Attributes
Describable visual attributes

- 4-Legged
- Orange
- Striped
- Furry
- White
- Symmetric
- Ionic columns
- Classical
- Male
- Asian
- Beard
- Smiling

Slide from N. Kumar
Attributes in Vision

• Face verification

• Image description
 – Can be used for keyword search

• Zero-shot learning
 – Use descriptions for learning with no examples
Learn Attributes

• Label data on Mechanical Turk:
 • Is male?
 • Is asian?
 • Has glasses?

• Training SVM classifiers on features response
 – SIFT, HOG, LBP, RGB

• Learnt across many categories
Scalability issues

• Given an attribute it is easy to get labeled data on AMT.

• But, where do attributes come from?
 – Domain knowledge from experts
 – Expensive and not scalable
Attribute Discovery

• Nameable attribute discovery
• Discover attributes from product descriptions
Nameable Attribute Discovery

• Interested in nameable attributes, humans should understand them.

“Interactively Building a Discriminative Vocabulary of Nameable Attributes”, Devi Parikh and Kristen Grauman, CVPR 2011
Nameable Attribute Discovery

• Consider attributes as hyperplanes in feature space.
• Find attributes that separate best inter-class confusion.
• Send them to AMT to decide if an attribute is nameable or not.
 – There are too many attributes to consider
 – Model the manifold of nameable attributes and only send the probably nameable ones to AMT.
Nameable Attribute Discovery

“Congested”

“Smiling”
Attributes from Product Descriptions

The 12K pink and green gold leaves gently cascade down on these delicate beaded 10K earrings.

“Automatic Attribute Discovery and Characterization from Noisy Web Data”, Tamara L. Berg, Alexander C. Berg, and Jonathan Shih, ECCV 2010
Attributes from Product Descriptions

Rock and roll in these sexy, strapped heels from Report Signature. The smoldering Rockwell features a grey patent leather with pleated satin crossing at the open-toe atop a 1 inch platform, patent straps closing around the ankle with a gold buckled, and finally a 5 inch patent cone heel. Sizzle in these fierce mile-high shoes.

“Automatic Attribute Discovery and Characterization from Noisy Web Data”, Tamara L. Berg, Alexander C. Berg, and Jonathan Shih, ECCV 2010
Attributes from Product Descriptions

- Find candidate attributes:
 - Learn visual models for certain words in the object description.
 - Take the ones that their visual models best predict the attribute in the description.
 - Cluster them based on mutual information
 - \{stiletto, stiletto heel, sexy, traction, fabulous, styling\}
 - \{tote, handles, straps, lined, open\}
Attributes from Product Descriptions

• Classify attributes:
 – Localizable:
 • Consider image as bag of regions.
 • Learn classifiers based on these bags with multiple instance learning.
 • If most probability of the learnt classifiers is in a small region, the attribute is localizable.
 – Attribute type:
 • Distinguish between color, texture and global attributes by learning on bags of feature types.
Attributes from Product Descriptions
Attribute limitations

• Many attributes are ambiguous

Is male?
Is asian?
Has long hair?
Has thin eyebrows?
Has round jaw?
Attribute limitations

• Many attributes are ambiguous

<table>
<thead>
<tr>
<th>Person A</th>
<th>Person B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is male?</td>
<td>Is A more male than B?</td>
</tr>
<tr>
<td>Is asian?</td>
<td>Is A more asian than B?</td>
</tr>
<tr>
<td>Has long hair?</td>
<td>Has A longer hair than B?</td>
</tr>
<tr>
<td>Has thin eyebrows?</td>
<td>Has A thinner eyebrows than B?</td>
</tr>
<tr>
<td>Has round jaw?</td>
<td>Has A a rounder jaw than B?</td>
</tr>
</tbody>
</table>
Relative attributes

Smiling

Not smiling

Natural

Not natural

“Relative Attributes”, Devi Parikh, Kristen Grauman, ICCV 2011

Slides from D. Parikh
Labeling data

Binary Attributes

<table>
<thead>
<tr>
<th>Image</th>
<th>Young</th>
<th>Smiling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Relative Attributes

<table>
<thead>
<tr>
<th>Image</th>
<th>Young</th>
<th>Smiling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

~ indicates a relative comparison.
Learning relative attributes

Binary Attributes

Learn decision function:

\[d_b(x_i) = w_b^T x_i \]

Relative Attributes

Learn ranking function:

\[r_m(x_i) = w_m^T x_i \]
Learning relative attributes

Binary Attributes

Conditions that hold:
- \(d_b(x_i) \geq 1 \) for positive examples of attribute \(b \) (\(P_b \)).
- \(d_b(x_i) \leq -1 \) for negative examples of attribute \(b \) (\(N_b \)).

Relative Attributes

Conditions that hold:
- \(r_m(x_i) > r_m(x_j) \) for pairs \((i, j)\) where attribute \(m \) is stronger in \(i \) (\(O_m \)).
- \(r_m(x_i) = r_m(x_j) \) for pairs \((i, j)\) where attribute \(m \) is similar in \(i \) and \(j \) (\(S_m \)).
Learning relative attributes

Binary Attributes

\[
\begin{aligned}
\min & \quad \frac{1}{2} \| w_b^T \|_2^2 + C \sum (\xi_i + \gamma_i) \\
\text{s.t.} & \quad w_b^T x_i \geq 1 - \xi_i, \quad \forall i \in P_b \\
& \quad w_b^T x_i \leq -1 + \gamma_i, \quad \forall i \in N_b \\
& \quad \xi_i \geq 0, \gamma_i \geq 0
\end{aligned}
\]

- \(\xi_i \) and \(\gamma_i \) are slack variables
- \(C \) is a trade-off between maximizing the margin and satisfying the conditions.

Relative Attributes

\[
\begin{aligned}
\min & \quad \frac{1}{2} \| w_m^T \|_2^2 + C \sum (\xi_{ij}^2 + \gamma_{ij}^2) \\
\text{s.t.} & \quad w_m^T (x_i - x_j) \geq 1 - \xi_{ij} \quad \forall (i, j) \in O_m \\
& \quad |w_m^T (x_i - x_j)| \leq \gamma_{ij}, \quad \forall (i, j) \in S_m \\
& \quad \xi_{ij} \geq 0, \gamma_{ij} \geq 0
\end{aligned}
\]

- \(\xi_{ij} \) and \(\gamma_{ij} \) are slack variables
- \(C \) is a trade-off between maximizing the margin and satisfying the conditions.
Learning relative attributes

Two possible ranks:

• Score-based Relative Attribute rank:
 \[r_b(x_i) = d_b(x_i) = w_b^T x_i \]
 Use the score of the classifier to measure the relative strength of the attribute

• Relative attribute rank:
 \[r_m(x_i) = w_m^T x_i \]
Learning relative attributes

- Test on two datasets (scenes in OSR and faces in PubFig).

Binary Attributes
- Young: \(M, S \)
- Masculine: \(H \)
- Smiling: \(M, S \)

Relative Attributes
- Young: \(H < S < M \)
- Smiling: \(H < S < M \)
- Masculine: \(S < M < H \)

Transfer from Category to Images
- Not Smiling
- Smiling

Images
- Scarlett Johansson
- Hugh Laurie
- Miley Cyrus
Learning relative attributes

• 8 categories in both datasets, 8 attributes in OSR and 11 attributes in PubFig
• Learn binary and relative attributes.
• Compare how well they rank images based on the defined partial ordering.

<table>
<thead>
<tr>
<th></th>
<th>Scene OSR</th>
<th>Faces PubFig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score-based Relative Attribute rank</td>
<td>80%</td>
<td>67%</td>
</tr>
<tr>
<td>Relative attribute rank</td>
<td>89%</td>
<td>82%</td>
</tr>
</tbody>
</table>
Applications

• Zero-shot learning
• Image description
Zero-shot learning

• Train relative attributes on a set of categories.
• Describe unseen categories with comparisons:
 – “bears are furrier than giraffes but less furry than rabbits”
 – “lions are larger than dogs, as large as tigers, but less large than elephants”
• Build a model based on the attributes for the unseen categories.
• Test the accuracy of that model.
Zero-shot learning

Unseen categories are modeled as Gaussian distributions in attribute space constrained by the category definition.
Zero-shot learning

Proportion of unseen categories

Baselines:
• SRA: Score-based Relative Attributes
• DAP: Direct Attribute Prediction

“Learning to Detect Unseen Object Classes by Between-Class Attribute Transfer”, Lampert et. al., CVPR 2009
Zero-shot learning

Amount of supervision

Unseen categories are described with respect to N labeled pairs of seen categories
Zero-shot learning

Amount of supervision

Accuracy

OSR

PubFig

att to describe unseen

att to describe unseen

DAP

SRA

Proposed
Zero-shot learning

Amount of supervision

Attribute: Density
Image description

- Use relative attributes for image description:
 - For each attribute, look for two images that bound the image strength in the attribute

- Example: Generate description of:

 Relative attributes space

 Density:

 “more dense than,” less dense than”
Image description

- Contrast to binary description:
 - Dense

- Use categories instead of images:
 - Relative attributes space
 - Density
 - 1/8 dataset

“more dense than **Highways**, less dense than **Forests**”
<table>
<thead>
<tr>
<th>Image</th>
<th>Binary descriptions</th>
<th>Relative descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>not natural, not open, perspective</td>
<td>more natural than tallbuilding; less natural than forest; more open than tallbuilding; less open than coast; more perspective than tallbuilding;</td>
</tr>
<tr>
<td></td>
<td>not natural, not open, perspective</td>
<td>more natural than insidecity; less natural than highway; more open than street; less open than coast; more perspective than highway; less perspective than insidecity</td>
</tr>
<tr>
<td></td>
<td>natural, open, perspective</td>
<td>more natural than tallbuilding; less natural than mountain; more open than mountain; less perspective than opencountry;</td>
</tr>
<tr>
<td></td>
<td>White, not Smiling, VisibleForehead</td>
<td>more White than AlexRodriguez; more Smiling than JaredLeto; less Smiling than ZacEfron; more VisibleForehead than JaredLeto; less VisibleForehead than MileyCyrus</td>
</tr>
<tr>
<td></td>
<td>White, not Smiling, not VisibleForehead</td>
<td>more White than AlexRodriguez; less White than MileyCyrus; less Smiling than HughLaurie; more VisibleForehead than ZacEfron; less VisibleForehead than MileyCyrus</td>
</tr>
<tr>
<td></td>
<td>not Young, BushyEyebrows, RoundFace</td>
<td>more Young than CliveOwen; less Young than ScarlettJohansson; more BushyEyebrows than ZacEfron; less BushyEyebrows than AlexRodriguez; more RoundFace than CliveOwen; less RoundFace than ZacEfron</td>
</tr>
</tbody>
</table>
User study to evaluate descriptions:

Which image is?
Rank your preferences.

More chubby than
Less chubby than

More smiling than
Less smiling than

More visible forehead than
Less visible forehead than
Image description

• User study to evaluate descriptions:

Which image is?
Rank your preferences.

<table>
<thead>
<tr>
<th>Not chubby</th>
<th>Not smiling</th>
<th>Visible forehead</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Image description
Conclusion & Discussion

• Relative attributes allow richer supervision and description than categorical attributes.
• Is it valid to transfer attribute labels from categories to images?
• When should an attribute be relative and when categorical?
• Are relative attributes unambiguous enough?