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The frequency moments of a sequence containing mi elements of
type i, 1�i�n, are the numbers Fk=�n

i=1 mk
i . We consider the space

complexity of randomized algorithms that approximate the numbers Fk ,
when the elements of the sequence are given one by one and cannot be
stored. Surprisingly, it turns out that the numbers F0 , F1 , and F2 can be
approximated in logarithmic space, whereas the approximation of Fk for
k�6 requires n0(1) space. Applications to data bases are mentioned as
well. ] 1999 Academic Press

1. INTRODUCTION

Let A=(a1 , a2 , ..., am) be a sequence of elements, where
each ai is a member of N=[1, 2, ..., n]. Let mi=|[ j : aj=i]|
denote the number of occurrences of i in the sequence A,
and define for each k�0

Fk= :
n

i=1

mk
i .

In particular, F0 is the number of distinct elements appear-
ing in the sequence, F1 (=m) is the length of the sequence,
and F2 is the repeat rate or Gini 's index of homogeneity needed
in order to compute the surprise index of the sequence (see,
e.g., [11]). It is also natural to define

F�= max
1�i�n

mi .

The numbers Fk are called the frequency moments of A and
provide useful statistics on the sequence.

The frequency moments of a data set represent important
demographic information about the data and are important
features in the context of database applications. Indeed,
Haas et al. [13] claim that virtually all query optimization
methods in relational and object-relational database systems

Article ID jcss.1997.1545, available online at http:��www.idealibrary.com on

* A preliminary version of this paper appeared in Proceedings of the 28th
Annual ACM Symposium on Theory of Computing (STOC), May, 1996.

- Department of Mathematics, Raymond and Beverly Sackler Faculty of
Exact Sciences, Tel Aviv University, Tel Aviv, Israel. Research supported
in part by a USA-Israel BSF grant and by the Fund for Basic Research
administered by the Israel Academy of Sciences.
13
mating the Frequency Moments*

as, and Mario Szegedy

y Hill, New Jersey 07974

esearch.att.com, ms�research.att.com

ust 14, 1996

require a means for assessing the number of distinct values
of an attribute in a relation, i.e., the function F0 for the
sequence consisting of the relation attribute.

The frequency moments Fk for k�2 indicate the degree of
skew of the data, which is of major consideration in many
parallel database applications. Thus, for example, the degree
of the skew may determine the selection of algorithms for
data partitioning, as discussed by DeWitt et al. [6] (see also
references therein). In particular, F2 is used by Ioannidis
and Poosala [14] for error estimation in the context of
estimating query result sizes and access plan costs. Their
method is based on selecting appropriate histograms for a
small number of values to approximate the frequency distri-
bution of values in the attributes of relations. The selection
involves joining a relation with itself; note that F2 is the
output size of such a join.

The recent work by Haas et al. [13] considers sampling
based algorithms for estimating F0 and proposes a hybrid
approach in which the algorithm is selected based on
the degree of skew of the data, measured essentially by the
function F2 .

Since skew information plays an important role for many
applications, it may be beneficial to maintain estimates for
frequency moments; and, most notably, for F2 . For efficiency
purposes the computation of estimates for frequency moments
of a relation should preferably be done and updated as the
records of the relation are inserted to the database. The
general approach of maintaining views, such as distribution
statistics, of the data has been well-studied as the problem
of incremental view maintenance (cf. [10]).

Note that it is rather straightforward to maintain the
(exact) frequency moments by maintaining a full histogram
on the data, i.e., maintaining a counter mi for each data
value i # [1, 2, ..., n], which requires memory of size 0(n)
(cf. [16]). However, it is important that the memory used
for computing and maintaining the estimates be limited.
Large memory requirements would require storing the data
structures in external memory, which would imply expensive
overhead in access time and update time. The restriction on
memory size is further emphasized by the observation that
typically incoming data records will belong to different
7 0022-0000�99 �30.00
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relations that are stored in the database; each relation requires
its own separate data structure. Thus, the problem of com-
puting or estimating the frequency moments in one pass
under memory constraints arises naturally in the study of
databases.

There are several known randomized algorithms that
approximate some of the frequency moments Fk using
limited memory. For simplicity, let us consider first the
problem of approximating these numbers up to some fixed
constant factor, say with relative error that does not exceed
0.1, and with success probability of at least, say, 3�4, given
that m�nO(1). (In the following sections we consider the
general case, that is, the space complexity as a function of n,
m, the relative error * and the error-probability =.) Morris
[17] (see also [7, 12]) showed how to approximate F1

(that is, how to design an approximate counter) using only
O(log log m) (=O(log log n)) bits of memory. Flajolet and
Martin [8] designed an algorithm for approximating F0

using O(log n) bits of memory. (Their analysis, however, is
based on the assumption that explicit families of hash
functions with very strong random properties are available.)
Whang et al. [19] considered the problem of approximat-
ing F0 in the context of databases.

Here we obtain tight bounds for the minimum possible
memory required to approximate the numbers Fk . We prove
that for every k>0, Fk can be approximated randomly
using at most O(n1&1�k log n) memory bits. We further show
that for k�6, any (randomized) approximation algorithm for
Fk requires at least 0(n1&5�k) memory bits and any
randomized approximating algorithm for F� requires 0(n)
space. Surprisingly, F2 can be approximated (randomly)
using only O(log n) memory bits.

In addition we observe that a version of the Flajolet�
Martin algorithm for approximating F0 can be implemented
and analyzed using very simple linear hash functions and
that (not surprisingly) the O(log log n) and the O(log n)
bounds in the algorithms of [8, 17] for estimating F1 and F0

respectively are tight.
We also make some comments concerning the space

complexity of deterministic algorithms that approximate the
frequency moments Fk as well as on the space complexity of
randomized or deterministic algorithms that compute those
precisely.

The rest of this paper is organized as follows. In Section 2
we describe our space-efficient randomized algorithms for
approximating the frequency moments. The tools applied
here include the known explicit constructions of small sample
spaces which support a sequence of four-wise independent
uniform binary random variables, and the analysis is based
on Chebyshev's inequality and a simple application of the
Chernoff bound. In Section 3 we present our lower bounds
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which are mostly based on techniques from communication
complexity. The final Section 4 contains some concluding
remarks and open problems.
2. SPACE EFFICIENT RANDOMIZED APPROXIMATION
ALGORITHMS

In this section we describe several space efficient random-
ized algorithms for approximating the frequency moments Fk .
Note that each of these moments can be computed precisely
and deterministically using O(n log m) memory bits, by
simply computing each of the numbers mi precisely. Using
the method of [17] the space requirement can be slightly
reduced, by approximating (randomly) each of the numbers
mi , instead of computing its precise value, thus getting a
randomized algorithm that approximates the numbers Fk

using O(n log log m) memory bits. We next show that one
can do better.

2.1. Estimating Fk

The basic idea in our algorithm, as well as in the next
randomized algorithm described in this section, is a very
natural one. Trying to estimate Fk we define a random
variable that can be computed under the given space
constraints, whose expected value is Fk , and whose variance
is relatively small. The desired result can then be deduced
from Chebyshev's Inequality.

Theorem 2.1. For every k�1, every *>0, and every
=>0 there exists a randomized algorithm that computes, given
a sequence A=(a1 , ..., am) of members of N=[1, 2, ..., n], in
one pass and using

O \k log(1�=)
*2 n1&1�k(log n+log m)+

memory bits, a number Y so that the probability that Y
deviates from Fk by more than *Fk is at most =.

Proof. Without trying to optimize our absolute constants,
define s1=8kn1&1�k�*2 and s2=2 log(1�=). (To simplify the
presentation we omit, from now on, all floor and ceiling
signs whenever these are not essential.) We first assume the
length of the sequence m is known in advance and then
comment on the required modifications if this is not the
case.

The algorithm computes s2 random variables Y1 , Y2 , ..., Ys2

and outputs their median Y. Each Yi is the average of s1 random
variables Xij , 1� j�s1 , where the Xij are independent,
identically distributed random variables. Each of the variables
X=Xij is computed from the sequence in the same way,
using O(log n+log m) memory bits, as follows. Choose a
random member ap of the sequence A, where the index p
is chosen randomly and uniformly among the numbers

AND SZEGEDY
1, 2, ..., m. Suppose that ap=l (#N=[1, 2, ..., n]. Let

r=|[q: q� p, aq=l] | (�1)



F

be the number of occurrences of l among the members of the
sequence A following ap (inclusive), and define

X=m(rk&(r&1)k).

Note that in order to compute X we only need to maintain
the log n bits representing ap=l and the log m bits
representing the number of occurrences of l.

The expected value E(X) of X is, by definition,

E(X)=
m
m

[(1k+(2k&1k)+ } } } +(mk
1&(m1&1)k))

+(1k+(2k&1k)+ } } } +(mk
2&(m2&1)k))+ } } }

+(1k+(2k&1k)+ } } } +(mk
n&(mn&1)k))]

= :
n

i=1

mk
i =Fk .

To estimate the variance Var(X)=E(X2)&(E(X))2 of X we
bound E(X2),

E(X2)=
m2

m
[(12k+(2k&1k)2+ } } } +(mk

1&(m1&1)k)2)

+(12k+(2k&1k)2+ } } } +(mk
2&(m2&1)k)2)+ } } }

+(12k+(2k&1k)2+ } } } +(mk
n&(mn&1)k)2)]

�m[(k12k&1+k2k&1(2k&1k)+ } } }

+kmk&1
1 (mk

1&(m1&1)k))

+(k12k&1+k2k&1(2k&1k)+ } } }

+kmk&1(mk
2&(m2&1)k))+ } } }

+(k12k&1+k2k&1(2k&1k)+ } } }

+kmk&1
n (mk

n&(mn&1)k))]

�m[km2k&1
1 +km2k&1

2 + } } } +km2k&1
n ]

=kmF2k&1=kF1F2k&1 , (1)

where (1) is obtained from the following inequality which
holds for any numbers a>b>0:

ak&bk=(a&b)(ak&1+ak&2b+ } } } +abk&2+bk&1)

�(a&b) kak&1.

We need the following simple inequality:

Fact. For every n positive reals m1 , m2 , ..., mn ,
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\ :
n

i=1

mi +\ :
n

i=1

m2k&1
i +�n1&1�k \ :

k

i=1

mk
i +

2

.

(Note that the sequence m1=n1�k, m2= } } } =mn=1 shows
that this is tight, up to a constant factor.)

Proof (of fact). Put M=max1�i�n mi , then Mk�
�n

i=1 mk
i and, hence,

\ :
n

i=1

mi+\ :
n

i=1

m2k&1
i +

�\ :
n

i=1

mi+\Mk&1 :
n

i=1

mk
i +

�\ :
n

i=1

mi+\ :
n

i=1

mk
i +

(k&1)�k

\ :
n

i=1

mk
i +

=\ :
n

i=1

mi+\ :
n

i=1

mk
i +

(2k&1)�k

�n1&1�k \ :
n

i=1

mk
i +

1�k

\ :
n

i=1

mk
i +

(2k&1)�k

=n1&1�k \ :
n

i=1

mk
i +

2

,

where for the last inequality we use the fact that (�n
i=1 mi)�n

�(�n
i=1 mk

i �n)1�k. K

By the above fact, the definition of the random variables
Yi and the computation above,

Var(Yi) =Var(X)�s1 �E(X2)�s1 �kF1 F2k&1 �s1

�kn1&1�kF 2
k �s1 ,

whereas

E(Yi)=E(X)=Fk .

Therefore, by Chebyshev's Inequality and by the definition
of s1 for every fixed i

Prob[ |Yi&Fk |>*Fk]�
Var(Yi)

*2F 2
k

�
kn1&1�kF 2

k

s1*2F 2
k

�
1
8

.

It follows that the probability that a single Yi deviates
from Fk by more than *Fk is at most 1�8, and hence, by
the standard estimate of Chernoff (cf., for example, [3,
Appendix A]), the probability that more than s2�2 of the
variables Yi deviate by more than *Fk from Fk is at most =.
In case this does not happen, the median Yi supplies a good
estimate to the required quantity Fk , as needed.

It remains to show how the algorithm can be implemented
in case m is not known in advance. In this case, we start with
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m=1 and choose the member al of the sequence A used in
the computation of X as a1 . If indeed m=1, r=1 and the
process ends, else we update the value of m to 2, replace al



by a2 with probability 1�2, and update the value of r as
needed. In general, after processing the first m&1 elements
of the sequence we have (for each variable Xij) some value
for al and for r. When the next element am arrives we replace
al by that element with probability 1�m. In case of such a
replacement, we update r and define it to be 1. Else, al stays
as it is and r increases by 1 in case am=al and otherwise it
does not change. It is easy to check that for the implementa-
tion of the whole process, O(log n+log m) memory bits for
each Xij suffice. This completes the proof of the theorem. K

Remark. In case m is much bigger than a polynomial in
n, one can use the algorithm of [17] and approximate each
number r used in the computation of each Xij using only
O(log log m+log(1�*)) memory bits. Since storing the value
of al requires log n additional bits this changes the space
complexity to O([k log(1�=)�*2] n1&1�k(log n+log log m+
log(1�*))).

2.2. Improved Estimation for F2

The second frequency moment, F2 , is of particular interest,
since the repeat rate and the surprise index arise in various
statistical applications. By the last theorem, F2 can be
approximated (for fixed positive * and =) using O(- n(log n
+log m)) memory bits. In the following theorem we show
that in fact a logarithmic number of bits suffices in this case.

Theorem 2.2. For every *>0 and =>0 there exists a
randomized algorithm that computes, given a sequence A=
(a1 , ..., am) of members of N, in one pass and using

O \log(1�=)
*2 (log n+log m)+

memory bits, a number Y so that the probability that Y
deviates from F2 by more than *F2 is at most =. For fixed *
and =, the algorithm can be implemented by performing, for
each member of the sequence, a constant number of arithmetic
and finite field operations on elements of O(log n+log n)
bits.

Proof. Put s1=16�*2 and s2=2 log(1�=). As in the
previous algorithm, the output Y of the present algorithm is
the median of s2 random variables Y1 , Y2 , ..., Ys2

, each
being the average of s1 random variables Xij , 1� j�s1 ,
where the Xij are independent, identically distributed
random variables. Each X=Xij is computed from the
sequence in the same way, using O(log n+log m) memory
bits, as follows.

Fix an explicit set V=[v1 , ..., vh] of h=O(n2) vectors of
length n with +1, &1 entries, which are four-wise independent,
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that is, for every four distinct coordinates 1�i1� } } } �i4�n
and every choice of =1 , ..., =4 # [&1, 1] exactly a (1�16)-
fraction of the vectors have =j in their coordinate number ij
for j=1, ..., 4. As described in [1] such sets (also known as
orthogonal arrays of strength 4) can be constructed using the
parity check matrices of BCH codes. To implement this
construction we need an irreducible polynomial of degree d
over GF(2), where 2d is the smallest power of 2 greater than n.
It is not difficult to find such a polynomial (using O(log n)
space), and once it is given it is possible to compute each
coordinate of each vi in O(log n) space, using a constant
number of multiplications in the finite field GF(2d) and
binary inner products of vectors of length d. To compute X
we choose a random vector vp=(=1 , =2 , ..., =n) # V, where p
is chosen uniformly between 1 and h. We then define Z=
�n

l=1 =imi . Note that Z is a linear function of the numbers
mi and can thus be computed in one pass from the sequence
A, where during the process we only have to maintain the
current value of the sum and to keep the value p (since the
bits of vp can be generated from p in O(log n) space). There-
fore, Z can be computed using only O(log n+log m) bits.
When the sequence terminates define X=Z2.

As in the previous proof, we next compute the expecta-
tion and variance of X. Since the random variables =i are
pairwise independent and E(=i)=0 for all i,

E(X)=E \\ :
n

i=1

=im i+
2

+
= :

n

i=1

m2
i E(=2

i )+2 :
1�i< j�n

m i mjE(=i) E(=j)

= :
n

i=1

m2
i =F2 .

Similarly, the fact that the variables =i are four-wise
independent implies that

E(X2)= :
n

i=1

m4
i +6 :

1�i< j� j

m2
i m2

j .

It follows that

Var(X )=E(X2)&(E(X))2=4 :
1�i< j�n

m2
i m2

j �2F 2
2 .

Therefore, by Chebyshev's Inequality, for each fixed i,
1�i�s2 ,

Prob[ |Yi&F2 |>*F2]�
Var(Yi)

*2F 2
2

�
2F 2

2

s1*2F 2
2

=
1
8

.

The standard estimates of Chernoff now imply, as in the
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previous proof, that the probability that the median Y of the
numbers Yi deviates from F2 by more than *F2 is at most =,
completing the proof. K



F

Remark. The space complexity can be reduced for very
large m to O([log(1�=)�*2](log n+log log m+log(1�*)) by
applying the method of [17] to maintain the sum Z with a
sufficient accuracy. The easiest way to do so is to maintain
approximations of the negative and positive parts of this
sum using O(log n+log log m+log(1�*)) bits for each and
use the analysis in [12] and Chebyshev's Inequality to
show that this gives, with a sufficiently high probability, the
required result. We omit the details.

2.3. Comments on the Estimation of F0

Flajolet and Martin [8] described a randomized algo-
rithm for estimating F0 using only O(log n) memory bits,
and analyzed its performance assuming one may use in the
algorithm an explicit family of hash functions which exhibits
some ideal random properties. Since we are not aware of
the existence of such a family of hash functions we briefly
describe here a slight modification of the algorithm of [8]
and a simple analysis that shows that for this version it
suffices to use a linear hash function. For simplicity we only
describe here the problem of estimating F0 up to an absolute
multiplicative constant factor, with constant success proba-
bility. It is possible to improve the accuracy and the success
probability of the algorithm by increasing the space it uses.

Proposition 2.3. For every c>2 there exists an algo-
rithm that, given a sequence A of members of N, computes
a number Y using O(log n) memory bits, such that the proba-
bility that the ratio between Y and F0 is not between 1�c and
c is at most 2�c.

Proof. Let d be the smallest integer so that 2d>n and
consider the members of N as elements of the finite field
F=GF(2d), which are represented by binary vectors of
length d. Let a and b be two random members of F,
chosen uniformly and independently. When a member ai of
the sequence A appears, compute zi=a } ai+b, where the
product and addition are computed in the field F. Thus zi is
represented by a binary vector of length d. For any binary
vector z, let r(z) denote the largest r so that the r rightmost
bits of z are all 0 and put ri=r(zi). Let R be the maximum
value of ri , where the maximum is taken over all elements ai

of the sequence A. The output of the algorithm is Y=2R.
Note that in order to implement the algorithm we only
have to keep (besides the d=O(log n) bits representing an
irreducible polynomial needed in order to perform opera-
tions in F ) the O(log n) bits representing a and b and
maintain the O(log log n) bits representing the current
maximum ri value.

Suppose, now, that F0 is the correct number of distinct
elements that appear in the sequence A, and let us estimate
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the probability that Y deviates considerably from F0 . The
only two properties of the random mapping f (x)=ax+b
that maps each ai to zi we need is that for every fixed ai , zi
is uniformly distributed over F (and hence, the probab-
ility that r(zi)�r is precisely 1�2r), and that this mapping
is pairwise independent. Thus, for every fixed distinct ai

and aj , the probability that r(zi) � r and r(zj) � r is
precisely 1�22r.

Fix an r. For each element x # N that appears at least
once in the sequence A, let Wx be the indicator random
variable whose value is 1 iff r(ax+b)�r. Let Z=Zr=� Wx ,
where x ranges over all the F0 elements x that appear in the
sequence A. By linearity of expectation and since the expec-
tation of each Wx is 1�2r, the expectation E(Z) of Z is F0 �2r.
By pairwise independence, the variance of Z is F0(1�2r)
(1&1�2r)<F0 �2r. Therefore, by Markov's inequality

if 2r>cF0 then Prob(Zr>0)<1�c,

since E(Zr)=F0�2r<1�c. Similarly, by Chebyshev's inequality

if c2r<F0 then Prob(Zr=0)<1�c,

since Var(Zr)<F0 �2r=E(Zr) and, hence, Prob(Zr=0)�
Var(Zr)�(E(Zr)

2)<1�E(Zr)=2r�F0 . Since our algorithm
outputs Y=2R, where R is the maximum r for which Zr>0,
the two inequalities above show that the probability that
the ratio between Y and F0 is not between 1�c and c is
smaller than 2�c, as needed. K

3. LOWER BOUNDS

In this section we present our lower bounds for the space
complexity of randomized algorithms that approximate the
frequency moments Fk and comment on the space required
to compute these moments randomly but precisely or approx-
imate them deterministically. Most of our lower bounds are
obtained by reducing the problem to an appropriate commu-
nication complexity problem, where we can either use some
existing results, or prove the required lower bounds by
establishing those for the corresponding communication
problem. The easiest result that illustrates the method is the
proof that the randomized approximation of F� requires
linear memory, presented in the next subsection. Before
presenting this simple proof, let us recall some basic definitions
and facts concerning the =-error probabilistic communication
complexity C=( f ) of a function f : [0, 1]n_[0, 1]n [ [0, 1],
introduced by Yao [20]. Consider two parties with unlimited
computing power, that wish to compute the value of a
Boolean function f (x, y), where x and y are binary vectors
of length n, the first party possesses x, and the second
possesses y. To perform the computation, the parties are
allowed to send messages to each other, and each of them
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can make random decisions as well. At the end of the commu-
nication they must output the correct value of f (x, y) with
probability at least 1&= (for the worst possible x and y).



The complexity C=( f ) is the expected number of bits commu-
nicated in the worst case (under the best protocol).

As shown by Yao [21] and extended by Babai, Frankl,
and Simon [4], C=( f ) can be estimated by considering the
related notion of the =-error distributional communication
complexity D=( f | +) under a probability measure on the
possible inputs (x, y). Here the two parties must apply a
deterministic protocol and should output the correct value
of f (x, y) on all pairs (x, y), besides a set of inputs whose
+-measure does not exceed =. As shown in [4, 21], C=( f )�
1
2D2=( f | +) for all f, =, and +.

Let DISn : [0, 1]n_[0, 1]n [ [0, 1] denote the Boolean
function (called the disjointness function), where DISn(x, y)
is 1 iff the subsets of [1, 2, ..., n] whose characteristic vectors
x and y intersect. Several researchers studied the communica-
tion complexity of this function. Improving a result in [4],
Kalyanasundaram and Schnitger [15] proved that for any
fixed =<1�2, C=(DISn)�0(n). Razborov [18] exhibited a
simple measure + on the inputs of this function and showed
that for this measure D=(DISn | +)�0(n). Our lower bound
for the space complexity of estimating F� follows easily
from the result of [15]. The lower bound for the approxi-
mation of Fk for fixed k�6 is more complicated and requires
an extension of the result of Razborov in [18].

3.1. The Space Complexity of Approximating F�

Proposition 3.1. Any randomized algorithm that outputs,
given a sequence A of at most 2n elements of N=[1, 2, ..., n]
a number Y such that the probability that Y deviates from F�

by at least F� �3 is less than =, for some fixed =<1�2, must use
0(n) memory bits.

Proof. Given an algorithm as above that uses s memory
bits, we describe a simple communication protocol for
two parties possessing x and y, respectively, to compute
DISn(x, y), using only s bits of communication. Let |x| and
| y| denote the numbers of 1-entries of x and y, respectively.
Let A be the sequence of length |x|+ | y| consisting of all
members of the subset of N whose characteristic vector is x
(arranged arbitrarily) followed by all members of the subset
of N whose characteristic vector is y.

The first party, knowing x, runs the approximation
algorithm on the first |x| members of A. It then sends the
content of the memory to the second party which, knowing
y, continues to run the algorithm for approximating F� on
the rest of the sequence A. The second party then outputs
``disjoint'' (or 0) iff the output of the approximation
algorithm is smaller than 4�3; else it outputs 1. It is obvious
that this is the correct value with probability at least 1&=,
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since the precise value of F� is 1 if the sets are disjoint, and
otherwise it is 2. The desired result thus follows from the
theorem of [15] mentioned above. K
Remark. It is easy to see that the above lower bound
holds even when m is bigger than 2n, since we may consider
sequences in which every number in N occurs either 0 or m�n
or 2m�n times. The method of the next subsection shows
that the linear lower bound holds even if we wish to approx-
imate the value of F� up to a factor of 100, say. It is not
difficult to see that 0(log log m) is also a lower bound for
the space complexity of any randomized approximation
algorithm for F� (simply because its final output must
attain at least 0(log m) distinct values with positive proba-
bility, as m is not known in advance). Thus 0(n+log log m)
is a lower bound for the space complexity of estimating F�

for some fixed positive * and =. On the other hand, as mentioned
in the previous section, all frequency moments (including
F�) can be approximated using O(n log log m) bits.

Note that in the above lower bound proof we only need
a lower bound for the one-way probabilistic communication
complexity of the disjointness function, as in the protocol
described above there is only one communication, from the
first party to the second one. Since the lower bound of [15]
holds for arbitrary communication we can deduce a space
lower bound for the approximation of F� even if we allow
algorithms that observe the whole sequence A in its order a
constant number of times.

3.2. The Space Complexity of Approximating Fk

In this subsection we prove the following.

Theorem 3.2. For any fixed k>5 and #<1�2, any
randomized algorithm that outputs, given an input sequence A
of at most n elements of N=[1, 2, ..., n], a number Zk such
that Prob( |Zk&Fk |>0.1Fk)<# uses at least 0(n1&5�k)
memory bits.

We prove the above theorem by considering an appropriate
communication game and by studying its complexity. The
analysis of the game is similar to that of Razborov in [18],
but it requires several modifications and additional ideas.

Proof. For positive integers s and t, let D(s, t) be
the following communication game, played by s players P1 ,
P2 , ..., Ps . Define n=(2t&1) s+1 and put N=[1, 2, ..., n].
The input of each player Pi is a subset Ai of cardinality t of
N (also called a t-subset of N). Each player knows his own
subset, but has no information on those of the others. An
input sequence (A1 , A2 , ..., As) is called disjoint if the sets A i

are pairwise disjoint, and it is called uniquely intersecting if
all the sets Ai share a unique common element x and the sets
Ai&[x] are pairwise disjoint. The objective of the game is
to distinguish between these two types of inputs. To do so,
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the players can exchange messages according to any pre-
determined probabilistic protocol. At the end of the protocol
the last player outputs a bit. The protocol is called =-correct
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if for any disjoint input sequence the probability that this bit
is 0 is at least 1&= and for any uniquely intersecting input
sequence the probability that this bit is 1 is at least 1&=.
(The value of the output bit for any other input sequence
may be arbitrary). The length of the protocol is the maximum,
over all possible input sequences (A1 , ..., As), of the expected
number of bits in the communication. In order to prove
Theorem 3.2 we prove the following.

Proposition 3.3. For any fixed =<1�2, and any t�s4,
the length of any randomized =-correct protocol for the
communication problem DIS(s, t) is at least 0(t�s3).

By the simple argument of [4, 21], in order to prove the
last proposition it suffices to exhibit a distribution on the
inputs and prove that any deterministic communication
protocol between the players in which the total communica-
tion is less than 0(t�s3) bits produces an output bit that
errs with probability 0(1), where the last probability is
computed over the input distribution. Define a distribution
+ on the input sequences (A1 , ..., As) as follows. Let P=I1

_ I2 _ } } } _ Is _ [x] be a random partition of N into s+1
pairwise disjoint sets, where |Ij |=2t&1 for each 1� j�s,
x # N and P is chosen uniformly among all partitions of N
with these parameters. For each j, let A� j be a random subset
of cardinality t of Ij . Finally, with probability 1�2, define Aj

=A� j for all 1� j�s, and with probability 1�2, define Aj=
(Ij&A� j) _ [x] for all j. It is useful to observe that an alter-
native, equivalent definition is to choose the random partition
P as above, and then let each Aj be a random subset of
cardinality t of Aj _ [x]. If either none of the subsets Aj

contain x or all of them contain x we keep them as our input
sets, and otherwise we discard them and repeat the random
choice.

Note that the probability that the input sequence (A1 , ..., As)
generated under the above distribution is disjoint is precisely
1�2, whereas the probability that it is uniquely intersecting
is also 1�2. Note also that + gives each disjoint input sequence
the same probability and each uniquely intersecting input
sequence the same probability. Let (A0

1 , A0
2 , ..., A0

s ) denote a
random disjoint input sequence, and let (A1

1 , A1
2 , ..., A1

s )
denote a random uniquely intersecting input sequence.

A box is a family X� 1_X� 2 _ } } } _X� s , where each X� i

is a set of t-subsets N. This is clearly a family of s-tuples of
t-subsets of N. Standard (and simple) arguments imply that
the set of all input sequences (A1 , A2 , ..., As) corresponding
to a fixed communication between the players forms a box.
As we shall see later, this shows that the following lemma
suffices to establish a lower bound on the average communi-
cation complexity of any deterministic =-correct protocol for
the above game.
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Lemma 3.4. There exists an absolute constant c>0 such
that for every box X� 1_X� 2_ } } } _X� s
Prob[(A1
1 , A1

2 , ..., A1
s ) # X� 1_X� 2_ } } } _X� s]

�
1
2e

Prob[(A0
1 , A0

2 , ..., A0
s )

# X� 1_X� 2 _ } } } _X� s]&s2&ct�s3
.

To prove the lemma, fix a box X� 1 _X� 2 _ } } } _X� s . Recall
that the distribution + on the inputs has been defined by first
choosing a random partition P. For such a partition P let
ProbP[Aj # X� j] denote the conditional probability that A j

lies in X� j , given that the partition used in the random choice
of the input sequence (A1 , ..., As) is P. The conditional
probabilities ProbP[A0

j # X� j] and ProbP[A1
j # X� j] are

defined analogously. A partition P=I1 _ I2 _ } } } _ As _
[x] is called j-bad, where j satisfies 1� j�s, if

ProbP[A1
j # X� j]<\1&

1
s+1+ ProbP[A0

j # X� j]&2&ct�s3
,

where c>0 is a (small) absolute constant, to be chosen
later. The partition is bad if it is j-bad for some j. If it is not
bad, it is good.

We need the following two statements about good and
bad partitions.

Lemma 3.5. There exists a choice for the constant c>0
in the last inequality such that the following holds. For any set
of s&1 pairwise disjoint t-subsets I$r /N (1�r�s, r{ j) the
conditional probability that the partition P=I1 _ I2 _ } } } _
Is _ [x] is j-bad, given that Ir=I$r for all r{ j, is at most 1�20s.

Proof. Note that since Ir is known for all r{ j, the union
Ij _ [x] is known as well, and there are only 2t possibilities
for the partition P. If the number of t-subsets of Ij _ [x]
that belong to X� j is smaller than

1
2 \

2t
t + 2&ct�s3

then for each of the 2t possible partitions P, ProbP[A0
j # X� j]

<2&ct�s3
, implying that P is not j-bad. Therefore, in this case

the conditional probability we have to bound is zero and the
assertion of the lemma holds. Consider, thus, the case that
there are at least that many t-subsets of Ij _ [x] in X� j , let
F denote the family of all these t-subsets, and put Ij _ [x]
=[x1 , x2 , ..., x2t]. Let p i denote the fraction of members of
F that contain xi , and let H( p)=&p log2 p&(1& p)
log2(1& p) be the binary entropy function. By a standard
entropy inequality (cf., e.g., [5]),

|F|�2� 2t
i=1 H( pi).
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In order to determine the partition P=I1 _ I2 _ } } } _ Is _
[x] we have to choose one of the elements xi as x. The crucial



observation is that if the choice of xi as x results in a j-bad
partition P, then pi<(1&1�(s+1))(1& pi), implying that
H( pi)�1&c$�s2 for some absolute positive constant c$. Let
b denote the number of elements xi whose choice as x results
in a j-bad partition P. By the above discussion,

1
2 \

2t
t + 2&ct�s3

�|F|�22t&bc$�s2
.

This implies that if t�s3 is much larger than log t, then
b�O(ct�s), and by choosing c to be sufficiently small this
upper bound for b is smaller than 2t�(20s), completing the
proof of the lemma. K

Lemma 3.6. If P=I1 _ I2 _ } } } _ Is _ [x] is a good
partition then

ProbP[(A1
1 , A1

2 , ..., A1
s ) # X� 1_X� 2_ } } } _X� s]

�
1
e

ProbP[(A0
1 , A0

2 , ..., A0
s )

# X� 1_X� 2_ } } } _X� s]&s2&ct�s 3
.

Proof. By the definition of a good partition

ProbP[A1
j # X� j]�\1&

1
s+1+ ProbP[A0

j # X� j]&2&ct�s3

for every j, 1� j�s. Multiplying the above inequalities and
using the definition of the distribution + as well as the fact
that (1&1�(s+1))s>1�e the desired result follows. K

Returning to the proof of Lemma 3.4, let /(P) be the
indicator random variable whose value is 1 iff P is a bad
partition. Similarly, let /j (P) be the indicator random variable
whose value is 1 iff P is j-bad. Note that /(P)��s

j=1 /j (P).
By computing the expectation over all partitions P,

Prob[(A1
1 , A1

2 , ..., A1
s ) # X� 1_X� 2_ } } } _X� s]

=E(ProbP[(A1
1 , A1

2 , ..., A1
s ) # X� 1_X� 2_ } } } _X� s])

�E(ProbP[(A1
1 , A1

2 , ..., A1
s ) # X� 1_X� 2_ } } } _X� s]

_(1&/(P)))

�
1
e

E(ProbP[(A0
1 , A0

2 , ..., A0
s ) # X� 1_X� 2 _ } } } _X� s]

_(1&/(P)))&s2&ct�s3
,
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where the last inequality follows from Lemma 3.6.
It follows that in order to prove the assertion of

Lemma 3.4 it suffices to show that for every j, 1� j�s,
E(ProbP[(A0
1 , A0

2 , ..., A0
s ) # X� 1_X� 2 _ } } } _X� s] /j (P)) (2)

�
1
2s

E(ProbP[(A0
1 , A0

2 , ..., A0
s ) # X� 1_X� 2 _ } } } _X� s]).

(3)

Consider a fixed choice for the subsets Ir , r{ j, in the
definition of the partition P=I1 _ I2 _ } } } _ Is _ [x].
Given this choice, the union U=Ij _ [x] is known, but the
actual element x should still be chosen randomly in this
union. Given the above information on P, the quantity (3)
is

1
2s

`
s

r=1

ProbP[A0
r # X� r],

and each of these factors besides the one corresponding to
r= j is fixed. The same s&1 factors appear also in (2). The
last factor in the above product, ProbP[A0

j # X� j], is also
easy to compute as follows. Let l denote the number of
t-subsets in X� j which are contained in Ij _ [x]. Then
ProbP[A0

j # X� j] is precisely l�( 2t
t ). Note, also, that for any

choice of a member of U as x, the probability that A0
j lies in

X� j cannot exceed l�( 2t&1
t )=2l�( 2t

t ). By Lemma 3.5, the
probability that /j (P)=1 given the choice of Ir , r{ j, is at
most 1�(20s) and we thus conclude that

E(ProbP[(A0
1 , A0

2 , ..., A0
s ) # X� 1_X� 2_ } } } _X� s] /j (P))

�
1

10s
E(ProbP[(A0

1 , A0
2 , ..., A0

s ) # X� 1_X� 2 _ } } } _X� s]),

implying the inequality in (2), (3) and completing the proof
of Lemma 3.4. K

Proof of Proposition 3.3. Since it is possible to repeat the
protocol and amplify the probabilities, it suffices to prove
the assertion of the proposition for some fixed =<1�2, and
thus it suffices to show that any deterministic protocol whose
length is smaller than 0(t�s3), applied to inputs generated
according to the distribution +, errs with probability 0(1).
It is easy and well known that any fixed communication
pattern corresponds to a box of inputs. Therefore, if the
number of communication patterns in the end of which the
protocoloutputs 0 is smaller than (\�s) 2ct�s3

then, by summing
the assertion of Lemma 3.4 over all the boxes corresponding
to such communication patterns, we conclude that the
probability that the protocol outputs 0 on a random input
(A1

1 , A1
2 , ..., A1

s ) is at least 1�2e times the probability it
outputs 0 on a random input (A0

1 , A0
2 , ..., A0

s ) minus \. By
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choosing a sufficiently small absolute constant \>0 this
shows that in this case the algorithm must err with probability
0(1). Thus, the number of communication patterns must be
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at least 0(1�s) 2ct�s3
) and hence the number of bits in the

communication must be at least 0(t�s3). K

Proof of Theorem 3.2. Fix an integer k>5. Given a
randomized algorithm for approximating the frequency
moment Fk for any sequence of at most n members of N=
[1, 2, ..., n], where n=(2t&1) s+1, using M memory bits,
we define a simple randomized protocol for the communica-
tion game DIS(s, t) for s=n1�k, t=3(n1&1�k). Let A1 ,
A2 , ..., As be the inputs given to the players. The first player
runs the algorithm on the t elements of his set and commu-
nicates the content of the memory to the second player. The
second player then continues to run the algorithm, starting
from the memory configuration he received, on the elements
of his set and communicates the resulting content of the
memory to the third one, and so on. The last player, player
number s, obtains the output Zk of the algorithm. If it is at
most 1.1th he reports that the input sequence (A1 , ..., As) is
disjoint. Else, he reports it is uniquely intersecting. Note
that if the input sequence is disjoint, then the correct value
of Fk is st, whereas if it is uniquely intersecting the correct
value of Fk is sk+s(t&1)=n+s(t&1)>(3t&2)s=(3�2
+o(1))n. Therefore, if the algorithm outputs a good approxi-
mation to Fk with probability at least 1&#, the protocol for
DIS(s, t) is #-correct and its total communication is (s&1)M
<sM. By Proposition 3.3 this implies that sM�0(t�s3),
showing that

M�0(t�s4)=0(n�s5)=0(n1&5�k).

This completes the proof. K

Remark. Since the lower bound in Proposition 3.3 holds
for general protocols and not only for one-way protocols
in which every player communicates only once, the above
lower bound for the space complexity of approximating Fk

holds even for algorithms that may read the sequence A in
its original order a constant number of times.

We next show that the randomization and approximation
are both required in the estimation of Fk when using o(n)
memory bits.

3.3. Deterministic Algorithms

It is obvious that, given a sequence A, its length F1 can be
computed precisely and deterministically in logarithmic
space. Here we show that for any nonnegative k besides 1,
even an approximation of Fk up to, say, a relative error of
0.1 cannot be computed deterministically using less than a
linear number of memory bits. This shows that the random-
ness is crucial in the two approximation algorithms described
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in Section 2. This is a simple corollary of the known results
concerning the deterministic communication complexity of
the equality function. Since, however, these known results
are not difficult, we present a self-contained proof, without
any reference to communication complexity.

Proposition 3.7. For any nonnegative integer k{1,
any deterministic algorithm that outputs, given a sequence A
of n�2 elements of N=[1, 2, ..., n], a number Y such that
|Y&Fk |�0.1Fk must use 0(n) memory bits.

Proof. Let G be a family of t=20(n) subsets of N, each
of cardinality N�4 so that any two distinct members of G

have at most n�8 elements in common. (The existence of
such a G follows from standard results in coding theory and
can be proved by a simple counting argument.) Fix a deter-
ministic algorithm that approximates Fk for some fixed
nonnegative k{1. For every two members G1 and G2 of G

let A(G1 , G2) be the sequence of length n�2 starting with
the n�4 members of G1 (in a sorted order) and ending with
the set of n�4 members of G2 (in a sorted order). When the
algorithm runs, given a sequence of the form A(G1 , G2), the
memory configuration after it reads the first n�4 elements
of the sequence depends only on G1 . By the pigeonhole
principle, if the memory has less than log t bits, then there
are two distinct sets G1 and G2 in G, so that the content of
the memory, after reading the elements of G1 , is equal to
that content after reading the elements of G2 . This means
that the algorithm must give the same final output to the
two sequences A(G1 , G1) and A(G2 , G1). This, however,
contradicts the assumption, since for every k{1, the values
of Fk for the two sequences above differ from each other
considerably; for A(G1 , G1), F0=n�4 and Fk=2kn�4 for
k�2, whereas for A(G2 , G1), F0�3n�8 and Fk�n�4+
2kn�8. Therefore, the answer of the algorithm makes a
relative error that exceeds 0.1 for at least one of these two
sequences. It follows that the space used by the algorithm
must be at least log t=0(n), completing the proof. K

3.4. Randomized Precise Computation

As shown above, the randomness is essential in the two
algorithms for approximating the frequency moments Fk ,
described in Section 2. We next observe that the fact that
these are approximation algorithms is crucial as well, in the
sense that the precise computation of these moments (for all
k but k=1) requires linear space, even if we allow randomized
algorithms.

Proposition 3.8. For any nonnegative integer k{1, any
randomized algorithm that outputs, given a sequence A of at
most 2n elements of n=[1, 2, ..., n] a number Y such that
Y=Fk with probability at least 1&= for some fixed =<1�2
must use 0(n) memory bits.
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Proof. The reduction in the proof of Proposition 3.1
easily works here as well and proves the above assertion
using the main result of [15]. K



3.5. Tight Lower Bounds for the Approximation of F0 ,
F1 , F2

The results in [8, 17] and those in Section 2 here show
that logarithmic memory suffices to approximate randomly
the frequency moments F0 , F1 , and F2 of a sequence A of at
most m terms up to a constant factor with some fixed small
error probability. More precisely, O(log log m) bits suffice
for approximating F1 , O(log n) bits suffice for estimating F0

and O(log n+log log m) bits suffice for approximating F2 ,
where the last statement follows from the remark following
the proof of Theorem 2.2. It is not difficult to show that all
these upper bounds are tight, up to a constant factor, as
shown below.

Proposition 3.9. Let A be a sequence of at most m
elements of N=[1, 2, ..., n].

(i) Any randomized algorithm for approximating F0 up
to an additive error of 0.1F0 with probability at least 3�4 must
use at least 0(log n) memory bits.

(ii) Any randomized algorithm for approximating F1

up to 0.1 F1 with probability at least 3�4 must (use at least
0(log log m) memory bits.

(iii) Any randomized algorithm for approximating F2 up
to 0.1F1 with probability at least 3�4 must use at least
0(log n+log log m) memory bits.

Proof. (i) The result follows from the construction in
the proof of Proposition 3.7, together with the well-known
fact that the randomized communication complexity of the
equality function f (x, y) whose value is 1 iff x= y, where x
and y are l-bit numbers, is 3(log l ).

(ii) Since the length F1 of the sequence can be any
number up to m, the final content of the memory should
admit at least 0(log m) distinct values with positive
probability, giving the desired result.

(iii) The required memory is at least 0(log n) by the
argument mentioned in the proof of part (i) and is at least
0(log log m) by the argument mentioned in the proof of
part (ii). K

4. CONCLUDING REMARKS

We have seen that there are surprisingly space efficient
randomized algorithms for approximating the first three
frequency moments F0 , F1 , F2 , whereas not much space can
be gained over the trivial algorithms in the approximation
of Fk for k�6. We conjecture that an n0(1) space lower
bound holds for any k (integer or noninteger), when k>2.
It would be interesting to determine or estimate the space
complexity of the approximation of �n

i=1 mk
i for non-
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integral values of k for k<2, or the space complexity of
estimating other functions of the numbers mi . The method
described in Section 2.1 can be applied in many cases and
give some nontrivial space savings. Thus, for example, it is
not too difficult to design a randomized algorithm based on
the general scheme in Subsection 2.1, that approximates
�n

i=1 mi log mi up to some fixed small relative error with
some small fixed error-probability, using O(log n log m)
memory bits. We omit the detaileddescriptionof this algorithm.

In a recent work [2] Alon et al. presented an experimental
study of the estimation algorithms for F2 . The experimental
results demonstrate the practical utility of these algorithms.
The algorithms are also extended to deal with the fully
dynamic case, in which set items may be deleted as well. We
finally remark that, in practice, one may be able to obtain
estimation algorithms which for typical data sets would be
more efficient than the worst case performance implied by
the lower bounds. Gibbons et al. [9] recently presented an
algorithm for maintaining an approximate list of the k most
popular items and their approximate counts (and, hence,
also approximating F�) using small memory, which works
well for frequency distributions of practical interest.
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