is
defined as two-way containment under 1Cs. Minimality un-
der ICs is defined in the obvious way. The second problem
we study in this paper is as follows.

Problem P:: Given a tree pattern query @ and
a set of constraints C, find a query that is equiv-
alent to @ under C and is of the smallest size
among all such queries.

3.3 lllustrative Examples

We now discuss a few examples that illustrate constraint
dependent minimization as well as the complex ways in
which it can interact with constraint independent minimiza-
tion. As a first illustration, consider the query in Figure 2(f).
It asks for all organizations that have an employee manag-
ing a project and that have a permanent employee manag-
ing a database project. If we know that PermEmp must co-
occur with Employee and that DBproject must co-occur with
Project, we can see that the “Organization--Employee

<xsd:complexType name='"Book'>

<xsd:element name="Title" type='"xsd:String"/>

<xsd:element name='"Author" type='"xsd:String"
minOccurs="1" maxOccurs="5"/>

<xsd:element name='"Chapter" type='"xsd:Chapter"/>

</xsd:complexType>

(a) Example XML Schema Specification

e 71 —> |12 | every type 71 node must have a

child of type 7.

o T — ﬂ: every type 71 node must have a

descendant of type 72.
e T — : every type 71 node must also be of
type T2.
(b) Notation for some ICs

Figure 1: Example XML Schema Specification and Notation for some ICs

. . . OrgUnit * OrgUnit *
Articles Articles Articles 9
= S [N |
/Arti cle Article* Article Article * Article * DTPt D'Wt DTpt
7\ | | | | _
Titte Paragraph Section Paragraph Section Section ReTercher DBProject Reseﬁrcher
Paragraph Paragraph Paragraph DBProject DBProject
() (b) (c) (h) (i)
Articles
Artidles Articles Organization * Organization * / \
/\ [//\ [Article Article*
Article Article* Article * PermEmp Employee PermEmp H H ‘
H H H H H Paragraph Section
Paragraph Section Section DBproject Project DBproject | | ______- oo ‘

(d) (e) (f)

Paragraph 1 Paragraph

(9)

Figure 2: Examples of Tree Pattern Queries

--Project” path is redundant and can be eliminated to ob-
tain the smaller equivalent query of Figure 2(g). The latter
query cannot be reduced further and is thus minimal.

As a second example, consider the query of Figure 2(a).
In the absence of ICs, it cannot be minimized further. If
we know the 1C Article —» , then the Title node
becomes redundant and the query can be simplified to that
in Figure 2(b). This query is not minimal: it can be further
simplified to Figure 2(c), which is minimal. We did not use
any 1C in the latter step: it i1s akin to an application of
constraint independent minimization.

Next, consider the query of Figure 2(b). If we know that
the IC Section —» holds, this query can be

simplified to Figure 2(d). The latter query cannot be sim-
plified further, either by applying this IC, or by using con-
straint independent means. However, it is nol minimal:
indeed, it can be shown that the query of Figure 2(e) is
equivalent to this query and it contains a proper subset of
the nodes and edges of this query. One way to obtain this
query is to first apply a constraint independent minimiza-
tion to Figure 2(b) to obtain Figure 2(c) and then use the
above IC to minimize it further to Figure 2(e). This example
shows the order in which we apply constraint independent
and constraint dependent minimizations may be important
in obtaining the minimal equivalent query.

As a last example, consider the query of Figure 2(d). In
the absence of 1Cs, this query is minimal. If the only IC we
are given is Section —» , we cannot directly

perform any minimization. Yet, we can augment this query
by adding an extra Paragraph node to it and making it a

descendant of Section, yielding an equivalent query. From
this, we can perform constraint independent minimization
to reason that the “Articles--Article--Paragraph” path
is subsumed by the path “Articles--Article--Section--
Paragraph”, yielding Figure 2(c), which can be further min-
imized to Figure 2(e).

To summarize, in the absence of any 1Cs, we can make use
of the classical technique based on containment mappings.
But the source of high complexity for containment in the
classical case is still present for our situation, and mere ap-
plication of containment mappings will not yield an efficient
algorithm. When 1Cs of the forms: required children, de-
scendants, and co-occurrences are known to hold, we can use
them to eliminate nodes from a given tree query. However,
this step interacts with constraint independent minimization
in subtle ways: (i) the two steps may need to be applied in
some sequence; (ii) the final outcome may depend on the
order of this application; and (iii) in certain cases, we need
to temporarily augment the query to be able to perform the
requisite minimization. Finally, when ICs are present or ab-
sent, it 1s not even clear that a query of the least size that
is equivalent to a given query is unique.

4. CONSTRAINT INDEPENDENT MINIMI-
ZATION

We wish to minimize a tree query when no ICs are known.
The first question is whether there is necessarily a unique
minimal equivalent query. The main tool we employ is that
of containment mappings, which are essentially query homo-
morphisms. Adapted to tree queries, a containment map-

ping from a query Q2 to a query (1 is a mapping h : Q2— Q1
from @2’s nodes to @Q1’s nodes such that: (i) h preserves
node types: Yu, u and h(u) have the same type, and h(u)
has the “*” label iff u has the “*” label; (ii) h preserves struc-
tural relationships: whenever v is a c-child (resp., d-child)
of uin @2, h(v) is a c-child (resp., descendant) of h(u) in
Q1. One can prove that, like in the homomorphism theo-
rem of Chandra and Merlin [5], for two tree queries Q1, Q2,
in the presence of sufficiently many node types, the query
Q1 is contained in @ iff there is a containment mapping
h: Q2—Q1. Note that while a child edge must be mapped
to a child edge, a descendant edge may be mapped to any
chain of child and descendant edges.

Let @Q be a tree query and Q' a tree query which contains
a subset of the nodes in Q. Then a homomorphism from @
to Q' is actually a homomorphism from Q to itself. Such a
homomorphism is called an endomorphism. A natural way
to approach minimization is to identify redundant nodes and
eliminate them. A node v of Q is redundant provided the
query obtained by deleting v (and possibly other nodes) is
equivalent to Q. Notice that a node marked “*” can never
be redundant. We first have:

ProposITION 4.1. Let Q be a tree query. A node v of Q
ts redundant iff there is an endomorphism on Q that is not
tdentity on v.

For a leaf v of a tree query @, denote by @ — {v}, the
tree obtained by deleting the leaf v and the incident edge
from Q. Given a tree query @, we define an elimination
ordering as a sequence of nodes of @ (vi,...,vi, ..., vx)
such that v; is a redundant leaf in @ — {v1,... ,vi—1}. Such
a sequence is a mazimal elimination ordering (MEO) if Q —
{v1,..., v} does not contain any redundant leaf. Our next
result shows that any query obtained via an MEO cannot
be further simplified through such node elimination.

LEMMA 4.1. Let Q be a tree query and Q' be a query ob-
tained from Q via an MFEO (v1, ... ,vx). Then Q' is a min-

imal query equivalent to Q.

Note that the above lemma does not tell us that an equiv-
alent query of the least size can always be obtained via a
MEO, since it is possible there are other minimal equivalent
queries not obtainable via an MEO. The next lemma settles
that issue.

LEMMA 4.2. Let Q be a tree query and Q' be an equivalent
query containing a proper subset of the nodes of Q. Then
there is an elimination ordering such that Q' can be obtained
from Q via that elimination ordering.

It follows from the above lemma that any minimal equiv-
alent query for a given query can be obtained via an MEO.
Thus, for the purpose of finding an equivalent query of the
least size, it suffices to consider only the equivalent queries
obtainable via MEOs. But can different MEOs result in min-
imal equivalent queries of different size? The next lemma
answers that question.

LEMMA 4.3. Let Q be a tree query and let Q' and Q" be
any two minimal equivalent queries obtained via two differ-

ent MEOs. Then Q' and Q" are isomorphic.

Combining the above lemmas, we get the following result.

THEOREM 4.1. Let Q be any tree query. Then il has
a minimal equivalent query which is unique up to isomor-
phism.

This theorem only says that by following an arbitrary
MEO, we can obtain a minimal equivalent query (which is
the unique query with the least size). It does not necessar-
ily imply this can be achieved in polynomial time. Notice
that testing whether a leaf v is redundant involves testing
whether it can be potentially mapped to some other node
by some endomorphism. This is not a local test since the
ancestors of this leaf as well as their descendants must be
consistently mapped. In the following, we develop an ef-
ficient technique for testing whether there ezists such an
endomorphism that is not identity on the leaf v.

Suppose we wish to test whether a specific leaf v of @ is
redundant. We begin by associating the set images(u) with
each node of Q: for the leaf v, images(v) is set to the set
of leaves of @, other than v itself, such that their type is
identical to that of v; for every other node u, set images(u)
to be the set of nodes of 2 whose type coincides with that of
u. We prune these sets in one bottom-up sweep as follows.
Mark all leaves. Whenever there is an internal node p, all of
whose children are marked, prune a node z from the image
set images(p) whenever one of the following holds: (i) p has
a c-child ¢, but none of the nodes in images(c) is a c-child of
z, or (ii) p has a d-child ¢, but none of the nodes in images(c)
is a descendant of . After checking for the prune-ability of
all nodes in the image set images(p), p is marked as well.
We repeat this iteratively bottom-up. At the end, the set
images(r) associated with the root r may or may not be
empty after the pruning. We can show the following result.

THEOREM 4.2. Let v be a leaf of a tree query Q. Then v
18 redundant iff at the end of the pruning procedure the set
images(r) associated with the root r is non-empty.

The above theorem immediately yields a polynomial time
algorithm for testing whether a leaf of a query is redundant.
Let maxImage be the maximum size of the images(u) set for
any node u. The initialization of the initial images(u) sets
for all nodes of @ takes O(n x maxImage), where n is the size
of Q. Then for each edge of @}, we incur time proportional to
maxlmage? during the bottom-up sweep during which the
sets are pruned. The final check for emptiness of images(r)
takes O(1) time. Thus, checking redundancy of a given leaf
can be done in O(n x maxImage?) time. Since the redun-
dancy of a leaf may have to be repeatedly checked, a naive
implementation results in an MEO in O(n® x maxImage?)
time. The performance of this algorithm can be improved
with a more efficient implementation, as given in Figure 3.

The key enhancements of this algorithm compared with
the naive implementation outlined above are the following.
(1) Once a node is identified to be non-redundant, it never
need be tried again for redundancy since it can never become
redundant. Thus, we invoke the redundancy check routine
(not shown in Figure 3) only a linear number of times as
opposed to quadratic. (2) It is unnecessary to prune the
images(p) sets for arbitrary unmarked nodes in the pruning
phase. We only need to consider ancestors of the leaf v
for pruning, and prune their children if appropriate. In the
worst case, the complexity of the pruning phase can still be
proportional to the number of edges of @, but in practice, we
expect the performance to be much better. (3) Whenever

Algorithm redundant-leaf;
Input: a tree query @, and a leaf v of Q;
Output: YES if v is redundant, NO if v is

not redundant;

Method:
1. images(v) = {z | z is a node of Q,z # v,
z and v are of the same type };
2. for each node u of Q: u # v {
images(u) = {z | z is a node of Q,z and
u are of the same type };

3. mark leaf v;

4. for (p = parent(v);; p = parent(p)) {
4.1. minimize-images(p);
4.2. if (¢mages(p) = 0) return (NO);
4.3. if (p = images(p)) return (YES);
/* once p is the root of the tree,

one of 4.2 or 4.3 will be true */

}

Algorithm minimize-images;

Input: a tree query @, and a node p of Q;

Action: Prunes the images(u) sets for all
descendant nodes u of p;

Method:
1. if (p is a leaf) mark p and return;
2. for each child ¢ of p

if (unmarked(c)) minimize-images(c);
3. for each = € images(p) {

for each child ¢ of p {

if (Ad € images(c) : d is a descendant of z)
{images(p) = images(p) — {z}};

4. mark p and return;

Figure 3: An Efficient Implementation of CIM

the set images(p) for a node becomes empty, it stops: in
this case, v cannot be redundant. It also stops, whenever
images(p) = {p} for some internal node. In the latter case,
let ¢ be the child of p that is an ancestor of v. We can
show that the entire subtree of @ rooted at ¢ is redundant.
Sort the nodes in this subtree in any topological sort. This
gives rise to a partial elimination ordering. We can then
proceed with further redundancy detection. The correctness
of the above algorithm follows from the theory developed
earlier. Its time complexity is O(n2 X maxlmage2). Since
maxImage can itself be O(n) in the worst case, the constraint
independent minimization algorithm is O(n*).

5. MINIMIZATIONUNDER CONSTRAINTS

Suppose we are given a query @ and a set of ICs C. The
first question is whether there is a unique equivalent query
of the least size. We will show in this section that when only
required child, descendant and co-occurrence constraints are
considered, @ always has a unique minimal equivalent query.
In addition to answering the first question, we tackle the is-
sue of how to obtain the minimal equivalent query, and do
so efficiently. For relational queries, there is a classical tech-
nique called chase which can be used to rewrite the query by
adding the effects of the given 1Cs. Redundancies that were
not (syntactically) visible before may become visible after
the chase and an application of the homomorphism tech-

nique can be used to subsequently eliminate redundancies.
The question is whether a similar technique would work for
minimizing tree queries as well. We begin addressing this
issue first. Uniqueness of the minimal equivalent query will
be shown later.

5.1 Chase Reviewed

Let us first review the chase technique [19], adapted to tree
queries. Let @ be a tree query and C a set of required child,
descendant and co-occurrence constraints. Then, chasep(Q),
the chase of @ w.r.t. C, is defined as follows:

o whenever C contains an IC of the form 7, —» ﬂ and

@ contains a node u of type 7;, add a node of type 7
and make it a d-child of u; a similar action is performed
for constraints of the form , — ;

e whenever) contains a node u of type 7; and C contains
the co-occurrence constraint 7; — , also associate

type 7; with node u.

The first question is can we apply the CIM algorithm de-
veloped in the previous section to chasep(Q) and obtain
a minimal equivalent query. The following example illus-
trates the difficulty involved. Consider the query given in
Figure 2(b). Suppose the IC Section — is
known to hold. Chasing the query with this IC will add a
second d-child of type Paragraph to the Section node. Ap-
plying the MEO-based technique of the previous section, we
see that the left branch of the tree as well as one of the two
d-children of the Sectionnode will be eliminated. The final
query obtained is the one in Figure 2(c), which is not mini-
mal, since the Paragraph leaf can be eliminated, leading to
Figure 2(e). This example shows that a direct application
of chase followed by CIM will in general not yield a minimal
equivalent query. A second issue with this approach is that
a blind application of chase can make the result of the chase
arbitrarily bigger than the original query: in particular, its
depth can increase arbitrarily under chase.

5.2 Augmentation

In the following, we develop a technique for obtaining a
minimal query equivalent to a given query under [Cs. We
also address the concern of query tree size blowup through
the chase. Let @ be a query and C a set of [Cs consisting of
required child, descendant, and co-occurrence constraints.
We make three major changes to the chase technique de-
scribed above. First, we assume that C is a logically closed
set of [Cs. The closure can be obtained in a straightforward
way, and has size at most quadratic in the size of the original
ICs; details are omitted here for reasons of space.

The second change to chase is that we only apply 1Cs
involving node types that existed prior to the chase, and to
nodes that existed prior to the chase. In particular, if u is a
node that was added by the chase, we do not apply any ICs
to it. Similarly, if 7, —> is an IC, and u is a node of
type i, but there is no node of type 7; in the original query,
then we do not apply this IC to the chase.

Finally, note that nodes/edges added by the chase are re-
dundant and so should be eventually removed. To facilitate
this, the third change to chase is that we mark all such nodes
and edges as temporary. Call the modified chase procedure
augmentation.

We advocate the following procedure, called Algorithm
ACIM, for minimizing a query under ICs: (i) Augment the
query w.r.t. the closure of the given set of ICs; (ii) Apply
the CIM algorithm of the previous section, ensuring that
temporary nodes inserted by the augmentation phase are
not checked for redundancy; and (iii) remove all temporary
nodes added by step (i). Before proving the optimality of
this algorithm, let us first illustrate it.

Consider the query of Figure 2(b), together with the IC
Section —» . This is already logically closed.

Augmenting the query with this 1C leads to the query of
Figure 2(j), where nodes/edges added by augmentation are
distinguished using dotted lines or boxes. Next, applying an
MEO-based minimization leads to the left branch and the
(unboxed) Paragraph node to be eliminated. Finally, the
remaining dotted Paragraph node can be eliminated since
it is temporary, yielding the query of Figure 2(e). In this
example, this is indeed the minimal equivalent query.

5.3 Optimality of ACIM

We develop some notions and notation to help prove the
optimality of this technique. Given a query @ and a set of
ICs C, we can eliminate a leaf u of type 7 of @, provided
its parent v is of type 7' and C contains or implies the IC
T — or v — , depending on the type of the edge
(v,u). By reduction, we mean a repeated application of this
step until no longer possible. Note that reduction preserves
equivalence under 1Cs, and always eliminates a descendant
before eliminating its ancestors in a query. Let us call an
application of the MEO-based algorithm to a query mini-
mization. In the sequel, we denote the three major steps
augmentation, reduction, and minimization by the letters
A, R, and M. Since both R and M prune nodes and edges
from a query tree, an equivalent query of the least size must
be obtainable via some sequence of applications of the steps
R and M. We need to determine a definite sequence of steps
and show it leads an equivalent query of the least size. Since
augmentation can facilitate the identification of redundant
nodes/edges, we also include A in the language of strategies.

Various strategies for optimizing a query thus correspond
to strings over the alphabet {A, M, R}, with possible repeti-
tions. Our first result is that doing augmentation first does
not prevent us from any minimization we might be able to
do on the original query.

LEMMA 5.1. Let Q be a query, C a logically closed set
of ICs, and let Q' = A(Q), i.e., the query obtained by ap-
plying augmentation to Q w.r.t. C. Suppose p : Q—Q is
an endomorphism on Q. Then there is an endomorphism
p Q' —=Q on Q' such that p' is an extension of u.

Since ' is an extension of u, u’ will not be identity on
any node of @ on which g is not, and thus every redundant
node of Q is also redundant in Q’.

Our next lemma establishes certain basic identities about
the extent of minimization achieved by strings in the alpha-
bet {A, R, M}. Recall that each string represents an algo-
rithm. We use the notation @ C 3 to mean for any query
Q, the result a(Q) of applying « to it contains every node
and edge that is present in the result 8(Q) of applying 3 to
Q. In this case, we say that « is dominated by S3.

LEMMA 5.2. The following identities hold, where o is any
string over {A, M, R}: (i)a T aM; (it)a C aR; (iti) MR C
AMR; and (iv) RM T AMR. |

Our next lemma shows that the strategy represented by
the string AM R is idempotent.

LEMMA 5.3. AMR is idempotent, i.e., for any query Q,
AMRAMR(Q) = AMR(Q). |

Our last lemma shows that AM R is an optimal strategy
in that no other string over {A, M, R} is superior to it.

LEMMA 5.4. Let ¢ be an arbitrary string over {A, M, R}.
Then ¢ C AMR. In words, for any query Q, AM R produces
the equivalent query of the least size among all equivalent
queries.

Lemma 5.4 says two things. First, it says AM R is the best
strategy among all strategies composed of A, M, R applied
in any order, any number of times. Second, since every
equivalent query of size smaller than @ can be obtained this
way, it says the minimal equivalent query is unique. How
does this result affect Algorithm ACIM developed earlier?
Recall that ACIM does not exactly correspond to a string
over {A, M, R}, since it uses a notion of temporary nodes
and never considers them for redundancy checking, although
it eliminates them in the end. Actually, ACIM is nothing
but a clever implementation of AM R! To see this, consider
any node deleted by R in AM(Q). If this node corresponds
to a temporary node inserted by A, there is nothing to show.
Suppose it is a node u of Q. In this case, it is straightforward
to see that the result of augmentation will make u redundant
w.r.t. containment mappings. So, again this node will be
eliminated during the minimization step. We finally have:

THEOREM 5.1. Let Q be a tree query and let C be a set
of ICs consisting of required child and required descendant
constraints. Then there is a unique query Q' which is equiv-
alent to @ and is minimal. Furthermore, Algorithm ACIM
will always produce this minimal query.

Algorithm ACIM is illustrated in Section 3.3. We next
analyze its complexity. We know that Algorithm CIM takes
O(n? x maxImage?), where n is the number of nodes in the
query that is input to CIM. Since we perform an augmen-
tation, the number of nodes could be much larger than in
the original query Q. However, augmentation does not add
new types to the query and increases the query tree pattern
depth by at most one. Hence, the size of the augmented
query can be at most O(n2). This can increase the maximum
size of images to O(n?) as well. However, the temporary
nodes added by augmentation are themselves never consid-
ered for removal during the minimization phase of CIM. As
a result, the (worst-case) complexity of ACIM is O(n®).

Note that, in ACIM, we do not take advantage of oppor-
tunities to prune away nodes that are redundant in the pres-
ence of ICs. Can we remove all such redundant nodes before
ACIM is applied? How quickly can we remove redundant
nodes? These questions are addressed next.

5.4 Local Pruning

While Algorithm ACIM always yields the minimal equiva-
lent query under 1Cs, and is in polynomial time, in practice,
the size of the augmented query can be substantially larger
than the original query leading to a performance that may
sometimes not be acceptable. We ask whether there is any
way we can improve the performance. In particular, can we

quickly identify all query tree nodes that are redundant un-
der ICs, and eliminate them before feeding it to ACIM? In
this section, we develop precisely such an algorithm, called
CDM. CDM can act as an efficient pre-filter before ACIM
is applied. We also show that CDM followed by ACIM al-
ways leads to the minimal equivalent query. The gain in
the overall efficiency of constraint-dependent minimization
under this approach comes from the fact that all locally re-
dundant nodes are quickly eliminated and, as with ACIM,
the temporary redundant nodes added by augmentation are
themselves never considered for redundancy checking and
are all eliminated in one shot at the end.

The basic idea behind CDM 1is the following. Iteratively
identify any redundant leaves of the query tree and eliminate
them until no longer possible. Suppose @ is a query and C
is a logically closed set of 1Cs. There are four ways in which
a leaf v can be found to be redundant:' (i) leaf v of type

/

7' is a c-child of node u of type 7 and C contains the IC
T— ; or (ii) leaf v of type 7' is a d-child of node u of
type 7 and C contains the IC 7 —» ; or (iii) leaf v of

type 7' is a c-child of node u, node u has another c-child
of type 7, and C contains the IC 7 — ; or (iv) leaf v of

type 7’ is a d-child of node u, which has a descendant w 2 of

type 7, and C contains one of the [Cs 7 —» ortT — .
Say that a leaf of a query is locally redundant precisely when
one of the above conditions holds. While this procedure is
incomplete in that it may not yield the minimal equivalent
query, it has the advantage of being efficient and having the
local minimality property.

The rules above by themselves do not yield an efficient
test, since they need information that is not available at a
node or its neighbors (see rule (iv)). Algorithm CDM is
essentially an efficient implementation of the above proce-
dure, by way of maintaining an “information content” at
each node. The information content at a node is all the
information relevant to applying ICs that will help detect
whether its children are redundant. As a preview, in Fig-
ure 2(b), the essential information at the left Paragraph
leaf is that it is of type Paragraph, while at its parent,
the essential information is not only the parent’s type but
also the fact that it is constrained (by the query) to be
an ancestor of a Paragraph node. If we know that the IC

Section — |Paragraph| holds, then at the Section par-

ent, based on its information content, we can deduce that
its Paragraph child is redundant.

We use the following notation for information content.
The information content at any node is composed of one or
more information arguments, which can be one of the fol-
lowing, where 7, 7; denote types as usual. The information
argument 7 at a node means it is of type 7, without being
constrained by any descendants. In contrast, 7 means the
node is associated with type 7, but it is constrained by the
presence of descendants. In addition, we also denote struc-
tural obligations of a node in the form ar, a7, pr, and p7,
with the following interpretation. ar at node u means u is
constrained (by the query) to be an ancestor of some node

'In the following, when we say a node v is of type 7, we
mean that it is the original type associated with that node,
not added in as a result of augmentation.

?Not necessarily a direct d-child: there could be a sequence
c- or d-edges on the path from u to w.

Edge | Parent | d/c-Child | Propagated Information
d T1 ’7’2|7:2 7:1,a72|a7~'2
d T1 a7'2|a7~'2 7:170/7:2
d T1 pT2|pTe T1, aT2
c T1 T2| T2 71, pT2|pT2
c T aty|ats 71, aty
c T1 pTa|pTe T1, aT2

Figure 4: Information Propagation Rules

v of type 7, such that v itself has no descendants and no
ancestors between u and v. a means the same obligation
holds except the type 7 at node v is either constrained, or
v has an ancestor between u and v. The arguments pr and
pT have similar interpretations. As an example, suppose the
query contains a node u of type 7 with a d-child v of type
7', which in turn has a d-child w of type 7"/. Then we would
associate the information arguments 7" with w, ¥/, ar’’ with
v, and 7,a7, a7’ with u. Here, #' at v indicates this node
is constrained by being required to be an ancestor of some
node of type 7. Other arguments can be similarly explained.

5.5 Algorithm CDM: An Overview

We start by labeling each leaf with an information content

and then propagate it up the tree in a bottom-up sweep.
We make use of propagation rules, which will be explained
shortly. Alternating with the propagation is a minimization
step. Once the information content has been propagated to
a non-leaf node, we inspect the information content at that
node to determine whether any of its children is redundant.
Nodes determined redundant during this pass are marked
as being redundant. As with Algorithm CIM, if a node is
marked “*”, then it cannot be removed since it is part of
the answer.
Information Content Propagation: For each leaf, its
information content is the type associated with it. Informa-
tion content for internal nodes is computed by propagating
it from the leaves up the c- or d-edges as appropriate, in
accordance with the rules in Figure 4. We explain a couple
of rules. The first rule says if the query contains a node u of
type 71 having a d-child v with associated information argu-
ment T2, then we propagate the information content 71, ar
to node u. If the argument associated with v was 7 in-
stead, we would change the content at u to 71,a72. Rule 2
is very similar, except that the information argument asso-
ciated with the d-child v happens to be am: or a7z. The
propagation rule is the same, since if v is constrained to be
an ancestor of some node of some type, this obligation cer-
tainly extends to u, which is the d-parent of v. Whenever
an internal node has more than one child, the information
content propagated from all its children are merged.

ExAMPLE 5.1. [Information Content Propagation]
Figure 5 shows a complete example of a query together with
1Cs, illustrating the propagation as well as minimization
steps. We focus only on the propagation aspect now. Step 1
of the figure shows a query asking for instances of type t1
satisfying the tree pattern. It also shows propagation along
each of the three branches. For example, the left-most leaf is
labeled by its unconsirained type te.> In accordance with the
propagation rules, its c-parent of type ts gels the information
content Is,pte (rule 4, Figure 4). Similarly, the d-parent of

3 . .
Information contents appear in boxes.

*t1
I | \
|
t6 STEP1
*t1 ~t1, p~t2, a~t5, a~t6,
at3, pt4

2 ,a~t5,a~t6| 3 |13 t4 | t4
[t3% [m%

STEP2

Ne—
;/.

~t5, pt6

,_,
o

= A

o)
[
A
o
Q

* t1

~t1, p ~t2, a ~t5, a ~t6

o [mvoas)

‘
t‘6 STEP3

Figure 5: A CDM Example; ICs shown at point of
application

this node is of type t2, and accordingly it gets the informa-
tion content tz,ats,atg (rule 3). Propagation up the other
branches is similar.

Minimization: Like propagation, minimization can be ex-
pressed in the form of rules. The objective of minimization is
to mark redundant nodes. In addition, we may sometimes
need to change the status of some information arguments
from “constrained” to “unconstrained”. The minimization
rules are given in Figure 6. Rule 1 says whenever a node
is of type 7 and has an obligation (from the query) to be
an ancestor of another node of type 72, the latter node can
be made redundant whenever C contains the IC 71 —» .
Rule 2, for obligation for parenthood, is similar, except one
needs the IC 1y — to effect minimization In this case.
The remaining rules deal with the case where a node has
two obligations, out of which one can be inferred to be re-
dundant by virtue of an appropriate IC. As an example, rule
4 says when a node has the obligation to be an ancestor or
parent of a node which has constrained type 71 and it has
an obligation to be an ancestor or parent of a node of type
T2, the latter obligation is redundant whenever C contains

the IC 11 —» .

Argl | Arg2 Constraint Minimization
T1 aTy T — make T node redundant
T1 pT2 1 — | T2 make T node redundant
aTy aTy T —» make 75 node redundant
a|pT aT T] —» | T2 make T node redundant
alpm1 | alp2 T — | T2 make T node redundant
alp71 | alpm T — |72 | make T node redundant

Figure 6: Minimization Rules

The minimization procedure alternates with propagation.
Whenever propagation to a node is complete, starting from
the parent of leaves, the minimization procedure kicks in.
At that node, we apply any applicable minimization rules,
rendering children redundant in the process. In addition,
whenever all children of a node are marked redundant, the
information argument 7 at the node, if any, is changed to 7.

EXAMPLE 5.2. [Information Content Minimization]
Let us revisit Example 5.1. Step 2 shows various ICs that
can be applied using minimization rules, marking (and elim-
inating) redundant nodes. For example, the node with (un-
constrained) type t7 can be inferred to be redundant and re-
moved, by virtue of the information content at its parent —
t~3,at7 — and the IC t3 —> . A similar remark applies
to the node with type ts. At this time, we also update the
information argument ts to ts and similarly for &4. Next,
we propagate the information content to the root we exam-
ine the information content of the root and find that it has
pt~2 and pty. Using the IC to — and minimization rule
6 (in Figure 6), we note the c-child t4 is redundant and can
be removed. Similarly, the d-child ts can also be eliminated
(Figure 5, PART 3). The resulting query does not have any
local redundancy.

Let us analyze the complexity of Algorithm CDM. A naive
analysis shows every pair of nodes is compared at most
once, so it is O(n?), n being the number of nodes in the
query. We next undertake a more careful analysis. First,
notice that propagation of information content takes time
proportional to the number of nodes. Next, the six rules
in Figure 6 are essentially captured by the four rules at the
beginning of Section 5.4. Of these, the first three involve
comparison of a parent with its c- or d-children, or of a d-
child with another d-child, or of two c-children. This takes
O(E; 1ot aleaf(f(2)+ 1)?), where f(i) is the fanout of node
1. Let maxzf be the maximum fanout of any node. Since
. ot a lea.f(f(_i)) = O(n), the above expression simplifies
to O(n x mazf). As for a the last rule, for checking its
redundancy, a node w may have to be compared with the
descendants of each of its ancestors. Let mazd be the maxi-
mum depth of the query tree. Then the number of ancestors
of w is at most mazd. So, the amount of work done for a
specific node w is at most mazxd x mazf. The overall work
done for this step is given by O(n x mazd x mazf). Hence,
the overall work done by Algorithm CDM can be seen to
be no more than O(min(n x mazd x mazf,n?)). For a bal-
anced binary tree with n nodes, for example, this term is
O(nlog(n)). The min operator signifies the fact that when
the tree shape is such that n x mazd x mazf > n?, the algo-
rithm still never does more than O(n2) work, since no pair
is compared more than once. One such situation is when
mazf = O(n) and mazd = O(n). Notice that Algorithm

CDM has a much better complexity than Algorithm ACIM.
We conclude this section with the following results.

THEOREM 5.2. Let Q@ be a tree query and C a logically
closed set of ICs. Let Q' be the result of applying Algorithm
CDM to Q, Then Q' is locally minimal, i.e. Q' is equivalent
to Q and no leaf in Q' is locally redundant. ||

The next theorem says applying CDM prior to ACIM as
a pre-filter does not compromise the optimality of ACIM.

THEOREM 5.3. Let Q be a tree query and C a logically
closed set of ICs. Then, applying Algorithm CDM followed
by Algorithm ACIM always yields the unique minimal query
equivalent to Q under C. ||

One of the main contributions of this section has been the
development of Algorithm CDM for finding a query equiva-
lent to a given query which is locally minimal. This, when
fed to Algorithm ACIM, will still enable the latter to find
the unique (globally) minimal query equivalent to the given
query under the given constraints. The main advantage of
CDM is as an efficient pre-filter before ACIM takes over. We
expect the efficiency gain for this approach compared with
directly applying ACIM to come from the fact that all nodes
that are removed by CDM will never have to be processed
by the more expensive ACIM.

6. IMPLEMENTATIONAND EXPERIMEN-
TAL RESULTS

We implemented the various algorithms presented in the
paper, and experimentally compared their performance for
minimization of tree pattern queries, both without and with
ICs. The experiments study in detail the minimization time
by first separating the study of ACIM and CDM, and then
combining them to see how they interact. In all experiments,
time is reported in seconds.

6.1 Use of Hash Tables

Constraints are organized in a hash table for efficient re-
trieval during the minimization process. Given an informa-
tion content at a node, CDM considers each pair of argu-
ments in this information content and uses them as a key to
access the hash table that contains the constraints relevant
to the given pair. In the same manner, given a leaf node,
ACIM uses it as a key to retrieve relevant constraints and
perform augmentations. The ancestor/descendant table as
well as the images table are also stored as hash tables. In or-
der to avoid the additional overhead required by the ACIM
algorithm (because of the constrained augmentation), aug-
mentations are not physically added to the initial query.
They are maintained only as redundant nodes in the images
and the ancestor/descendant tables.

6.2 ACIM

ACIM time depends on the number of redundant nodes
in a query pattern, the degree of redundancy (which is the
number of times a node is redundant), the query size and
finally, the number of constraints that might generate addi-
tional redundancy in the query pattern. We ran two sets of
experiments. The first set shows the variation of ACIM time
with a growing number of constraints starting from 0. The
second one shows, for a fixed number of constraints (100),

the proportion of time ACIM spends in building the im-
ages and the ancestor/descendant tables. We verified that
ACIM response time is a function of the total number of
redundant nodes, irrespective of whether this total was ob-
tained by fixing the degree of redundancy and varying the
number of redundant nodes, or by fixing the number of re-
dundant nodes and varying the degree of redundancy. Thus,
we report the variation of ACIM time as a function of the
total number of redundant nodes.

Varying Redundancy and Constraints: We consider a
query with 101 nodes. We varied the number of redundant
nodes from 1 to 90 and the degree of redundancy from 1
to 40. We ran ACIM with no constraints, 50, 100 and 150
constraints relevant to the query. The graphs of Figure 7(a)
show the variation of ACIM time, as a function of the total
number of redundant nodes. Essentially, ACIM time stayed
about the same for a given number of constraints, when
varying the total number of redundant nodes, while keeping
the query size fixed. Further, the larger the number of rele-
vant constraints, the more is the time taken by ACIM; this
increase appears to be linear in the number of constraints.
Total Time and Tables Time: We report the total time it
takes to execute ACIM and the fraction of this time spent to
build the images and the ancestor/descendant tables. The
query we considered has 101 nodes and the number of con-
straints relevant to this query is 100 (thus all nodes except
the root node were redundant). The graph of Figure 7(b)
shows that the time spent in building these tables is around
60% of the total ACIM time. The same results hold for
other numbers of constraints.

6.3 CDM

We ran two sets of experiments. The first set shows that
the CDM algorithm does not depend on the total number
of available constraints in the constraint repository, because
of its use of hashing techniques. The second set of experi-
ments aims to understand how CDM time varies with vary-
ing query sizes, shapes and node fanouts.

Varying Constraints: Figure 8(a) shows that, for a fixed
query size (containing 127 nodes) and a growing number
of relevant constraints (from 0 to 150), CDM time remains
constant. This shows that our CDM algorithm does not
depend on the number of schema constraints. This is due
to the fact that, given the two arguments in the information
content of a node, the algorithm uses them as a (combined)
key to access the hash table and verify whether a constraint
involving both of them is present. This check is an access to
the hash table where constraints reside and does not depend
on the number of constraints in this table.

Varying Query Size: Figure 8(b) reports three graphs.
Two of them are very similar and show the variation of the
CDM time with a growing query size. Given a set of con-
straints (in this case, fixed to 110), we generate queries for
which all the constraints are relevant. The only marked node
is the root node. Because of the way the query is generated
(all edges are redundant), the only node that remains after
query minimization is the root node. The shape of a query
does not have any impact on the CDM time. Right-deep and
bushy tree pattern queries have very similar performance re-
sults. The experiments show that the CDM algorithm grows
in a linear fashion, for a fixed fanout. The third graph shows
the evolution of CDM with an increasing node fanout. In
general, CDM behaves in a quadratic fashion with respect to

ACIM Time

CDM Time

Time

0.09 T T — T T T T 0.07 T — T
"NoConstraint" —— - a a "TotalTime" ——
0.08 ¥ ='50CoRstraints" === | "TablesTime'
) "100Constraints" - 0.065
0.07 "150Constraints" = |
' N I 0.06 | |
| S S *
0.06 T]
o 0.055 1
0.05 e) e IS
,,,,,,,,,,, DENVEBSSSSe. = o005t 1
0.04 1
003 | 1 0.045 - 1
002 . .+ 7 0.04 + I %*X 77777777777 R * 1
,,,,,,,,,,, s
0.01 0.035
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
RedDegree*RedNodes RedDegree*RedNodes
(a) Varying Redundancy and Constraints (b) Total Time and Tables Time
Figure 7: Studying ACIM
0.00505 T T T T 0.005 — T T
"CDMconstant” —— "VaryingFanout"
0.00504 - 1 "RightDeep" ----»---
"Bushy" %
0.00503 - 1 0.004 1
0.00502]
0.00501 - 1 g 0.003 1
] F
0.005 %
0.00499 1 O 0.002 - 1
0.00498 - 1
0.00497 - 1 0.001 1
0.00496 - 1
0.00495 - - - - - - - 0 - :
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140
Number of Constraints Query Size
(a) Varying Constraints (b) Varying Query Size
Figure 8: Studying CDM Time
0.07 T T 0.07 T T T
"ACIM" —— "ACIM" ——
"CDM" s "CDMACIM" -
0.06 0.06 1
0.05 0.05 1
0.04 o 004 |
£
0.03 " o003]
0.02 0.02 1
0.01 0.01 1
0 0
10 20 30 40 50 60 70 80 90 100

Query Size

(a) ACIM and CDM with a Varying Query Size

Query Size

(b) Varying Number of Redundant Nodes

Figure 9: Comparing/Combining ACIM and CDM

the node fanout. However, CDM time remains small (within
a few milliseconds) for large queries (containing more than
120 nodes).

6.4 Combining Both Minimizations
In order to understand how ACIM and CDM algorithms

compare, we ran two sets of experiments. In the first set, we
build a query where the number of nodes removed by CDM
is the same as the number of nodes removed by ACIM and
we increase the query size while preserving this property.
We ran ACIM and CDM on the same query separately and
compare their performance. The second set of experiments
aims to compare the direct application of ACIM with the
use of CDM as a pre-filter to ACIM.

ACIM versus CDM: In order to compare the ACIM and
CDM algorithms, we built a query where ACIM and CDM
would remove the same set of nodes if applied separately.
CDM outperforms ACIM substantially. The graphs in Fig-
ure 9(a) show that the time to perform CDM is significantly
smaller than the time to perform ACIM with a growing
query size. Further, the time difference between the two
algorithms grows with a growing query size.

CDM as a Pre-filter: This experiment shows the benefit
of using CDM before ACIM. Since ACIM is more complex
than CDM, we expect that it is beneficial to run CDM first
and remove all local redundancies before running ACIM (on
a potentially smaller query). We report on an experiment (in
Figure 9(b)) where CDM removes half the nodes that ACIM
can remove. Our results show that applying CDM as a pre-
filter always outperforms the direct application of ACIM,
and that the advantage increases with increasing query size.

7. CONCLUSIONS AND FUTURE WORK

Tree patterns form a natural basis with which to query
tree databases such as XML and LDAP style directories.
Query answering in this context can be considerably im-
proved by reducing the pattern size. Doing so is closely
related to conjunctive query minimization: a problem that
is in general NP-complete for classical relational database
queries. In this paper, we showed that for tree pattern
queries, in the absence of 1Cs, this problem can be solved in
polynomial time. Indeed, there is a unique minimal equiv-
alent query for a given query. This happy situation ex-
tends also to the case when minimization must be performed
under the presence of required child, descendant, and co-
occurrence [Cs — constraints that are fairly natural for tree-
structured databases. In addition to providing efficient al-
gorithms for minimization with and without 1Cs, we also
established their practicality using an experimental study.

There are several interesting directions for further work.
First, tree pattern queries may involve value-based condi-
tions, e.g., that the price of a book always be less than $100,
in addition to the structure-based conditions. How can one
extend the techniques developed in this paper to this case?
Our intuition is that, in this case, we should still be able to
apply the techniques developed in this paper, with the fol-
lowing modification: when we consider endomorphisms (for
ACIM), a node u cannot be mapped to a node v unless the
conditions at node v logically entail those at node u. The
main impact of incorporating value-based conditions should
be an increase in the complexity owing to reasoning about
implication of value-based conditions.

Another challenging direction is to consider larger classes

of tree-structured constraints: for example, those that forbid
certain types of children or descendants, or require/forbid
certain types of parents and ancestors. In this case, there
may be no unique minimal equivalent query, since a node
might be redundant without its children nodes being redun-
dant. We conjecture, though, that all minimal equivalent
queries would be of the same size.

8. REFERENCES

[1] D. Calvanese, G. De Giacomo, and M. Lenzerini. On
the decidability of query containment under
constraints. PODS 1998.

[2] S. Chakravarthy, J. Grant, and J. Minker.
Foundations of semantic query optimization for
deductive databases. Foundations of DD and LP 1988.

[3] D. D. Chamberlin, J. Robie, and D. Florescu. Quilt:
An XML query language for heterogeneous data
sources. WebDB 2000.

[4] E. P. F. Chan. Containment and minimization of
positive conjunctive queries in OODBs. PODS 1992.

[5] A. K. Chandra and P. M. Merlin. Optimal
implementation of conjunctive queries in relational
databases. STOC 1977.

[6] V. Christophides, S. Cluet, and J. Simeon. On
wrapping query languages and efficient XML
integration. SIGMOD 2000.

[7] A. Deutch, M. Fernandez, D. Florescu, A. Levy,

D. Suciu. A query language for XML. WWW 1999.

[8] D. Florescu, A. Y. Levy, and D. Suciu. Query
containment for conjunctive queries with regular
expressions. PODS 1998.

[9] T. Howes, M. Smith, and G. S. Good. Understanding
and Deploying LDAP Directory Services. Macmillan
Technical Publishing, Indianapolis, Indiana, 1999.

[10] H. V. Jagadish, L. V. S. Lakshmanan, T. Milo,

D. Srivastava, and D. Vista. Querying network
directories. SIGMOD 1999.

[11] P. G. Kolaitis, D. L. Martin, and M. N. Thakur. On
the complexity of the containment problem for
conjunctive queries with built-in predicates. PODS
1998.

[12] P. G. Kolaitis and M. Y. Vardi. Conjunctive-query
containment and constraint satisfaction. PODS 1998.

[13] A. Y. Levy and D. Suciu. Deciding containment for

queries with complex objects. PODS 1997.

J. McHugh and J. Widom. Query optimization for

XML. VLDB 1999.

[15] T. D. Millstein, A. Y. Levy, and M. Friedman. Query
containment for data integration systems. PODS 2000.

[16] L. Popa, A. Deutsch, A. Sahuguet, and V. Tannen. A
chase too far? SIGMOD 2000.

[17] L. Popa and V. Tannen. An equational chase for
path-conjunctive queries, constraints, and views.
ICDT 1999.

[18] Y. P. Saraiya. Polynomial-time program
transformations in deductive databases. PODS 1990.

[19] J. D. Ullman. Principles of Database and
Knowledge-Base Systems, Volumes I and I1.
Computer Science Press, Rockville, Maryland, 1989.

[14

[am

