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Abstract. We describe a technique that automatically generates plau-
sible depth maps from videos using non-parametric depth sampling.
We demonstrate our technique in cases where past methods fail (non-
translating cameras and dynamic scenes). Our technique is applicable
to single images as well as videos. For videos, we use local motion cues
to improve the inferred depth maps, while optical flow is used to en-
sure temporal depth consistency. For training and evaluation, we use
a Kinect-based system to collect a large dataset containing stereoscopic
videos with known depths. We show that our depth estimation technique
outperforms the state-of-the-art on benchmark databases. Our technique
can be used to automatically convert a monoscopic video into stereo for
3D visualization, and we demonstrate this through a variety of visually
pleasing results for indoor and outdoor scenes, including results from the
feature film Charade.

1 Introduction

While many reconstruction techniques for extracting depth from video sequences
exist, they typically assume moving cameras and static scenes. They do not work
for dynamic scenes or for stationary, purely rotating, or strictly variable focal
length sequences. There are some exceptions, e.g., [1], which can handle some
moving objects, but they still require camera motion to induce parallax and
allow depth estimation.

In this paper, we present a novel solution to generate depth maps from or-
dinary 2D videos; our solution also applies to single images. This technique is
applicable to arbitrary videos, and works in cases where conventional depth re-
covery methods fail (static/rotating camera; change in focal length; dynamic
scenes). Our primary contribution is the use of a non-parametric “depth trans-
fer” approach for inferring temporally consistent depth maps without imposing
requirements on the video (Sec 2 and 3), including a method for improving the
depth estimates of moving objects (Sec 3.1). In addition, we introduce a new,
ground truth stereo RGBD (RGB+depth) video dataset1 (Sec 4). We also de-
scribe how we synthesize stereo videos from ordinary 2D videos using the results
of our technique (Sec 5).

Several reconstruction methods for single images of real, unknown scenes have
also been proposed. One of the first methods, introduced by Hoiem et al. [2],

1 Our dataset is publicly available at http://kevinkarsch.com/publications/
depthtransfer.html
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Fig. 1. Our technique takes a video sequence (top row) and automatically estimates
per-pixel depth (bottom row). Our method does not require any cues from motion
parallax or static scene elements; these videos were captured using a stationary camera
with multiple moving objects.

created convincing reconstructions of outdoor images by assuming an image
could be broken into a few planar surfaces; similarly, Delage et al. developed a
Bayesian framework for reconstructing indoor scenes [3]. Saxena et al. devised a
supervised learning strategy for predicting depth from a single image [4], which
was further improved to create realistic reconstructions for general scenes [5], and
efficient learning strategies have since been proposed [6]. Better depth estimates
have been achieved by incorporating semantic labels [7], or more sophisticated
models [8]. Repetitive structures can also be used for stereo reconstruction from
a single image [9]. Single-image shape from shading is also possible for known (a
priori) object classes [10, 11]. We not only focus on depth from a single image,
but also present a framework for using temporal information for enhanced and
time-coherent depth when multiple frames are available.

One application of these methods is 2D-to-3D conversion; however, many
existing techniques methods require user interaction to refine depth and stereo
estimates [12–14]. An exception is the contemporaneous work of Konrad et al.,
which uses non-parametric depth sampling to automatically convert monocu-
lar images into stereoscopic images [15]. Our technique extends their inference
procedure, and works for videos as well.

Liu et al. [16] showed that arbitrary scenes can be semantically labelled
through non-parametric learning. Given an unlabeled input image and a database
with known per-pixel labels (e.g., sky, car, tree, window), their method works
by transferring the labels from the database to the input image based on SIFT
features. We build on this work by transferring depth instead of semantic labels.
Furthermore, we show that this “transfer” approach can be applied in a con-
tinuous optimization framework (Sec 2.1), whereas their method used a discrete
optimization approach (MRFs).

2 Non-parametric depth estimation

We leverage recent work on non-parametric learning [16], which avoids explicitly
defining a parametric model and requires fewer assumptions as in past methods
(e.g., [4, 5, 7]). This approach also scales better with respect to the training data
size, requiring virtually no training time. Our technique imposes no requirements
on the video, such as motion parallax or sequence length, and can even be applied
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Fig. 2. Our pipeline for estimating depth. Given an input image, we find matching
candidates in our database, and warp the candidates to match the structure of the
input image. We then use a global optimization procedure to interpolate the warped
candidates (Eq. 1), producing per-pixel depth estimates for the input image. With
temporal information (e.g. extracted from a video), our algorithm can achieve more
accurate, temporally coherent depth.

to a single image. We first describe our depth estimation technique as it applies
to single images below, and in Sec 3 we discuss novel additions that allow for
improved depth estimation in videos.

2.1 Depth estimation via continuous label transfer

Our depth transfer approach, outlined in Fig 2, has three stages. First, given
a database RGBD images, we find candidate images in the database that are
“similar” to the input image in RGB space. Then, a warping procedure (SIFT
Flow [17]) is applied to the candidate images and depths to align them with the
input. Finally, an optimization procedure is used to interpolate and smooth the
warped candidate depth values; this results in the inferred depth.

Our core idea is that scenes with similar semantics should have roughly sim-
ilar depth distributions when densely aligned. In other words, images of seman-
tically alike scenes are expected to have similar depth values in regions with
similar appearance. Of course, not all of these estimates will be correct, which
is why we find several candidate images and refine and interpolate these esti-
mates using a global optimization technique that considers factors other than
just absolute depth values.

RGBD database. Our system requires a database of RGBD images and/or
videos. We have collected our own RGBD video dataset, as described in Sec 4;
a few already exist online, though they are for single images only.2

Candidate matching and warping. Given a database and an input image, we
compute high-level image features (we use GIST [18] and optical flow features,
see the supplementary file) for each image or frame of video in the database as
well as the input image. We then select the top K (= 7 in our work) matching

2 Examples: Make3D range image dataset (http://make3d.cs.cornell.edu/data.
html), B3DO dataset (http://kinectdata.com/), NYU depth datasets (http://cs.
nyu.edu/~silberman/datasets/), RGB-D dataset (http://www.cs.washington.
edu/rgbd-dataset/).
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Fig. 3. SIFT flow warping. (a) SIFT features are calculated and matched in a one-to-
many fashion, which defines ψ. (b) ψ is applied to achieve dense scene alignment.

frames from the database, but ensure that each video in the database contributes
no more than one matching frame. This forces matching images to be from
differing viewpoints, allowing for greater variety among matches. We call these
matching images candidate images, and their corresponding depths candidate
depths.

Because the candidate images match the input closely in feature space, it is
expected that the overall semantics of the scene are roughly similar. We also make
the critical assumption that the distribution of depth is comparable among the
input and candidates. However, we want pixel-to-pixel correspondences between
the input and all candidates, as to limit the search space when inferring depth
from the candidates.

We achieve this pixel-to-pixel correspondence through SIFT flow [17], which
matches per-pixel SIFT features to estimate dense scene alignment. Using SIFT
flow, we estimate warping functions ψi, i ∈ {1, . . . ,K} for each candidate image;
this process is illustrated in Fig 3. These warping functions map pixel locations
from a given candidate’s domain to pixel locations in the input’s domain. The
warping functions can be one-to-many.

Depth optimization. Each warped candidate depth is deemed to be a rough
approximation of the input’s depth map. Unfortunately, such candidate depths
may still contain inaccuracies and are often not spatially smooth. Instead, we
generate the most likely depth map by considering all of the warped candidates,
optimizing with spatial regularization in mind.

Let L be the input image andD the depth map we wish to infer. We minimize

− log(P (D|L)) = E(D) =
�

i∈pixels

Et(Di) + αEs(Di) + βEp(Di) + log(Z), (1)

where Z is the normalization constant of the probability, and α and β are pa-
rameters (α = 10,β = 0.5). For a single image, our objective contains three
terms: data (Et), spatial smoothness (Es), and database prior (Ep).

The data term measures how close the inferred depth map D is to each of
the warped candidate depths, ψj(C(j)). This distance measure is defined by φ,
a robust error norm (we use an approximation to the L1 norm, φ(x) =

√
x2 + �,

with � = 10−4). We define the data term as

Et(Di) =
K�

j=1

w(j)
i

�
φ(Di − ψj(C

(j)
i ))+

γ
�
φ(∇xDi − ψj(∇xC

(j)
i )) + φ(∇yDi − ψj(∇yC

(j)
i ))

��
,

(2)
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where w(j)
i is a confidence measure of the accuracy of the jth candidate’s warped

depth at pixel i (more details in the supplementary file), and K (= 7) is the total
number of candidates. We measure not only absolute differences, but also relative
depth changes, i.e., depth gradients. The latter terms of Eq 2 enforce similarity
among candidate depth gradients and inferred depth gradients, weighted by γ
(= 10).

We encourage spatial smoothness, but more so in regions where the input
image has small intensity gradients:

Es(Di) = sx,iφ(∇xDi) + sy,iφ(∇yDi). (3)

The depth gradients along x and y (∇xD,∇yD) are modulated by soft thresholds
(sigmoidal functions) of image gradients in the same directions (∇xL,∇yL),
namely, sx,i = (1 + e(||∇xLi||−0.05)/.01)−1 and sy,i = (1 + e(||∇yLi||−0.05)/.01)−1;
see the supplemental file for further explanation.

We also incorporate assumptions from our database that will guide the in-
ference when pixels have little or no influence from other terms (due to weights
w and s):

Ep(Di) = φ(Di − Pi). (4)

We compute the prior, P, by averaging all depth images in our database.
This is an unconstrained, non-linear optimization, and we use iteratively

reweighted least squares to minimize our objective function (details in the sup-
plementary file).

3 Improving depth estimation for videos

Generating depth maps frame-by-frame without incorporating temporal infor-
mation often leads to temporal discontinuities; past methods that ensure tem-
poral coherence rely on a translating camera and static scene objects. Here, we
present a framework that improves depth estimates and enforces temporal coher-
ence for arbitrary video sequences. That is, our algorithm is suitable for videos
with moving scene objects and rotating/zooming views where conventional SFM
and stereo techniques fail. (Here, we assume that zooming induces little or no
parallax.)

Our idea is to incorporate temporal information through additional terms in
the optimization that ensure (a) depth estimates are consistent over time and (b)
that moving objects have depth similar to their contact point with the ground.
Each frame is processed the same as in the single image case (candidate match-
ing and warping), except that now we employ a global optimization (described
below) that infers depth for the entire sequence at once, incorporating temporal
information from all frames in the video. Fig 4 illustrates the importance of these
additional terms in our optimization.

We formulate the objective for handling video by adding two terms to the
single-image objective:

Evideo(D) = E(D) +
�

i∈pixels

νEc(Di) + ηEm(Di), (5)
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Fig. 4. Importance of temporal in-
formation. Left: input frames. Mid-
left: predicted depth without tempo-
ral information. Note that the car is
practically ignored here. Mid-right:
predicted depth with temporal infor-
mation, with the depth of the mov-
ing car recovered. Right: detected
moving object.

Input frames 
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estimate 

Motion 
segmentation 

Inferred 
depth 

Fig. 5. We apply median filtering on the stabi-
lized images to extract the background image. A
pixel is deemed to be in motion if there is suf-
ficient relative difference from the background
image.

where Ec encourages temporal coherence while Em uses motion cues to improve
the depth of moving objects. The weights ν and η balance the relative influence
of each term (ν = 100, η = 5).

We model temporal coherence first by computing per-pixel optical flow for
each pair of consecutive frames in the video (using Liu’s publicly available
code [19]). We define the flow difference, ∇flow, as a linear operator which re-
turns the change in the flow across two corresponding pixels, and model the
coherence term as

Ec(Di) = st,iφ(∇flowDi). (6)

We weight each term by a measure of flow confidence,
st,i = (1 + e−(||∇flowLi||−0.05)/.01)−1, which intuitively is a soft threshold on the
reprojection error. Minimizing the weighted flow differences has the effect of
temporally smoothing inferred depth in regions where optical flow estimates are
accurate.

To handle motion, we detect moving objects in the video (Sec 3.1) and con-
strain their depth such that these objects touch the floor. Let m be the binary
motion segmentation mask and M the depth in which connected components in
the segmentation mask contact the floor. We define the motion term as

Em(Di) = miφ(Di −Mi). (7)

3.1 Motion segmentation

Differentiating moving and stationary objects in the scene can be a useful cue
when estimating depth. Here we describe our algorithm for detecting objects
in motion in non-translating movies (i.e., static, rotational, and variable focal
length videos).
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Fig. 6. Our stereo-RGBD collection rig consists of two side-by-side Microsoft Kinects.
The rig is mobile through the use of an uninterruptible power supply, laptop, and
rolling mount.

First, to account for dynamic exposure changes throughout the video, we
find the image with the lowest overall intensity in the sequence and perform
histogram equalization on all other frames in the video. We use this image as to
not propagate spurious noise found in brighter images. Next, we use RANSAC
on point correspondences to compute the dominant camera motion (modeled
using homography) to align neighboring frames in the video. Median filtering is
then used on the stabilized images to extract the background B (ideally, without
all the moving objects).

In our method, the likelihood of a pixel being in motion depends on how
different it is from the background, weighted by the optical flow magnitude
which is computed between stabilized frames (rather than between the original
frames). We use relative differencing (relative to background pixels) to reduce
reliance on absolute intensity values, and then threshold to produce a mask:

mi,k =

�
1 if ||flowi,k|| ||Wi,k−Bi||2

Bi
> τ

0 otherwise,
(8)

where τ = 0.01 is the threshold, and Wi,k is the kth pixel of the ith stabilized
frame (i.e., warped according to the homography that aligns W with B). This
produces a motion estimate in the background’s coordinate system, so we apply
the corresponding inverse homography to each warped frame to find the motion
relative to each frame of the video. This segmentation mask is used (as in Eq 7) to
improve depth estimates for moving objects in our optimization. Fig 5 illustrates
this technique.

4 Dataset

In order to train and test our technique on video input, we collected a dataset
of over 200 stereoscopic video sequences with corresponding depth values for
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Fig. 7. Results obtained on four different sequences sequences captured with a rotating
camera and/or variable focal length. In each 3×3 block of images, we show the input
frames (top), inferred depth (middle) and inferred 3D anaglyph (bottom). Notice that
the sequences are time-coherent and that moving objects are not ignored.

one of the two stereoscopic views. These sequences come from four different
buildings in two cities and contain substantial scene variation (e.g., hallways,
rooms, foyers). Each clip is filmed with camera viewpoints that are either static
or slowly rotated. Our dataset primarily contains one or more persons walking
through a scene, sitting or socializing.

To capture data, we use two side-by-side, vertically mounted Microsoft Kinects
shown in Fig 6 (positioned about 5cm apart). We collected the color images from
both Kinects and only the depth map from the left Kinect.

We also collected outdoor data with our stereo device. However, because the
Kinect cannot produce depth maps outdoors due to IR interference from the
sunlight, we could not use these sequences for training. We did not apply stereo
to extract ground truth depth because of reliability issues. We did, however, use
this data for testing and evaluation purposes.

5 Application: Automatic stereoscopic view synthesis

In recent years, 3D3 videos have become increasingly popular. Many feature films
are now available in 3D, and increasingly more personal photography devices are

3 The presentation of stereoscopic (left+right) video to convey the sense of depth.
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Fig. 8. Single image results obtained on test images from the Make3D dataset. Each re-
sult contains the following four images (from left to right): original photograph, ground
truth depth from the dataset, our inferred depth, and our synthesized anaglyph
image. The depth images are shown in log scale. Darker pixels indicate nearby objects
(black is roughly 1m away) and lighter pixels indicate objects farther away (white is
roughly 80m away). Each pair of ground truth and inferred depths are displayed at the
same scale.

now equipped with stereo capabilities (from point-and-shoots to attachments for
video cameras and SLRs). Distributing user-generated content is also becoming
easier. Youtube has recently incorporated 3D viewing and uploading features,
and many software packages have utilities for handling and viewing 3D file for-
mats, e.g., Fujifilm’s FinePixViewer.

As 3D movies and 3D viewing technology become more widespread, it is de-
sirable to have techniques that can convert legacy 2D movies to 3D in an efficient
and inexpensive way. Currently, the movie industry uses expensive solutions that
tend to be manual-intensive. For example, it was reported that the cost of con-
verting (at most) 20 minutes of footage for the movie “Superman Returns” was
$10 million4.

Our technique can be used to automatically generate the depth maps nec-
essary to produce the stereoscopic video (by warping each input frame using
its corresponding depth map). To avoid generating holes at disocclusions in the
view synthesis step, we adapt and extend Wang et al.’s technique [20]. They
developed a method that takes as input a single image and per-pixel disparity
values, and intelligently warps the input image based on the disparity such that
highly salient regions remain unmodified. Their method was applied only to sin-
gle images; we extend this method to handle video sequences as well. Details of
our view synthesis technique are given in the supplementary file.

6 Results

We use the Make3D range image dataset to evaluate our single image depth
estimation technique. Of the 534 images in the Make3D dataset, we use 400
for testing and 134 for training (the same as was done before, e.g., [4, 5, 8, 7]).

4 See http://en.wikipedia.org/wiki/Superman Returns.
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Method rel log10 RMS

Depth MRF [4] 0.530 0.198 16.7
Make3D [5] 0.370 0.187 N/A
Feedback Cascades [8] N/A N/A 15.2

Semantic Labels [7] 0.375 0.148 N/A
Depth Transfer (ours) 0.362 0.148 15.2

Table 1. Comparison of depth estima-
tion errors on the Make3D range image
dataset. Using our single image technique,
our method has the lowest errors for two of
three metrics and achieves lower error over-
all than other state-of-the-art methods.

Dataset rel log10 RMS PSNR

Building 1† 0.196 0.082 8.271 15.6
Building 2 0.394 0.135 11.7 15.6
Building 3 0.325 0.159 15.0 15.0
Building 4 0.251 0.136 15.3 16.4
Outdoors†† N/A N/A N/A 15.2

All 0.291 0.128 12.6 15.6

Table 2. Error averaged over our
stereo-RGBD dataset. †Building used
for training (results for Building 1
trained using a hold-one-out scheme).
††No ground truth depth available.

We report error for three common metrics in Table 1. Denoting D as esti-
mated depth and D∗ as ground truth depth, we compute relative (rel) error
|D−D∗|

D∗ , log10 error | log10(D)− log10(D
∗)|, and root mean squared (RMS) er-

ror
��N

i=1(Di −D∗
i )

2/N . Error measures are averaged over all pixels/images
in the test set. Our estimated depth maps are computed at 345×460 pixels
(maintaining the aspect ratio of the Make3D dataset input images).

Our method is as good as or better than the state-of-the-art for each metric.
Note that previously no method achieved state-of-the-art results in more than
one metric. Our estimated depth is good enough to generate compelling 3D
images, and representative results are shown in Fig 8. In some cases, our method
even produces better depth estimates than the ground truth (with low resolution
and sensor errors). Thin structures (e.g., trees and pillars) are usually recovered
well; however, fine structures are occasionally missed due to spatial regularization
(such as the poles in the bottom-right image of Fig 8).

As further evaluation, a qualitative comparison between our technique and
the publicly available version of Make3D is shown in Fig 9. Unlike Make3D, our
technique is able to extract the depth of the runner throughout the sequence.

Our technique works well for videos of many types scenes and video types
(Figs 1, 4, 5, 7, 10; more examples are in the supplemental files). We use the
dataset we collected in Sec 4 to validate our method for indoor scenes and
videos (we know of no other existing methods/datasets to compare to). This
dataset contains ground truth depth and stereo images for four different buildings
(referred to as Buildings 1, 2, 3, and 4), and to demonstrate generalization, we
only use data from Building 1 for training. We still generate results for Building
1 by holding each particular example out of the training set during inference.

We show quantitative results in Table 2 and qualitative results in Fig 10. We
calculate error using the same metrics as in our single image experiments, and
to make these results comparable with Table 1, we globally rescale the ground
truth and inferred depths to match the range of the Make3D database (roughly
1-81m). As expected, the results from Building 1 are the best, but our method
still achieves reasonable errors for the other buildings as well.
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Input

215×292
Make3D

305×55
Depth transfer (ours)

215×292

Fig. 9. Comparison between our technique and the publicly available version of
Make3D (http://make3d.cs.cornell.edu/code.html). Make3D depth inference is
trained to produce depths of resolution 55 × 305 (bilinearly resampled for visualiza-
tion), and we show results of our algorithm at the input native resolution. The anaglyph
images are produced using the technique in Sec 5. Depths displayed at same scale.

Fig. 10. Video results obtained on test images for each building in our stereo-RGBD
dataset (buildings 1-4, from left to right and top to bottom). For each result (from
left to right): original photograph, ground truth depth, our inferred depth, ground
truth anaglyph image, and our synthesized anaglyph image. Because the ground
truth 3D images were recorded with a fixed interocular distance (roughly 5cm), we
cannot control the amount of “pop-out,” and the 3D effect is subtle. However, this
is a parameter we can set using our automatic approach to achieve a desired effect,
which allows for an enhanced 3D experience. Note also that our algorithm can handle
multiple moving objects (top). Additional results are shown in the supplemental files.

Fig. 11. Several clips from the feature film Charade. Each result contains (from top
to bottom): the original frames, estimated depth, and estimated anaglyph auto-
matically generated by our algorithm. Some imperfections in depth are conveniently
masked in the 3D image due to textureless or less salient regions.
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Input Outdoor Indoor All data

Fig. 12. Effect of using different train-
ing data for indoor and outdoor images.
While the results are best if the proper
dataset is used, we also get good results
even if we combine all the datasets.

Fig. 13. Example failure cases. Top row:
thin or floating objects (pole and basket-
ball) are ignored. Bottom row: input im-
age is too different from training set.

Fig 10 shows a result from each building in our dataset (top left is Building
1). As the quantitative results suggest, our algorithm performs very well for
this building. In the remaining examples, we show results of videos captured in
the other three buildings, all which contain vastly different colors, surfaces and
structures from the Building 1. Notice that even for these images our algorithm
works well, as evidenced by the estimated depth and 3D images.

Our algorithm also does not require video training data to produce video
results. We can make use of static RGBD images (e.g. Make3D dataset) to train
our algorithm for video input, and we show several outdoor video results in
Figs 1, 4, 5 (more in the supplemental files). Even with static data from another
location, our algorithm is usually able to infer accurate depth and stereo views.

Since we collected ground truth stereo images in our dataset, we also compare
our synthesized right view with actual right view. We use peak signal-to-noise
ratio (PSNR) to measure the quality of the reconstructed views, as shown in
Table 2. We could not acquire depth outdoors, and we use this metric to compare
our outdoor and indoor results.

We also demonstrate that our algorithm may be suitable for feature films in
Fig 11. More diverse quantities of training are required to achieve commercial-
quality conversion; however, even with a small amount of data, we can generate
plausible depth maps and create convincing 3D sequences automatically.

Our algorithm takes roughly one minute per frame (on average) using a
parallel implementation on a quad-core 3.2GHz processor.

7 Discussion

Our results show that our algorithm works for a large variety of indoor and
outdoor sequences using a practical amount of training data. Note that our
algorithm works for arbitrary videos, not just those with no parallax. However,
videos with arbitrary camera motion and static scenes are best handled with
techniques such as [1]. In Fig 12, we show that our algorithm requires some
similar data in order to produce decent results (i.e., training with outdoor images
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Input Candidate images and depths Contribution Inferred depth

Fig. 14. Candidate contribution for depth estimation. For an input image (left), we
find top-matching candidate RGBD images (middle), and infer depth (right) for the
input using our technique. The contribution image is color-coded to show the sources;
red pixels indicate that the left-most candidate influenced the inferred depth image the
most, orange indicates contribution from the right-most candidate, etc.

for an indoor query is likely to fail). However, our algorithm can robustly handle
large amounts of depth data with little degradation of output quality. The only
issue is that more data requires more comparisons in the candidate search.

This robustness is likely due to the features we use when determining candi-
date images as well as the design of our objective function. In Fig 14, we show
an example query image, the candidates retrieved by our algorithm, and their
contribution to the inferred depth. By matching GIST features, we detect can-
didates that contain features consistent with the query image, such as building
facades, sky, shrubbery, and similar horizon location. Notice that the depth of
the building facade in the input comes mostly from another similarly oriented
building facade (teal), and the ground plane and shrubbery depth come almost
solely from other candidates’ ground and tree depths.

In some cases, our motion segmentation misses or falsely identifies moving
pixels. This can result in inaccurate depth and 3D estimation, although our
spatio-temporal regularization (Eqs. 3, 6) helps to overcome this. Our algorithm
also assumes that moving objects contact the ground, and thus may fail for
airborne objects (see Fig 13).

Due to the serial nature of our method (depth estimation followed by view
synthesis), our method is prone to propagating errors through the stages. For
example, if an error is made during depth estimation, the result may be visually
implausible. It would be ideal to use knowledge of how the synthesized views
should look in order to correct issues in depth.

8 Concluding Remarks

We have demonstrated a fully automatic technique to estimate depths for videos.
Our method is applicable in cases where other methods fail, such as those based
on motion parallax and structure from motion, and works even for single images
and dynamics scenes. Our depth estimation technique is novel in that we use a
non-parametric approach, which gives qualitatively good results, and our single-
image algorithm quantitatively outperforms existing methods. Using our tech-
nique, we also show how we can generate stereoscopic videos for 3D viewing from
conventional 2D videos. Specifically, we show how to generate time-coherent, vi-
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sually pleasing stereo sequences using our inferred depth maps. Our method is
suitable as a good starting point for converting legacy 2D feature films into 3D.
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