Nonrigid Structure from Motion

Evan Herbst

Outline

- Problem formulations
- Torresani et al
- Bartoli et al
- Comparison

Last Week

Problem Space

- Single viewpoint image (Monocular)
- Recover 3D Shape

Input image

Types of Shape Model

- Physics-based models
 - × cons: requires material properties, models smoothly deforming objects
 - × pros: computationally efficient, infers shape in un-textured regions
- Global models learned from data
 - cons: requires lots of data, object-shape-specific, linear or quadratic models
- Local models learned from data
 - x pros: same model for all parts of a homogeneous surface, more constrained than global models

(compiled from multiple original slides)

Local Deformations Approach

given to find

space of all shapes

shape at each timestep

- an image at each timestep
- 2-d point tracks for these images
 - 3D object known
 2d to 3D correspondences for a reference view

Reference view

Making the Problem Harder

given

- space of all shapes
- an image at each timestep
- 2-d point tracks for these images

to find

- shape at each timestep
- space of all shapes

Outline

- Problem formulations
- Torresani et al
 - Algorithm
 - Results
 - Summary
- Bartoli et al
- Comparison

A Global Shape Model

Bregler/Hertzmann/Biermann, CVPR00: linear subspace model

"shape": set of n points on an object

$$\overrightarrow{s}_i(t) \in \mathbb{R}^3$$

A Global Shape Model

Bregler/Hertzmann/Biermann, CVPR00: linear subspace model

"shape": set of n points on an object

$$\vec{s}_i(t) \in \mathbb{R}^3$$

ullet allowable shapes lie in a K-dimensional subspace of \mathbb{R}^{3n}

mean shape
$$\bar{s}_i = \frac{1}{m} \sum_{t=1}^m \vec{s}_i(t)$$

$$\vec{s}_i(t) = \bar{s}_i + V_i \vec{z}(t)$$

(can concatenate vectors)

A World Model

Torresani/Hertzmann/Bregler, PAMI08

linear subspace shape model

$$\vec{s}_i(t) = \bar{s}_i + V_i \vec{z}(t)$$

A World Model

Torresani/Hertzmann/Bregler, PAMI08

linear subspace shape model

$$\vec{s}_i(t) = \bar{s}_i + V_i \vec{z}(t)$$

weak perspective projection model

$$\overrightarrow{p}_i(t) = c(t)R_t(\overrightarrow{s}_i(t) + \overrightarrow{t}_t) + \overrightarrow{n}(t)$$

 $\overrightarrow{n}(t)$ zero-mean Gaussian noise with stdev σ_{noise}

Torresani/Hertzmann/Bregler, PAMI08

$$\overrightarrow{z}(t) \sim \mathcal{N}(\overrightarrow{0}, I)$$

Torresani/Hertzmann/Bregler, PAMI08

$$\overrightarrow{z}(t) \sim \mathcal{N}(\overrightarrow{0}, I)$$

similar deformations at different times

Torresani/Hertzmann/Bregler, PAMI08

$$\overrightarrow{z}(t) \sim \mathcal{N}(\overrightarrow{0}, I)$$

- similar deformations at different times
- force small deformations? no

Torresani/Hertzmann/Bregler, PAMI08

$$\overrightarrow{z}(t) \sim \mathcal{N}(\overrightarrow{0}, I)$$

- similar deformations at different times
- force small deformations? no
- 2-d projection $\overrightarrow{p}_i(t)$ is distributed normally (weak perspective)

Torresani/Hertzmann/Bregler, PAMI08

probabilistic model ⇒ can use max-likelihood principle

$$L(\text{point } i) = \prod_{t} p(\overrightarrow{p}_{i}(t)|c(t), R_{t}, \overrightarrow{t}_{t}, \overline{s}_{i}, V_{i}, \sigma_{noise})$$

Torresani/Hertzmann/Bregler, PAMI08

probabilistic model => can use max-likelihood principle

$$L(\text{point } i) = \prod_{t} p(\overrightarrow{p}_{i} \ (t) | \underbrace{c(t), R_{t}, \overrightarrow{t}_{t}, \overline{s}_{i}, V_{i}, \sigma_{noise}}_{\text{M step updates these}})$$

- do EM to allow for missing point tracks
 - E step: update posterior over basis weights \overrightarrow{z} (t) $\forall t$
 - M step: maximize data likelihood $L(\cdot)$ by optimizing mean shape, basis shapes, camera parameters, and noise

EM needs initial estimates for everything

pick a K (# bases) that's not too small

- pick a K (# bases) that's not too small
- use affine rigid SFM (Tomasi-Kanade) to get mean shape and camera transformations

- pick a K (# bases) that's not too small
- use affine rigid SFM (Tomasi-Kanade) to get mean shape and camera transformations
- σ_{noise} should be large

- pick a K (# bases) that's not too small
- use affine rigid SFM (Tomasi-Kanade) to get mean shape and camera transformations
- σ_{noise} should be large
- iteratively add basis shapes (and basis weights) so as to minimize reprojection error

Outline

- Problem formulations
- Torresani et al
 - Algorithm
 - Results
 - Summary
- Bartoli et al
- Comparison

Results: Dependence on K

(Torresani face dataset)

Results: Missing Data

(Torresani face dataset)

Outline

- Problem formulations
- Torresani et al
 - Algorithm
 - Results
 - Summary
- Bartoli et al
- Comparison

Things to Remember

- simple extension of linear subspace shape model
- max likelihood optimization minimizes reprojection error
- robust against overfitting

Outline

- Problem formulations
- Torresani et al
- Bartoli et al
 - Algorithm
 - Results
 - Summary
- Comparison

Reminder: Linear Subspace Model

"shape": set of n points on an object

$$\overrightarrow{s}_i(t) \in \mathbb{R}^3$$

Reminder: Linear Subspace Model

"shape": set of n points on an object

$$\overrightarrow{s}_i(t) \in \mathbb{R}^3$$

 $m \blacksquare$ allowable shapes lie in a K-dimensional subspace of \mathbb{R}^{3n}

$$\overrightarrow{s}_{i}(t) = \overline{s}_{i} + V_{i} \overrightarrow{z}(t)$$
 mean shape $\overline{s}_{i} = \frac{1}{m} \sum_{t=1}^{m} \overrightarrow{s}_{i}(t)$

Another World Model

Bartoli et al, CVPR08

linear subspace shape model

$$\vec{s}_i(t) = D_t \left(\vec{s}_i + V_i \vec{z}(t) \right)$$

Another World Model

Bartoli et al, CVPR08

linear subspace shape model

$$\vec{s}_i(t) = D_t \left(\vec{s}_i + V_i \vec{z}(t) \right)$$

full perspective projection model

$$\overrightarrow{p}_i \; (t) = P_t(\overrightarrow{s}_i \; (t) + \overrightarrow{t}_t)$$
 (up to a scalar)
$$P_t = K_t R_t T_t$$

Another World Model

Bartoli et al, CVPR08

linear subspace shape model

$$\vec{s}_i(t) = D_t \left(\vec{s}_i + V_i \vec{z}(t) \right)$$

full perspective projection model

$$\overrightarrow{p}_i \; (t) = P_t(\overrightarrow{s}_i \; (t) + \overrightarrow{t}_t)$$
 (up to a scalar)
$$P_t = K_t R_t T_t$$

makes problem much harder

Bartoli et al, CVPR08

- 1. rigid SFM (with standard techniques) assuming projection matrices known
 - produces mean shape and camera-world transformations

Bartoli et al, CVPR08

- 1. rigid SFM (with standard techniques) assuming projection matrices known
 - produces mean shape and camera-world transformations
 - bad (explanation in a bit)

Bartoli et al, CVPR08

- 1. rigid SFM (with standard techniques) assuming projection matrices known
 - produces mean shape and camera-world transformations
 - bad (explanation in a bit)
- 2. iteratively
 - (a) optimize one additional basis shape to minimize reprojection error

Algorithm

Bartoli et al, CVPR08

- 1. rigid SFM (with standard techniques) assuming projection matrices known
 - produces mean shape and camera-world transformations
 - bad (explanation in a bit)
- 2. iteratively
 - (a) optimize one additional basis shape to minimize reprojection error
 - (b) cross-validate (novel for SFM)

Algorithm

Bartoli et al, CVPR08

- 1. rigid SFM (with standard techniques) assuming projection matrices known
 - produces mean shape and camera-world transformations
 - bad
- 2. iteratively
 - (a) optimize one additional basis shape to minimize reprojection error
 - (b) cross-validate

- **●** Torresani: $\overrightarrow{p}_i(t) = c(t)R_t(\overrightarrow{s}_i(t) + \overrightarrow{t}_t) + \overrightarrow{n}(t)$
- Bartoli:

$$\overrightarrow{s}_i\left(t\right) = D_t\left(\overline{s}_i + V_i \ \overrightarrow{z}\left(t\right)\right)$$

$$\overrightarrow{p}_i\left(t\right) = P_t(\overrightarrow{s}_i\left(t\right) + \overrightarrow{t}_t\right)$$
 (up to a scalar)

- **■** Torresani: $\overrightarrow{p}_i(t) = c(t)R_t(\overrightarrow{s}_i(t) + \overrightarrow{t}_t) + \overrightarrow{n}(t)$
- Bartoli:

$$\vec{s}_i(t) = D_t \left(\vec{s}_i + V_i \vec{z}(t) \right)$$

$$\vec{p}_i(t) = P_t(\vec{s}_i(t) + \vec{t}_t) \quad \text{(up to a scalar)}$$

• overparameterizes but ignores P_t

- **■** Torresani: $\overrightarrow{p}_i(t) = c(t)R_t(\overrightarrow{s}_i(t) + \overrightarrow{t}_t) + \overrightarrow{n}(t)$
- Bartoli:

$$\vec{s}_i(t) = D_t \left(\vec{s}_i + V_i \vec{z}(t) \right)$$

$$\vec{p}_i(t) = P_t(\vec{s}_i(t) + \vec{t}_t) \quad \text{(up to a scalar)}$$

- ullet overparameterizes but ignores P_t
- set D_t under rigidity assumption; never refine

- **■** Torresani: $\overrightarrow{p}_i(t) = c(t)R_t(\overrightarrow{s}_i(t) + \overrightarrow{t}_t) + \overrightarrow{n}(t)$
- Bartoli:

$$\vec{s}_i(t) = D_t \left(\vec{s}_i + V_i \vec{z}(t) \right)$$

$$\vec{p}_i(t) = P_t(\vec{s}_i(t) + \vec{t}_t) \quad \text{(up to a scalar)}$$

- overparameterizes but ignores P_t
- set D_t under rigidity assumption; never refine
 - scene reconstruction can end up completely wrong

Algorithm

Bartoli et al, CVPR08

- rigid SFM (with standard techniques) assuming projection matrices known
 - produces mean shape and camera-world transformations
 - bad
- 2. iteratively
 - (a) optimize one additional basis shape to minimize reprojection error
 - (b) cross-validate

Objective Function

reprojection error plus temporal and spatial smoothness terms

$$O(\{V_i\}, \{\stackrel{\rightharpoonup}{z}(t)\}) = \sum_{\text{point } i, \text{image } t} \left(v_{i,t} \left| \stackrel{\rightharpoonup}{p}_i(t) - \stackrel{\rightharpoonup}{p}_i^{reproj}(t) \right|^2 \right) + \lambda O_{temporal} + \kappa O_{spatial}$$

($v_{i,t}$ visibility flags)

Objective Function

reprojection error plus temporal and spatial smoothness terms

$$O(\{V_i\}, \{\stackrel{\rightharpoonup}{z}(t)\}) = \sum_{\text{point } i, \text{image } t} \left(v_{i,t} \left| \stackrel{\rightharpoonup}{p}_i(t) - \stackrel{\rightharpoonup}{p}_i^{reproj}(t) \right|^2 \right) + \lambda O_{temporal} + \kappa O_{spatial}$$

($v_{i,t}$ visibility flags)

- approximate so each point i presents an independent subproblem
 - still nonlinear
 - very efficient

Temporal Smoothness Term

Bartoli et al, CVPR08

 $O(\text{basis shapes, basis weights}) = \text{reprojection error} + O_{temporal} + O_{spatial}$

temporal smoothness term a slight generalization of

$$O_{temporal} = \sum_{t=1}^{m} \left| \overrightarrow{z}(t) - \overrightarrow{z}(t-1) \right|^{2},$$

Spatial Smoothness Term

Bartoli et al, CVPR08

 $O(\text{basis shapes, basis weights}) = \text{reprojection error} + O_{temporal} + O_{spatial}$

$$O_{spatial} = \sum_{\text{points } i,j, \text{ basis shapes } k} \psi(i,j) \left| \overrightarrow{v}_{ik} - \overrightarrow{v}_{jk} \right|^2,$$

 $\psi(i,j)$ a decreasing function of distance between points i,j on the mean shape,

 \overrightarrow{v}_{ik} the location of point i in shape mode k

Spatial Smoothness Term

Bartoli et al, CVPR08

 $O(\text{basis shapes, basis weights}) = \text{reprojection error} + O_{temporal} + O_{spatial}$

$$O_{spatial} = \sum_{\text{points } i,j, \text{ basis shapes } k} \psi(i,j) \left| \overrightarrow{v}_{ik} - \overrightarrow{v}_{jk} \right|^2,$$

 $\psi(i,j)$ a decreasing function of distance between points i,j on the mean shape,

 \overrightarrow{v}_{ik} the location of point i in shape mode k

$$\overrightarrow{s}_{i}(t) = \overline{s}_{i} + \overrightarrow{z}(t) V_{i}$$

$$= \overline{s}_{i} + \sum_{\text{basis } k} (a_{kt} b_{it} \overrightarrow{C}_{it})$$

$$\overrightarrow{s}_{i}(t) = \overline{s}_{i} + \overrightarrow{z}(t) V_{i}$$

$$= \overline{s}_{i} + \sum_{\text{basis } k} (a_{kt} b_{it} \overrightarrow{C}_{it})$$

$$\overrightarrow{s}_{i}(t) = \overline{s}_{i} + \overrightarrow{z}(t) V_{i}$$

$$= \overline{s}_{i} + \sum_{\text{basis } k} (a_{kt} b_{it} \overrightarrow{C}_{it})$$

$$\overrightarrow{s}_{i}(t) = \overline{s}_{i} + \overrightarrow{z}(t) V_{i}$$

$$= \overline{s}_{i} + \sum_{\text{basis } k} (a_{kt} b_{it} \overrightarrow{C}_{it})$$

actual basis representation:

$$\overrightarrow{s}_{i}(t) = \overline{s}_{i} + \overrightarrow{z}(t) V_{i}$$

$$= \overline{s}_{i} + \sum_{\text{basis } k} (a_{kt} b_{it} \overrightarrow{C}_{it})$$

initialize directions, then magnitudes

ullet direction vectors $\{\overset{\rightharpoonup}{C}_{it}\}$

ullet direction vectors $\{\overset{\rightharpoonup}{C}_{it}\}$

image t, point i

ullet direction vectors $\{\overset{\rightharpoonup}{C}_{it}\}$

image t, point i

ullet direction vectors $\{\overset{\rightharpoonup}{C}_{it}\}$

image t, point i

ullet direction vectors $\{\overrightarrow{C}_{it}\}$

ullet direction vectors $\{\overset{\rightharpoonup}{C}_{ik}\}$

ullet magnitudes $\{b_{ik}\}$, basis weights $\{a_{kt}\}$

lacksquare direction vectors $\{\overset{
ightharpoondown}{C}_{ik}\}$

- ullet magnitudes $\{b_{ik}\}$, basis weights $\{a_{kt}\}$
 - ullet each point in each image constrains one a and one b

a function of $a_{kt}b_{ik}$

lacksquare direction vectors $\{\overset{
ightharpoondown}{C}_{ik}\}$

- ullet magnitudes $\{b_{ik}\}$, basis weights $\{a_{kt}\}$
 - each point in each image constrains one a and one b

• need one more constraint for each kth basis; $\mid \overrightarrow{a}_k \mid = 1$ will do

Outline

- Problem formulations
- Torresani et al
- Bartoli et al
 - Algorithm
 - Results
 - Summary
- Comparison

Results: Dependence on K

(Candide face dataset)

Results: Effect of Cross-Validation

(Candide face dataset)

Results: Missing Data

(Candide face dataset)

Outline

- Problem formulations
- Torresani et al
- Bartoli et al
 - Algorithm
 - Results
 - Summary
- Comparison

Contributions

Torresani et al (2000, 2001, 2003)

- linear subspace shape model
- max-likelihood algorithm

Contributions

Torresani et al (2000, 2001, 2003)

- linear subspace shape model
- max-likelihood algorithm

Bartoli et al (2008)

- efficient solution
 - no costly refinement (of anything)
 - independence approximation
- cross-validation as a termination criterion

Outline

- Problem formulations
- Torresani et al
- Bartoli et al
- Comparison

Torresani

Bartoli

 probabilistic model + max likelihood solution approximate solution with regularization; each point independent

Torresani

- probabilistic model + max likelihood solution
- must choose σ_{noise} carefully

Bartoli

- approximate solution with regularization; each point independent
- must choose smoothness-term weights λ, κ carefully

Torresani

- probabilistic model + max likelihood solution
- must choose σ_{noise} carefully
- refine camera transformations
 each iter

Bartoli

- approximate solution with regularization; each point independent
- must choose smoothness-term weights λ, κ carefully
- solve for camera transformations once (bad)

Torresani

- probabilistic model + max likelihood solution
- must choose σ_{noise} carefully
- refine camera transformations
 each iter
- ullet predefine K, let EM make some weights small

Bartoli

- approximate solution with regularization; each point independent
- must choose smoothness-term weights λ, κ carefully
- solve for camera transformations once (bad)
- cross-validate after adding each basis shape