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Types of Shape Model
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Local Deformations Approach

given

space of all shapes

an image at each timestep

2-d point tracks for these images

to find

shape at each timestep
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A Global Shape Model

Bregler/Hertzmann/Biermann, CVPR00: linear subspace model

“shape”: set of n points on an object

⇀
s i (t) ∈ R

3

(can concatenate vectors)
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“shape”: set of n points on an object

⇀
s i (t) ∈ R

3

allowable shapes lie in a K-dimensional subspace of R
3n

mean shape s̄i =
1

m

m∑

t=1

⇀
s i (t)

⇀
s i (t) = s̄i + Vi

⇀
z (t)

(can concatenate vectors)
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A World Model

Torresani/Hertzmann/Bregler, PAMI08

linear subspace shape model

⇀
s i (t) = s̄i + Vi

⇀
z (t)

– p. 9/38



A World Model

Torresani/Hertzmann/Bregler, PAMI08

linear subspace shape model

⇀
s i (t) = s̄i + Vi

⇀
z (t)

weak perspective projection model

⇀
p i (t) = c(t)Rt(

⇀
s i (t)+

⇀
t t)+

⇀
n (t)

⇀
n (t) zero-mean Gaussian noise with stdev σnoise
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Smoothness Prior

Torresani/Hertzmann/Bregler, PAMI08

⇀
z (t) ∼ N (

⇀

0 , I)
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Smoothness Prior

Torresani/Hertzmann/Bregler, PAMI08

⇀
z (t) ∼ N (

⇀

0 , I)

similar deformations at different times

force small deformations? no

2-d projection
⇀
p i (t) is distributed normally (weak

perspective)
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Algorithm

Torresani/Hertzmann/Bregler, PAMI08

probabilistic model =⇒ can use max-likelihood
principle

L(point i) =
∏

t

p(
⇀
p i (t)|c(t), Rt,

⇀
t t, s̄i, Vi, σnoise)
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Algorithm

Torresani/Hertzmann/Bregler, PAMI08

probabilistic model =⇒ can use max-likelihood
principle

L(point i) =
∏

t

p(
⇀
p i (t)| c(t), Rt,

⇀
t t, s̄i, Vi, σnoise

︸ ︷︷ ︸
M step updates these

)

do EM to allow for missing point tracks

E step: update posterior over basis weights
⇀
z (t) ∀t

M step: maximize data likelihood L(·) by optimizing
mean shape, basis shapes, camera parameters, and
noise
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EM Initialization

EM needs initial estimates for everything

– p. 12/38



EM Initialization

EM needs initial estimates for everything

pick a K (# bases) that’s not too small

– p. 12/38



EM Initialization

EM needs initial estimates for everything

pick a K (# bases) that’s not too small

use affine rigid SFM (Tomasi-Kanade) to get mean
shape and camera transformations

– p. 12/38



EM Initialization

EM needs initial estimates for everything

pick a K (# bases) that’s not too small

use affine rigid SFM (Tomasi-Kanade) to get mean
shape and camera transformations

σnoise should be large

– p. 12/38



EM Initialization

EM needs initial estimates for everything

pick a K (# bases) that’s not too small

use affine rigid SFM (Tomasi-Kanade) to get mean
shape and camera transformations

σnoise should be large

iteratively add basis shapes (and basis weights) so as
to minimize reprojection error
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Results: Dependence on K

(Torresani face dataset)
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Results: Missing Data

(Torresani face dataset)
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Things to Remember

simple extension of linear subspace shape model

max likelihood optimization minimizes reprojection error

robust against overfitting
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Reminder: Linear Subspace Model

“shape”: set of n points on an object

⇀
s i (t) ∈ R

3
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“shape”: set of n points on an object

⇀
s i (t) ∈ R

3

allowable shapes lie in a K-dimensional subspace of
R

3n

⇀
s i (t) = s̄i + Vi

⇀
z (t)

mean shape s̄i =
1

m

m∑

t=1

⇀
s i (t)
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Another World Model

Bartoli et al, CVPR08

linear subspace shape model

⇀
s i (t) = Dt

(

s̄i + Vi
⇀
z (t)

)
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⇀
z (t)

)

full perspective projection model

⇀
p i (t) = Pt(
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Another World Model

Bartoli et al, CVPR08

linear subspace shape model

⇀
s i (t) = Dt

(

s̄i + Vi
⇀
z (t)

)

full perspective projection model

⇀
p i (t) = Pt(

⇀
s i (t)+

⇀
t t) (up to a scalar)

Pt = KtRtTt

makes problem much harder
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Algorithm

Bartoli et al, CVPR08

1. rigid SFM (with standard techniques) assuming
projection matrices known

produces mean shape and camera-world
transformations
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Algorithm

Bartoli et al, CVPR08

1. rigid SFM (with standard techniques) assuming
projection matrices known

produces mean shape and camera-world
transformations
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2. iteratively
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Decomposition of Camera Matrix

Torresani:
⇀
p i (t) = c(t)Rt(

⇀
s i (t) +

⇀
t t)+

⇀
n (t)

Bartoli:

⇀
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(
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⇀
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⇀
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⇀
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Decomposition of Camera Matrix

Torresani:
⇀
p i (t) = c(t)Rt(

⇀
s i (t) +

⇀
t t)+

⇀
n (t)

Bartoli:

⇀
s i (t) = Dt

(

s̄i + Vi
⇀
z (t)

)

⇀
p i (t) = Pt(

⇀
s i (t) +

⇀
t t) (up to a scalar)

overparameterizes but ignores Pt

set Dt under rigidity assumption; never refine
scene reconstruction can end up completely wrong
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Algorithm

Bartoli et al, CVPR08

1. rigid SFM (with standard techniques) assuming
projection matrices known

produces mean shape and camera-world
transformations
bad

2. iteratively
(a) optimize one additional basis shape to minimize

reprojection error

(b) cross-validate
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Objective Function

reprojection error plus temporal and spatial smoothness
terms

O({Vi}, {
⇀
z (t)}) =

X

point i,image t

 

vi,t

˛

˛

˛

˛

⇀
p i (t)−

⇀
p

reproj

i (t)

˛

˛

˛

˛

2
!

+λOtemporal+κOspatial

(vi,t visibility flags)
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Objective Function

reprojection error plus temporal and spatial smoothness
terms

O({Vi}, {
⇀
z (t)}) =

X

point i,image t

 

vi,t

˛

˛

˛

˛

⇀
p i (t)−

⇀
p

reproj

i (t)

˛

˛

˛

˛

2
!

+λOtemporal+κOspatial

(vi,t visibility flags)

approximate so each point i presents an independent
subproblem

still nonlinear

very efficient
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Temporal Smoothness Term

Bartoli et al, CVPR08

O(basis shapes, basis weights) = reprojection error +Otemporal +Ospatial

temporal smoothness term a slight generalization of

Otemporal =

m∑

t=1

∣
∣
∣
⇀
z (t)−

⇀
z (t− 1)

∣
∣
∣

2

,
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Spatial Smoothness Term

Bartoli et al, CVPR08

O(basis shapes, basis weights) = reprojection error +Otemporal +Ospatial

Ospatial =
∑

points i,j, basis shapes k

ψ(i, j)
∣
∣
∣
⇀
v ik −

⇀
v jk

∣
∣
∣

2

,

ψ(i, j) a decreasing function of distance between points i, j on the

mean shape,
⇀
v ik the location of point i in shape mode k
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Initialization

actual basis representation:

⇀
s i (t) = s̄i +

⇀
z (t) Vi

= s̄i +
∑

basis k( akt bit

⇀

Cit)
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Initialization

actual basis representation:

⇀
s i (t) = s̄i +

⇀
z (t) Vi

= s̄i +
∑

basis k( akt bit

⇀

Cit)

(g) (h)
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Initialization

actual basis representation:

⇀
s i (t) = s̄i +

⇀
z (t) Vi

= s̄i +
∑

basis k( akt bit

⇀

Cit)

(j) (k) (l)
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Initialization

actual basis representation:

⇀
s i (t) = s̄i +

⇀
z (t) Vi

= s̄i +
∑

basis k( akt bit

⇀

Cit)

(m) (n) (o)

initialize directions, then magnitudes
– p. 28/38



Initialization

direction vectors {
⇀

Cit}
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Initialization

direction vectors {
⇀

Cit}

image t, point i
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Initialization

direction vectors {
⇀

Cit}

(m) (n)
...

(o)
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Initialization

direction vectors {
⇀

Cik}

(p) (q)

...
(r)

magnitudes {bik}, basis weights {akt}

– p. 30/38



Initialization

direction vectors {
⇀

Cik}

(s) (t)

...
(u)

magnitudes {bik}, basis weights {akt}

each point in each image constrains one a and one b

a function of aktbik
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Initialization

direction vectors {
⇀

Cik}

(v) (w)

...
(x)

magnitudes {bik}, basis weights {akt}

each point in each image constrains one a and one b

a function of aktbik

need one more constraint for each kth basis; |
⇀
a k | = 1 will

do
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Results: Dependence on K

(Candide face dataset)
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Results: Effect of Cross-Validation

(y) (z)

(Candide face dataset)
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Results: Missing Data

(Candide face dataset)
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Contributions

Torresani et al (2000, 2001, 2003)

linear subspace shape model

max-likelihood algorithm
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Contributions

Torresani et al (2000, 2001, 2003)

linear subspace shape model

max-likelihood algorithm

Bartoli et al (2008)

efficient solution
no costly refinement (of anything)
independence approximation

cross-validation as a termination criterion
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Head-to-Head

Torresani Bartoli

• probabilistic model + max likeli-
hood solution

• approximate solution with regular-
ization; each point independent
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Head-to-Head

Torresani Bartoli

• probabilistic model + max likeli-
hood solution

• approximate solution with regular-
ization; each point independent

• must choose σnoise carefully • must choose smoothness-term
weights λ, κ carefully

• refine camera transformations
each iter

• solve for camera transformations
once (bad)

• predefine K, let EM make some
weights small

• cross-validate after adding each
basis shape
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