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ABSTRACT
Virtually all proposals for querying XML include a class of
query we term “containment queries”. It is also clear that in
the foreseeable future, a substantial amount of XML data
will be stored in relational database systems. This raises
the question of how to support these containment queries.
The inverted list technology that underlies much of Informa-
tion Retrieval is well-suited to these queries, but should we
implement this technology (a) in a separate loosely-coupled
IR engine, or (b) using the native tables and query execu-
tion machinery of the RDBMS? With option (b), more than
twenty years of work on RDBMS query optimization, query
execution, scalability, and concurrency control and recov-
ery immediately extend to the queries and structures that
implement these new operations. But all this will be irrel-
evant if the performance of option (b) lags that of (a) by
too much. In this paper, we explore some performance im-
plications of both options using native implementations in
two commercial relational database systems and in a spe-
cial purpose inverted list engine. Our performance study
shows that while RDBMSs are generally poorly suited for
such queries, under certain conditions they can outperform
an inverted list engine. Our analysis further identifies two
significant causes that differentiate the performance of the
IR and RDBMS implementations: the join algorithms em-
ployed and the hardware cache utilization. Our results sug-
gest that contrary to most expectations, with some modifi-
cations, a native implementation in an RDBMS can support
this class of query much more efficiently.

1. INTRODUCTION
In query languages proposed for XML, and even more

generic SGML query languages, containment queries play a
prominent role. By “containment query” we mean queries
that are based on the containment and proximity relation-
ships among elements, attributes, and their contents.

While there is a great deal of work being done on how
to support such query languages in special purpose query
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engines [14, 17, 27, 20, 22, 21], it is clear that in the fore-
seeable future a great deal of XML data will be stored in
relational database systems. (As evidence for this, notice
that major DBMS vendors including IBM, Microsoft, and
Oracle are investing substantial resources toward improving
their system support for XML data.)

Since containment queries are an important aspect of query-
ing XML data, and RDBMSs must support the storage and
querying of XML data, the question arises: how should we
support containment queries in RDBMS? The inverted list
technology that underlies much of Information Retrieval is
well-suited to containment queries, but should we implement
this technology (a) in a loosely-coupled IR engine, or (b) us-
ing the native tables and query machinery of the RDBMS?

Commercial products such as DB2 Text Extender and
SQL Server Full-Text Search Service take option (a), where
a special purpose IR engine is coupled with the database en-
gine. Users employ certain operators (e.g.,“contains”, “form-
sof”, “synonym form of”) to tell the system to route parts
of the query to the IR engine. Query results from both en-
gines are then combined before returning to the user. In this
type of system, a “glue” module must be used between the
IR engine and the main database engine to handle locking,
concurrency control and recovery. In addition, the optimizer
has no choice as to which engine should execute which part
of a query, since the use of the “IR” engine is dictated by
the use of special predicates when the query was framed.

Option (b) directly utilizes the database storage and pro-
cessing power to process containment queries. More than
twenty years of work on query optimization, query execu-
tion, scalability, and concurrency control and recovery im-
mediately extend to the queries and structures that imple-
ment the new operations. In addition, this approach has the
advantage of one unified optimization and execution frame-
work for all queries. However, all this will be irrelevant if
the performance of the native implementation lags that of
the “coupled” implementation by too much.

In this paper we take a first step in exploring the two
options. We compare the implementation of containment
queries using native support in two commercial relational
database systems and in a special purpose inverted list en-
gine. We transform the inverted index into relational tables
and convert containment queries into SQL queries. It turns
out that a native implementation using an RDBMS can pro-
cess queries that are either difficult or impossible to process
by an inverted list engine.

Our performance study shows that while RDBMSs are
generally poorly suited for containment queries, under cer-



tain conditions they can outperform the inverted list engine.
Also, our experiments point to two significant causes that
differentiate the performance of the IR and RDBMS imple-
mentations: (1) the join algorithms employed, and (2) the
hardware cache utilization achieved.

The inverted list engine uses a merge join that we term
Multi-Predicate Merge Join (MPMGJN), as its workhorse
join operator. This algorithm is different from the standard
merge join and the index nested-loop join algorithms, and
the difference has a significant impact on performance. To
isolate algorithmic differences from other factors, we imple-
mented the standard merge join and the index nested-loop
join ourselves. We compare the join algorithms in great de-
tail and our experimental results show that MPMGJN could
out-perform the standard RDBMS join algorithms by more
than an order of magnitude on containment queries.

Additionally, with main memory sizes getting larger and
the memory hierarchy getting deeper, many researchers have
recognized the importance of hardware cache utilization on
performance [2, 31, 25]. We conducted experiments to see
whether there is a significant difference between the inverted
list engine and the RDBMS. The answer is yes. To the best
of our knowledge, this is the first paper that studies and
compares a merge join using multiple predicates with stan-
dard join algorithms and shows their impact on hardware
cache utilization.

The rest of the paper is organized as follows: Section 2
describes containment queries, their processing using the in-
verted index, and the translation of the inverted index into
relations and containment queries into SQL queries. Sec-
tion 3 details our performance study and analysis compar-
ing the two types of systems: an inverted list engine and
the RDBMS. Section 4 discusses related work, and Section 5
concludes.

2. CONTAINMENT QUERY PROCESSING
Containment queries are a class of queries based on con-

tainment relationships among elements, attributes, and their
contents. This class subsumes database path expressions
(including regular path expressions) and Information Re-
trieval Boolean and proximity queries. In this section we
first use examples to illustrate these queries and establish
their importance, we then show how to use the inverted
index and the relational database system to process basic
containment queries. Since complex containment queries
can be reduced to a sequence of more basic ones, and ba-
sic containment queries shed more light on the fundamen-
tal determinants of performance, we mostly focus on simple
containment queries such as “title contains ‘galaxy’ ”.

2.1 Containment Queries
Descriptions of path expressions can be found in Lorel [1]

and XQuery [5]. Since XQuery is a query language proposed
by W3C, the XQuery style of path expressions is likely to
be widely used. Thus we adopt its syntax to describe the
containment queries.

The following is a containment query:
Q1. /doc[author=‘John Smith’]//section/title

It selects titles of sections contained in the document au-
thored by “John Smith”. In this query, the leading “/” in-
dicates that “doc” must be a root element. “[author=‘John
Smith’]” is a predicate restricting “doc” elements to those
that contain “author” elements, whose content is “John

Smith”. The symbols “/” and “//” represent containment,
with “/” indicating direct containment (i.e., parent-child re-
lationship), and “//” indicating indirect containment (i.e.,
predecessor-descendent relationship).

The following is an IR Boolean and proximity query:
Q2. /doc[author/(‘Smith’ NOT ‘Adams’) AND

distance(‘UNIX’, ‘DOS’)≤5 ]

It selects all documents whose authors include “Smith” but
not “Adams”, and this document must also have the two
words “UNIX” and “DOS” within a distance of five words.

LoreL [1] defines a class of useful regular path expressions,
which can use wildcards ‘?’, ‘+’, and ‘*’ to mean repetitions
of zero or one, one or more, and zero or more, respectively.
For example the expression

Q3. chapter[1]/section*/title

selects the titles of the first chapter, as well as the titles of
sections and subsections in the chapter. Note that this ex-
pression differs from chapter[1]/section/*/title, which
selects the titles of anything contained in a section of the first
chapter, including the titles of captions or figures. Note that
since there is no leading “/”, “chapter” can be anywhere in-
side a document.

At the heart of these queries is a simple containment
query: does one specified element or word appear within
another specified element?

2.2 Containment Query Processing Using the
Inverted Index

The inverted index [28] is very popular in information re-
trieval systems as it supports Boolean, proximity, and rank-
ing queries efficiently. The classic inverted index data struc-
ture maps a text word (or a phrase) to a list, which enumer-
ates documents containing the word and its position within
each document.

In order to process structured documents such as XML,
the inverted index can be extended in a simple way: text
words are indexed in a T-index similar to that used in a tra-
ditional IR system, and elements are indexed in an E-index,
which maps elements to inverted lists. Figure 1 illustrates
the structure of the two indexes for a sample XML file.

Each inverted list records the occurrences of a word or an
element—here we use “term” to refer to both of them. Each
occurrence is indexed by its document number, its position
and its nesting depth within the document. This is denoted
in Figure 1 as (docno, begin : end, level) for an element and
(docno, wordno, level) for a text word. The position, begin :
end or wordno, in a document can be generated by counting
word numbers. Alternatively, if the document is in a parsed
tree format, the position can be generated by doing a depth-
first traversal of the tree and sequentially assigning a number
at each visit. Since each non-leaf node is always traversed
twice, once before visiting all its children and once after, it
has two numbers assigned, while leaf nodes have only one
number. An inverted list is sorted in the increasing order of
docno, and then in the increasing order of begin and end1.

Term occurrences indexed in this way have the following
properties:

1. Containment Property. An occurrence of a term
T1, encoded as (D1, P1, L1), contains an occurrence of
a term T2, encoded as (D2, P2, L2), if and only if: (1)

1Since XML documents are strictly nested, sorting in the
order of (docno, begin) suffices.



(b)

<section>
    <title> Information Retrieval Using RDBMS </title>
    <section>
        <title> Beyond Simple Translation </title>
        <section>
            <title> Extension of IR Features </title>
        </section>

</section>
    </section>

(a)

information

retrieval

(1, 3, 2) ...

(1, 4, 2) ...

<title>

<section> (1, 1:23, 0) (1, 8:22, 1) (1, 14:21, 2) ...

(1, 2:7, 1) (1, 9:13, 2) (1, 15:20, 3) ...

fragment of T-index

fragment of E-index

Figure 1: (a) A sample XML document, (b) its inverted lists in T-index and E-index.

D1 = D2, and (2) P1 nests P2. For example, (1, 1 :
23, 0) contains (1, 9 : 13, 2).

2. Direct Containment Property. An occurrence of
a term T1 (D1, P1, L1) direct contains T2 (D2, P2, L2)
if and only if: (1) D1 = D2, (2) P1 nests P2, and (3)
L1 +1 = L2. For example, (1, 1 : 23, 0) direct contains
(1, 2 : 7, 1).

3. Tight Containment Property. An occurrence of
a term T1 (D1, P1, L1) tight contains T2 (D2, P2, L2)
if and only if: (1) D1 = D2, and (2) P1 nests P2 and
nothing else. For example, (1, 14 : 21, 2) tight contains
(1, 15 : 20, 3). Because of the nesting structure of
XML, tight containment implies direct containment
but not vice versa.

4. Proximity Property. An occurrence of a term T1

(D1, P1, L1), is within distance k of a term T2 (D2, P2,
L2), if and only if: (1) D1 = D2, and (2) |P1−P2| ≤ k.
For example, (1, 3, 2) and (1, 4, 2) are within distance
of 1 (appear next to each other). The exact definition
of proximity on elements and attributes depend on the
application supported.

The above properties allow us to have a variety of oper-
ations on inverted lists. To process the expression “a//b”,
the inverted lists of “a” and “b” are retrieved. Occurrences
from the two lists are merged if they satisfy the Contain-
ment Property. The expression “a/b” can be similarly
processed by merging the inverted lists using the Direct
Containment Property. The Proximity Property can
be used to process string queries such as “query process-
ing” with distance k = 1. Finally the Tight Contain-
ment Property can be used to process expressions such
as “ <month>=‘january’ ” (element ‘<month>’ has only
‘january’ in it and nothing else).

A framework using inverted lists to process containment
queries can be constructed using these operations as basic
building blocks, and we have implemented a prototype sys-
tem. Central to the framework is the merging of two inverted
lists. If we view an inverted list as an ordered relation, the
merging of two inverted lists is effectively a join and the
properties used for merging are essentially join predicates.
Since this type of join is used extensively, its efficiency has
paramount importance. In Section 3, we compare the per-
formance of this type of join in a special-purpose inverted
list engine and in two commercial RDBMSs.

2.3 Containment Query Processing Using an
RDBMS

In this section, we first introduce the relational schema
used to store the inverted index and the mapping from con-
tainment queries to SQL queries, we then illustrate two ad-
ditional types of queries that can be processed as a result of
utilizing a powerful and extensible RDBMS.

2.3.1 Schema and Processing of Containment Queries
in the RDBMS

The E-index and T-index can be mapped into the follow-
ing two relations:

ELEMENTS (term, docno, begin, end, level)

TEXTS (term, docno, wordno, level)

The ELEMENTS table stores occurrences of XML elements,
while the TEXTS table stores occurrences of text words. Each
occurrence is stored as a table row.

Figures 2(a)-(d) show the translations of inverted lists
merging operations into SQL. A merge of two inverted lists is
translated into a join, and the property applied when merg-
ing is translated into join predicates. Here we only show
the containment between an element and a text word. It
involves joins between the ELEMENTS table and the TEXTS

table. Containment between elements is the same except
involving a self-join on the ELEMENTS table.

2.3.2 Leveraging the Power of the RDBMS
By implementing containment queries using an RDBMS,

we are able to process queries that are difficult or impossible
to process using only an inverted list engine. We show two
examples.

Type 1. Joined Searching.
By joined searching, we mean a query that binds multiple
path expressions by a common variable. Such a query can be
expressed in languages such as XML-QL and XQuery, but is
difficult or impossible to express as a containment query, be-
cause it involves searching for terms that are not constants,
but are specified by other search conditions. However it is
not difficult to express in SQL.

For example, suppose we want to ask the query: “Find
those bib entries that cite Smith’s paper”. This query im-
plies two path expressions: “bib[author/‘Smith’]/key” and
“bib/cite”, with the additional requirement that the “key”
element have the same content as the “cite” element. The
SQL expression of this query can be found in the full version
of this paper [36].

Type 2. Queries on Mixed Data.
Since we now store the inverted index in a database system,
the index is accessed the same way as other relational data.
This makes it convenient to use the inverted index to aug-



from TEXTS t1, TEXTS t2,

where t1.term = ’T1’
and     t2.term = ’T2’
and     t1.docno = t2.docno
and     t2.wordno > t1.wordno

(b)

(d)

select *

select *

and     t2.wordno <=  t1.wordno + n

from  ELEMENTS e, TEXTS t

where e.term = ’E’  and t.term = ’T’
and      e.docno = t.docno

and      e.level = t.level -1

and      e.begin < t.wordno
and      t.wordno < e.end

-- E / "T"

--  distance ("T1", "T2") <= n

from ELEMENTS e, TEXTS t

and     t.term = ’T’
and     e.docno = t.docno

from ELEMENTS e, TEXTS t

and     t.term = ’T’
and     e.docno = t.docno

(a)

(c)

select *

where e.term = ’E’

select *

where e.term = ’E’

and     e.begin < t.wordno
and     t.wordno < e.end

and     t.wordno = e.begin + 1
and     e.end = t.wordno + 1

-- E//"T"

-- E="T"

Figure 2: Translations of basic containments to SQL.

ment the searches of other relational data and vice versa.
These kinds of queries are called “Web-Supported Database
Queries” and “Database-Supported Web Queries” in [15].

Suppose we have in our database an inverted index of
the DBLP XML files, and a GRADUATES table holding data
about graduate students. We can find all students who have
a DBLP entry using a SQL query (see [36]).

The query would not be so straightforward if the DBLP
files are indexed in a separate system while the GRADUATES

table is kept in a database. In that case, a natural way
would be to build an additional module on top of both sys-
tems to pull GRADUATES rows and the DBLP inverted index
entries out and join them in that module. In fact, [15] is
mainly concerned with the construction of this module. A
join algorithm has to be implemented in it, and this dupli-
cates features already present in the RDBMS. Furthermore,
the processing in the module would be costly if there are
large number of GRADUATES rows and inverted index entries
satisfying the query. It is much more efficient to have a more
tightly integrated system, because (a) it allows an optimizer
to potentially push selections down in order to avoid gener-
ating a large number of intermediate results, and (b) there is
no need to cross the boundary of multiple systems, therefore
saving the messaging and copying overheads.

3. PERFORMANCE AND ANALYSIS
We now turn to our performance study comparing the

implementations of containment queries in a special-purpose
inverted list engine and in a relational database system. The
goal of our study is to explore the performance differences,
seek reasons for the differences, and provide insights into the
strengths and weaknesses of the RDBMS on containment
queries.

3.1 Experimental Settings and Methodology

3.1.1 The Hardware and the Software Platforms

Shakespeare DBLP Synthetic
text size 8 MB 53 MB 200 MB
inverted index size 11 MB 78 MB 285 MB
relational table size 15 MB 121 MB 566 MB
# distinct elements 22 598 715
# distinct text words 22,825 250,657 100,000
# total elements 179,726 1,595,010 4,999,500
# total text words 474,057 3,655,148 19,952,000

Table 1: The three datasets.

We could not find a commercial system that supported
containment queries on XML data, so we built our own in-
verted list engine. It was written in C++ and used the
BerkeleyDB library [32] to store the inverted lists. Berkeley
DB is a toolkit that provides access methods such as B+tree,
Extended Linear Hashing, Fixed and Variable-length records,
and Queues. We used its B+-tree and each inverted list was
stored as a record.

We experimented with two commercial database systems,
DB2 UDB v7.1 and SQLServer v7.0. In the interest of space,
we only report the results on DB2. Experimental results on
SQLServer were similar and confirm that our observations
are not specific to a particular system. We experimented
with numerous combination of settings on the RDBMSs.
The results reported here were obtained using default set-
tings, except that the buffer pool size in DB2 was set to 128
MB, and hash join was enabled. Experimenting with other
settings did not alter any of the conclusions.

We experimented with RDBMS indexes using different
combinations of columns as the indexing key. In the interest
of space, we only report two representatives. One is the
clustered index on (term, docno) columns, the other is a
clustered index on all columns in a table. We call the former
the two-column(2col) index and the latter the cover index
(as the indexing key covers all columns). Note that the
term “index” is overloaded in this paper. There is the IR
inverted index, and there are indexes in the RDBMS. To
make it clear, the term “index” without any qualification
refers to the RDBMS index.

Our inverted list engine and DB2 were run on a 800 MHZ
PIII machine running Linux Redhat v6.2, and SQLServer
was run on a 500 MHZ PIII machine running Microsoft
NTServer v4.0. The main memory sizes on the machines
are 256 MB.

3.1.2 The Datasets and the Queries
Three XML datasets were used in our study. The first

was a set of Shakespeare plays [8], the second was a set of
DBLP bibliography files2, and the third was a set of syn-
thetic XML documents. The synthetic data generator first
produced a random element tree. This tree was used as a
template and the number of occurrences of elements and
their text contents were varied to generate a document. In
the synthetic data set, the numbers of occurrences of text
words followed the Zipfian distribution [37] with constant
1.0, and the numbers of occurrences of elements followed
the Zipfian distribution with constant 1.5.

2The original archive consists of 141,023 small files averaging
374 bytes each. We combined these files into bigger ones to
obtain a dataset averaging 93 KB per document.



number of term1 number of term2 result rows
QS1 90 277 2
QS2 107,833 277 36
QS3 107,833 3,231 1,543
QS4 107,833 1 1

QD1 654 55 13
QD2 4,188 712 672
QD3 287,513 6,363 6,315
QD4 287,513 3 3

QG1 50 1,000 809
QG2 134,900 55,142 1,470
QG3 701,000 165,424 21,936
QG4 50 82,712 12
QG5 701,000 17 4

Table 2: Number of occurrences of terms and num-
ber of result rows.

Statistics for the three datasets are listed in Table 1. This
table shows the raw sizes of the datasets, the sizes of the
inverted listes stored in BerkeleyDB B+-tree, and the DB2
relational table sizes (not including DB2 indexes). It also
shows the distinct and total number of elements and text
words. Note that the total number of elements and text
words are the cardinalities of the ELEMENTS table and TEXTS

table, respectively.
We focused on using simple queries for our performance

study, as these “micro benchmark” queries allow us to study
the core performance issues better than complex ones. This
methodology of using simple queries rather than full work-
loads was indicated to be advantageous in [2]. We also ex-
perimented with complex queries, the discussion of which
can be found in the full version of the paper [36]. We report
results on thirteen simple containment queries of the form
“term1 contains term2”, where “term1” is an XML ele-
ment and “term2” is a text word. Note that the discussion
throughout this paper applies to the case where both terms
are elements. In fact, the containment between elements can
be processed almost identically to the containment between
element and text word. This is because, since XML elements
are strictly nested, whether an element is contained in an-
other element can be checked using only the begin position
of the nested term (term2).

Each query is coded “QXN”, where ‘X’ is one of ‘S’ (Shake-
speare), ‘D’ (DBLP), or ‘G’ (generated data), and ‘N’ is the
query number within the respective dataset. Each of the two
terms in a query can have a small, medium, or large number
of occurrences, and we selected queries to cover most com-
binations. This allows us to determine how sensitive the
performance is to the selectivity of terms. Table 2 shows
the number of term occurrences and the number of results
for each query.

The SQL version of the queries is shown in Figure 2(a).
Note that each of these queries requires merging of two lists
in the inverted list engine, and a join between the ELEMENTS

table and the TEXTS table in the RDBMSs. Take QG3 for
example. It requires merging two inverted lists of about 10
MB and 2 MB, and a join between 701,000 rows and 165,424
rows in the RDBMSs.

Queries Inv. List DB2 (2col ndx) DB2 (cover ndx)
QS1 0.1 4 2
QS2 52.9 5963 259
QS3 68.4 5219 6089
QS4 53.7 23 2

QD1 0.2 7 2
QD2 3.3 545 518
QD3 202.1 76130 3907
QD4 177.6 28 2

QG1 1.5 24 21
QG2 125.1 182997 56956
QG3 542.3 1516743 21463
QG4 50.2 931 782
QG5 369.2 4292 56

Table 3: Raw timings [msec].

QS1 QS2 QS3 QS4 QD1 QD2 QD3 QD4 QG1 QG2 QG3 QG4 QG5

0.01

0.1

1

10

100

1000

2col index
cover index

Figure 3: DB2/Inverted List performance ratios [log
scale].

3.2 Results Comparing the Inverted List En-
gine and DB2

Table 3 shows the raw timings of the thirteen queries on
the inverted list engine and DB2, all from hot runs. Figure 3
shows the performance ratios. It shows that:

1. DB2 outperforms the inverted list engine for some of
the queries;

2. DB2 performs worse than the inverted list engine for
most of the queries;

3. The performance using the cover index is better than
using the 2col index.

The last point is easy to see as the cover index is sufficient for
answering queries, whereas when the 2col index is used, rows
must be fetched from the tables after the index is scanned.
Unless otherwise indicated, hereafter we use the cover index
performance to compare with the inverted list engine. We
next investigate: (1) Why does the RDBMS sometimes per-
form better, and (2) Why does the RDBMS usually perform
worse?

3.3 Why Does the RDBMS Sometimes Per-
form Better?

Recall that in the inverted list engine, each list is stored
as a record, and there is no further index on it, thus there is



Nested-loop

Index

:   rows actually retrieved
:   all rows of a term

Index

Figure 4: Index nested-loop join is used to avoid
retrieving all rows of the inner term.

t.term = ’T’

Index Scan Index Scan

e.term = ’<E>’

Nested Loop Join

Index Scan Index Scan

e.term = ’<E>’

Sort Merge Join

          e.docno = t.docno

t.term = ’T’

Index Index Index Index

     and  e.docno = t.docno
     and  e.begin < t.wordno
     and  t.wordno < e.end

     and  e.begin < t.wordno

     and  t.wordno < e.end

(a) (b)

Figure 5: (a) A query plan using index nested-loop
join. (b) A query plan using merge join.

no easy way to extract a portion of it other than retriving
the entire list. Further, even if only a small portion of a
list turns out to join with another list, all entries in the list
must be examined. In the RDBMS implementation, with
indexes built on the tables, rows of a term can be selectively
retrieved, thus saving both I/O and CPU time.

The queries for which DB2 performs better have a com-
mon characteristic: one term in the query is highly selective,
while the other term is not selective. The RDBMS optimizer
is able to discern such a case, and choose the index nested-
loop join between the ELEMENTS table and the TEXTS table,
putting the table containing the more selective term as the
outer, and the table containing the less selective term as the
inner. The result is that only the inner rows satisfying the
pushed-down join predicates are retrieved and joined with
the outer rows. Figure 4 illustrates this situation, and Fig-
ure 5(a) shows the query plan.

There are two important points to note. First, the savings
on CPU and I/O must be large enough to compensate for
the overheads incurred by the RDBMS. DB2 also chose the
index nested-loop join for some other queries, but it was not
able to out-perform the inverted list engine for those queries.
Second, we expect that, in practice, this case in which the
RDBMS out-performs the inverted list engine will not be
rare. It will arise whenever one predicate (or a combina-
tion of multiple predicates) in a query is highly selective; in
those cases a further join on the two tables will be very effi-
cient and an RDBMS is likely to perform better. A concrete

QS1 QS2 QS3 QS4 QD1 QD2 QD3 QD4 QG1 QG2 QG3 QG4 QG5
0%

50%

100%

Figure 6: Percentages of CPU cost.

example is shown in [36].

3.4 Why Does the RDBMS Usually Perform
Worse?

We considered a long list of possible answers to this ques-
tion, including:

• The cost of binding results out of the database engine
to the application might be very high, while the actual
processing may be efficient;

• The optimizer may not be producing good plans;

• I/O in the RDBMS might be more expensive;

• The CPU cost might be high, due to code path, in-
terpretive execution, overheads of locking, buffer pool
management, etc..

We briefly examine each possibility in turn, and then get to
our main findings.

• While the bind-out cost probably plays some role, it
can be rejected as being the dominant cost because
bindout is apparently a small fraction of the total ex-
ecution time. To see this, note that on Query QG1
DB2 returns 809 result rows in 21 msec, whereas Query
QS2 takes 259 msec to return only 36 rows. Assum-
ing that all the time for QG1 is due to result bindout
(clearly an overestimate), DB2 can bind out a row in
21/809 = .026 msec. Then in QS2, returning 36 rows
should take DB2 about 36 ∗ .026 = 0.9 msec, which
is less than one percent of QS2’s total execution time
(259 msec.)

• Figure 5 shows two DB2 plans using the cover index
and two standard joins. In general, we found that the
optimizer’s pick matched our own intuition of what
constitute a good plan.

• Figure 6 shows the percentage of CPU cost for the
thirteen queries as reported by the DB2 performance
monitor. Clearly the queries are CPU-bound, and DB2
can almost fully operate out of the buffer pool with
little I/O overhead.

So, if none of bind-out cost, query plan, and I/O is the dom-
inant reason, what is causing the performance differential?
To begin to answer this question we performed a deeper
analysis of the algorithms used by the inverted list engine
and the DBMSs.



procedure containment merge (list1, list2)
begin

1. set cursor1 at beginning of list1
2. set cursor2 at beginning of list2
3. while (cursor1 6= end of list1 and
4. cursor2 6= end of list2) do

5. if (cursor1.docno < cursor2.docno) then

6. cursor1++
7. else if (cursor2.docno < cursor1.docno) then

8. cursor2++
9. else

10. mark = cursor2
11. while (cursor2.position < cursor1.position and

12. cursor2 6= end of list2) do

13. cursor2++
14. if (cursor2 == end of list2) then

15. cursor1++
16. cursor2 = mark
17. else if (cursor1.val (directly)contains cursor2.val) then
18. mark = cursor2
19. do

20. merge cursor1 and cursor2 values
21. cursor2++
22. while (cursor1 value (directly)contains cursor2 value
23. and cursor2 6= end of list2)
24. cursor1++
25. cursor2 = mark
26. endif

27. endwhile
28. endif

29. endwhile

end

Figure 7: The inverted list containment merging al-
gorithm.

3.5 MPMGJN: The Join Method of the In-
verted List Engine

3.5.1 MPMGJN and the Standard Merge Join
Figure 7 presents the basic algorithm that does contain-

ment merging in the inverted list engine. Our actual imple-
mentation uses a slightly more optimized version. This is
in fact a merge join algorithm, but is different from the
standard merge join implemented in the two commercial
database systems. Recall that in the SQL version of the
benchmark query (Figure 2(a)), there are multiple join pred-
icates: t1.docno = t2.docno AND t1.begin < t2.wordno
AND t2.wordno < t1.end. The standard merge join al-
gorithm only uses the equality join predicate on docno to
merge two sets of rows, the inequality predicates are ap-
plied on each pair of rows with matching docno values. One
can view this join process as two logical steps. In the first
step, the equality predicate on docno is used to produce
pairs of rows whose docno values match. In the second step,
the inequality predicates are then applied on these matching
rows.

On the other hand, the merge join algorithm used in
the inverted list engine uses all join columns (on docno,

begin, end, wordno) to guide merging. By doing so it is
able to avoid some row comparisons done by the standard
merge join. We call this merge join “Multi-predicate Merge
Join”(MPMGJN). Figure 8 illustrates with an example that
joins two lists. A line connecting two rows indicates an at-

tempt to join them by doing some comparisons3 Clearly,
MPMGJN does fewer comparisons than the standard merge
join.

However, the standard merge join is only one of the choices
of an RDBMS. Two other algorithms can be used to pro-
cess a join: hash join and index nested-loop join. Since a
hash join cannot be used for inequality predicates, only the
predicate on docno can be used, and the inequality predi-
cates must be applied on each pair of rows with matching
docno just like the standard merge join. Therefore, hash
join has the same disadvantage. Next we look at the index
nested-loop join.

3.5.2 MPMGJN and the Standard Index Nested-Loop
Join

The DB2 query plan using the index nested-loop join and
the cover index was shown in Figure 5(a). All three join
predicates are pushed down to the inner. Figure 9(a) illus-
trates this join operation. For each outer row, its values
(other than that on the term column) are used to seek the
index on the inner table, starting from the root of the B+-
tree and reaching a record with the start key at the bottom
of the index. An index scan is then conducted across the
index records until one with a stop key is reached. Then
each record along the scan is attempted to be joined with
the outer row. The seeking and scanning are repeated for
all outer rows.

Here we use “start key” and “stop key” to refer to points
where the index scan can start and stop. An RDBMS uses
“start key predicates” (or “sargable predicates”) and “stop
key predicates” to find these points. For our containment
queries, the start and stop key predicates are as follows.
When the outer table is ELEMENTS, inner table is TEXTS,
the start key predicates are: term = value AND docno =
outer.docno AND wordno < outer.begin; the stop key pred-
icates are: term = value AND docno = outer.docno AND
wordno < outer.end. When the outer table is TEXTS, the in-
ner table is ELEMENTS: the start key predicates are: term =
value AND docno = outer.docno AND end > outer.wordno;
the stop key predicates are: term = value AND docno =
outer.docno AND begin < outer.wordno.

Using the start and stop keys, an RDBMS is able to se-
lectively retrieve and examine inner rows to join with outer
rows. Figure 8(c) illustrates with the same example. Again,
a line between two rows indicates an attempt to join them
by doing comparisons4. It appears from this example that
the standard index nested-loop join does fewer comparisons
than MPMGJN, and therefore should perform better. This
is not always true.

In order to selectively examine inner rows, an index must
be used, and comparisons must be done on index records.
We call the process of going through the index to retrieve the
inner rows index seek, and the process of joining inner and
outer rows index scan. We call the number of comparisons
done during the index seek the index seek length, and the
number of comparisons done during the index scan the index
scan length.

To see the index seek overhead, let us do a simple calcula-

3In the inverted list engine, the predicates are implemented
as “short-circuit” conditions. That is, if one predicate fails,
the other predicates will not be applied.
4For each outer, one more comparison is done to determine
when to stop.
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Figure 8: Workout of an example.
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Figure 9: The operation on the inner of: (a)index nested-loop join, (b) merge join, as a form of nested-loop
join.

tion. Assume that the index has 4 levels5, each index page
holds 256 keys, and binary search is used to find the pointer
to follow to a next level index page. The index seek length
in the worst case is 4× log 256 = 32, and in the average case
is 32/2 = 16. This means that each outer row must pay 16
more comparisons to get some inner rows to join with it.

Further, these additional comparisons are costly due to
their poor hardware cache utilization. Let us review the
memory hierarchy in a modern computer system. Data and
instructions higher in the memory hierarchy can be accessed
much faster than those in a lower hierarchy. In our machine,
the first level cache can be accessed in one cycle, but a miss
costs many cycles and thus is much more costly. If the sec-
ond level cache is missed, the penalty is even higher. A cache
consists of multiple cache lines, each of which can hold mul-
tiple instructions or data. When a datum is missing in a
cache, it is fetched from the lower memory hierarchy, and
data residing in the same cache line are also brought in. If
there is prefetching, subsequent data may also be brought
in to fill other cache lines. Thus the access to the nearby
or subsequent data is likely to result in a hit and be fast.
However, this benefit only exists when data is accessed se-
quentially or when the access pattern can be detected by the
processor. Random access is likely to result in more cache
misses than sequential access.

Binary search is very efficient in reducing the number of
comparisons during index seek, however it guarantees almost
no access of contiguous records. Therefore an index record
comparison almost always incur a cache miss.

A merge join (MPMGJN is no exception) is essentially a
form of nested-loop join, except that seeking is not done on

5This is the height of some of our DB2 indexes.

an index, but rather directly on data records. This “nested-
loop” join is performed in the following way: for each outer
row, a seek is done on the inner rows until a “start record” is
found, then a record scan is conducted and each row during
the scan is attempted to join with the outer row; the record
scan ends at a “stop record”. The next seek does not need
to start from the first record, but instead can start from the
beginning of last record scan. A merge join can be done
this way because both the inner rows and the outer rows
are sorted. Figure 9(b) illustrates the operation on the join
inner. A record seek is analogous to an index seek, and a
record scan is analogous to an index scan.

For the same query on the same data, record scans (note
that each outer row requires a seek and a scan) cost the same
number of comparisons as index scans, but the record seek
costs are different from the index seek costs. A merge join
has better cache utilization as both the outer and the inner
rows are, by and large, retrieved and examined sequentially.
In fact, it is not 100% straight sequential because some in-
ner rows may need to be looped over multiple times. This
looping increases the possibility of cache hits. There is a
disadvantage on record seeks however, a record seek may
take more comparisons than an alternative index seek.

3.5.3 Experimental Comparisons of Join Algorithms
To see the performance impact of the join algorithms, we

implemented the standard merge join and index nested-loop
join ourselves and compare them with MPMGJN. As de-
scribed in Section 3.5.1 the standard merge join implemen-
tation applies the inequality join predicates on every pair of
rows whose docno values match.

To emulate the standard index nested-loop join, we con-
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Queries MPMGJN standard merge join
QS1 5 1,653
QS2 7,131 984,948
QS3 89,716 10,175,904
QS4 2,366 3,475

QD1 503 555
QD2 4,723 1,315,662
QD3 263,458 14,082,080
QD4 1,766 4,950

QG1 1,000 1,000
QG2 103,994 148,773,116
QG3 610,816 2,319,244,480
QG4 12 82,712
QG5 56,084 238,340

Table 4: Number of row pairs compared by MP-
MGJN and the standard merge join.

verted our inverted lists into relational rows according to
the schema presented in Section 2.3 and stored them in a
BerkeleyDB B+-tree, making it equivalent to the DB2 cover
index. Our index nested-loop join implementation simulates
the optimizer by choosing the table containing the shorter
list as the outer. Start and stop key predicates were used.

In our experiments, the running times of each of the three
algorithms include (a) the parsing cost to extract individual
column values from records, and (b) the cost to generate
results, although the printing cost is not included. We as-
sume that data are cached in the buffer pool (thus no I/O).
This is a reasonable assumption as we have shown that the
queries are CPU-bound and the I/O cost is minimal.

Figure 10 shows the performance ratios of the two stan-
dard join algorithms to MPMGJN. Note that the Y-axis is
again in log-scale. These results confirm that the MPMGJN
performs at least as well as the standard merge join, and bet-
ter than the index nested-loop join for most queries. The
index nested-loop join performs better than the MPMGJN
for queries QS2, QS4, QD4, QG4, and QG5. DB2 used the
index nested-loop join for these queries except QG4, and did
perform better than the inverted list engine for QS4, QD4
and QG5 (see Figure 3).

To better understand why MPMGJN can perform better
than the standard merge join, Table 4 shows the number of
row pairs compared by the two merge algorithms.
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Figure 11: Seek lengths and scan lengths, averaged
per outer.

Figure 11 compares index/record seek lengths, and in-
dex/record scan of the queries. Since different outer rows
may require different seek and scan lengths, for each query
we obtained the averages over all outer rows. Figure 11
shows that long seeks are performed for short scans for all
queries. For six of them, QS1, QD1, QD2, QG1, QG2,
and QG3, record seek lengths are shorter than index seek
lengths. These are precisely the queries that the MPMGJN
out-performs the index nested-loop join by a wide margin
(Figure 10). For the rest seven queries, record seek lengths
are longer than index seek lengths, and the difference for
five of them are dramatic. These five queries, QS2, QS4,
QD4, QG4, and QG5, are precisely those for which the in-
dex nested-loop join out-performs the MPMGJN. For the
rest two queries with record seek lengths longer than in-
dex seek lengths, MPMGJN still performs better because
of sequential scan. This demonstrates that sequential scan
is better than random access, but only until the amount of
extra work done exceeds a certain point.

3.6 Hardware Cache Utilization
With main memory sizes getting larger and the memory

hierarchy getting deeper, many researchers (e.g., [2, 31, 25])
have recognized the effect of good hardware cache utilization
on performance. We conducted experiments to see whether
there exists significant difference between the inverted list
engine and the RDBMS on containment queries. We show
the results in this section.

This set of experiments were conducted on a machine with
a 800 MHZ Intel PIII processor running a v.2.2.16 Linux ker-
nel. The machine has a 16 KB first level instruction cache
(L1-I cache), a 16 KB first level data cache (L1-D cache),
and a 256 KB second level (L2) unified cache. The data and
instruction accesses to the second level cache can be mea-
sured separately. The PIII processor supports prefetching
and out-of-order instruction execution. The latter implies
that instruction/data fetches can be overlapped. The de-
tailed description of the hardware parameters can be found
in [18]. We measured the number of cache accesses and
misses using the PIII hardware counters.

In the interest of space, we discuss the hardware cache
utilization of three of the queries (QD3, QD4 and QG1).
Figures 12-14 show the number of accesses and misses in
thousands. Overall, the number of L1 cache accesses is sig-
nificantly (up to 30, 000 times) larger than the L2 cache ac-



L
1-access

L
1-m

iss

L
2-access

L
2-m

iss

1

10

100

1000

10000

100000

1000000

I-
C

ac
he

 (
th

ou
sa

nd
s)

inv. list engine
DB2

L
1-access

L
1-m

iss

L
2-access

L
2-m

iss

1

10

100

1000

10000

100000

1000000

D
-C

ac
he

 (
th

ou
sa

nd
s)

inv. list engine
DB2

Figure 12: Query QD3 [log scale]
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Figure 13: Query QD4 [log scale]
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Figure 14: Query QG1 [log scale]

cesses. This is because the L2 cache is accessed only when
the L1 caches are missed. Notice that for data caches, the
number of L1 misses is the same as the number of L2 ac-
cesses, while for instruction caches, the number of L1 misses
is less than the number of L2 accesses. This reveals instruc-
tion prefetching but not data prefetching. Next we examine
each query in turn.

QD3 is a query on which DB2 chooses index nested-loop
join, and performs much worse than the inverted list engine
(Figure 3). The inverted list engine has about 19 times fewer
accesses to the L1-I cache and about 84 times fewer accesses
to the L1-D cache compared to DB2. Further, the inverted
list engine has over 4, 000 times fewer misses in the L1-I
cache, and about 9 times fewer misses in the L1-D cache
(thus DB2 actually achieves better data cache miss ratio).

QD4 is a query on which DB2 chooses the index nested-
loop join as well, and this is one of the queries on which DB2
out-performs the inverted list engine. It is clear from Fig-
ure 13 that DB2 wins in most aspects: it accesses the caches
less often and also misses less (with some exceptions in the
instruction cache). From Figure 11 we see that the record
seek length is dramatically larger than the index seek length
for this query. This means that the inverted list engine has
to seek through a large number of inner rows to find some
that join with the outer rows. DB2 on the other hand, uses
the index to find those rows and does much less work.

QG1 is a query on which DB2 chooses the standard merge
join. Both join algorithms happen to do the same number
of comparisons for this query (Table 4), and our own im-
plementation also indicates that the two algorithms should
perform the same (Figure 10). However, the inverted list en-
gine performs more than an order of magnitude faster than
DB2. Figure 14 gives us insight into the cause of the dif-
ference. As we can see, DB2 has about five times as many
accesses to both the L1-I cache and the L1-D cache. Further,
it has about 240 times as many misses in the L1-I cache and
about 6 times as many misses in the L1-D cache. For the
L2 cache, DB2 has over 5 times more misses.

For query QG1, DB2 has better data cache miss ratio,
but much worse instruction cache miss ratio. In addition,
even though the algorithm indicates the same amount of
work, the cache utilization of the two systems are different,
therefore cache is a distinct factor that affects performance.

4. RELATED WORK
A substantial amount of work has been done on inte-

grating information retrieval, especially text searching, with
database systems. Examples of integrating text search with
relational, object-relational, or object-oriented databases in-
clude [4, 35, 10]. Commercial examples include the DB2
Text Extender [16], SQL Server Full-Text Search Service [34]
and Oracle InterMedia Text [23]. An example of integrating
text search with semi-structured databases is Lore [20], in
which a simplified version of an IR-style text index is used
to locate strings containing specific text words or groups of
text words [19]. None of this previous work explores the
performance implications of a special purpose vs. native
implementation of this functionality in an RDBMS.

The advent of SGML [13] has triggered much research
on integrating content and structure in text retrieval, in-
cluding [3, 33, 4, 26]. Work on containment queries can be
found in [6, 7, 9]. Our work on containment queries differs
from the previous work in that, since we target XML rather



than SGML data retrieval, and XML elements are strictly
nested, we are not concerned with overlapped extents, nor
with reduction functions on overlapped extents. Most sig-
nificantly, our work does not focus on the development of
containment algorithms; rather, it focuses on how to imple-
ment the algorithms in an RDBMS.

There is also work that considers using an RDBMS to
store and retrieve XML documents, including [29, 30, 11].
These papers focus on techniques for converting XML doc-
uments to and from relations and are complementary to our
work, which focuses on the performance of implementation
options for a class of query over XML data.

Putz [24] describes using a relational database system for
information retrieval. His work differs from ours in the re-
lational schema for, and hence the retrieval of, the inverted
index. In [24], multiple encoded occurrences of a term are
stored in one relational row, therefore the storage is more
compact. The flip side is that the application program has to
do quite a bit of work, such as encoding/decoding and pack-
ing/unpacking table rows, and doing operation on postings
retrieved. Thus the power and flexibility of the RDBMS is
not fully utilized, as the IR and “normal” query processing
is not really integrated. Also, [24] does not consider struc-
tured text retrieval, and does not compare the RDBMS with
the IR approach.

Florescu et al. [12] use a different schema to store the
inverted index, where the postings of each distinct XML el-
ement and text word is stored in its own table. Thus we
would have a LINE table for “<line>”, a CLEOPATRA table
for “cleopatra”. The implementation options we discuss ap-
ply equally well to this model; needless to say, using this
model many tables would be required to store the inverted
index. Also, [12] does not compare the implementation on
the RDBMS with the IR alternative.

5. CONCLUSION
While the dust has not yet settled on the debate over

which XML query language will win, or what role RDBMSs
will eventually play in XML query systems, two things are
clear. First, containment queries will be an important part
of XML query workloads. Second, at least in the foreseeable
future, a great deal of XML data will be stored in relational
systems. Currently in the commercial world the approach
in which an IR indexing system is “glued” to a relational
system, dominates.

However, as we have argued in the introduction, there
are compelling reasons to consider a more tightly coupled
approach, in which queries involving containment are sup-
ported by native RDBMS data structures, query optimiz-
ers, and query processors. This tightly coupled approach
will not be viable unless its performance is satisfactory. Our
experiments show that with current commercial RDBMS
technology, in general a native RDBMS implementation of
containment query support is substantially slower than that
of a special purpose IR engine. We sought to quantify this
performance differential, and to gain insights as to whether
the situation could be remedied.

There appears to be no single factor that accounts for the
entire performance difference between the two types of sys-
tems, and modifying an RDBMS so that its performance
matches that of the special-purpose inverted list engine will
be non-trivial. However, we have discovered two important
contributing factors to the performance difference, these are

the join algorithm used by the inverted list system, which we
call multi-predicate merge join (MPMGJN), and the hard-
ware cache utilization achieved.

As we have demonstrated, for joins generated by contain-
ment queries, the MPMGJN algorithm can be more than
an order of magnitude faster than standard RDBMS join
algorithms. It appears that the addition of this new join al-
gorithm will be a critical part of any successful effort to make
an RDBMS competitive with a special purpose IR engine on
XML containment queries. In addition, in our experiments
the RDBMS had much lower cache utilizations than the IR
systems. The on-going research on main memory and cache
aware database systems is likely to produce a new genera-
tion of RDBMSs that have much better cache utilization.
While it is premature to make concrete predictions, we are
optimistic that by combining better join algorithms with
better cache utilization, an RDBMS will be able to natively
support containment queries efficiently.
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