Nonrigid Structure from Motion

Evan Herbst

Outline

- Problem formulations
- Torresani et al
- Bartoli et al
- Comparison

Last Week

Problem Space

- Single viewpoint image (Monocular)
- Recover 3D Shape

Shape hypothesis

Input image

Types of Shape Model

- Physics-based models
cons: requires material properties, models smoothly deforming objects
pros: computationally efficient, infers shape in un-textured regions
- Globalmodels learned from data
cons: requires lots of data, object-shape-specific, linear or quadratic models
- Local models learned from data
* pros: same model for all parts of a homogeneous surface, more constrained than global models
(compiled from multiple original slides)

Local Deformations Approach

given

- space of all shapes
- an image at each timestep
- 2-d point tracks for these images
to find
- shape at each timestep
-3D object known
$2 d$ to 3 D correspondences for a reference view

Reference view

Making the Problem Harder

given

- space of allshapes
- an image at each timestep
- 2-d point tracks for these images
to find
- shape at each timestep
- space of all shapes

Outline

- Problem formulations
- Torresani et al
- Algorithm
- Results
- Summary
- Bartoli et al
- Comparison

A Global Shape Model

Bregler/Hertzmann/Biermann, CVPR00: linear subspace model

- "shape": set of n points on an object

$$
\vec{s}_{i}(t) \in \mathbb{R}^{3}
$$

A Global Shape Model

Bregler/Hertzmann/Biermann, CVPR00: linear subspace model

- "shape": set of n points on an object

$$
\stackrel{\rightharpoonup}{s}_{i}(t) \in \mathbb{R}^{3}
$$

- allowable shapes lie in a K-dimensional subspace of $\mathbb{R}^{3 n}$

$$
\begin{aligned}
\text { mean shape } \bar{s}_{i} & =\frac{1}{m} \sum_{t=1}^{m} \stackrel{\rightharpoonup}{s}_{i}(t) \\
\vec{s}_{i}(t) & =\bar{s}_{i}+V_{i} \vec{z}(t)
\end{aligned}
$$

(can concatenate vectors)

A World Model

Torresani/Hertzmann/Bregler, PAMI08

- linear subspace shape model

$$
\vec{s}_{i}(t)=\bar{s}_{i}+V_{i} \vec{z}(t)
$$

A World Model

Torresani/Hertzmann/Bregler, PAMI08

- linear subspace shape model

$$
\vec{s}_{i}(t)=\bar{s}_{i}+V_{i} \vec{z}(t)
$$

- weak perspective projection model

$$
\vec{p}_{i}(t)=c(t) R_{t}\left(\stackrel{\rightharpoonup}{s}_{i}(t)+\vec{t}_{t}\right)+\vec{n}(t)
$$

$\vec{n}(t)$ zero-mean Gaussian noise with stdev $\sigma_{\text {noise }}$

Smoothness Prior

Torresani/Hertzmann/Bregler, PAMI08

$$
\vec{z}(t) \sim \mathcal{N}(\overrightarrow{0}, I)
$$

Smoothness Prior

Torresani/Hertzmann/Bregler, PAMI08

$$
\vec{z}(t) \sim \mathcal{N}(\overrightarrow{0}, I)
$$

- similar deformations at different times

Smoothness Prior

Torresani/Hertzmann/Bregler, PAMI08

$$
\vec{z}(t) \sim \mathcal{N}(\overrightarrow{0}, I)
$$

- similar deformations at different times
- force small deformations? no

Smoothness Prior

Torresani/Hertzmann/Bregler, PAMI08

$$
\vec{z}(t) \sim \mathcal{N}(\overrightarrow{0}, I)
$$

- similar deformations at different times
- force small deformations? no
- 2-d projection $p_{i}(t)$ is distributed normally (weak perspective)

Algorithm

Torresani/Hertzmann/Bregler, PAMI08

- probabilistic model \Longrightarrow can use max-likelihood principle

$$
L(\text { point } i)=\prod_{t} p\left(\vec{p}_{i}(t) \mid c(t), R_{t}, \vec{t}_{t}, \bar{s}_{i}, V_{i}, \sigma_{\text {noise }}\right)
$$

Algorithm

Torresani/Hertzmann/Bregler, PAMI08

- probabilistic model \Longrightarrow can use max-likelihood principle

$$
L(\text { point } i)=\prod_{t} p(\vec{p}_{i}(t) \mid \underbrace{\left.c(t), R_{t}, \vec{t}_{t}, \bar{s}_{i}, V_{i}, \sigma_{\text {noise }}\right)}_{\text {M step updates these }}
$$

- do EM to allow for missing point tracks
- E step: update posterior over basis weights $\vec{z}(t) \forall t$
- M step: maximize data likelihood $L(\cdot)$ by optimizing mean shape, basis shapes, camera parameters, and noise

EM Initialization

EM needs initial estimates for everything

EM Initialization

EM needs initial estimates for everything

- pick a K (\# bases) that's not too small

EM Initialization

EM needs initial estimates for everything

- pick a K (\# bases) that's not too small
- use affine rigid SFM (Tomasi-Kanade) to get mean shape and camera transformations

EM Initialization

EM needs initial estimates for everything

- pick a K (\# bases) that's not too small
- use affine rigid SFM (Tomasi-Kanade) to get mean shape and camera transformations
- $\sigma_{\text {noise }}$ should be large

EM Initialization

EM needs initial estimates for everything

- pick a K (\# bases) that's not too small
- use affine rigid SFM (Tomasi-Kanade) to get mean shape and camera transformations
- $\sigma_{\text {noise }}$ should be large
- iteratively add basis shapes (and basis weights) so as to minimize reprojection error

Outline

- Problem formulations
- Torresani et al
- Algorithm
- Results
- Summary
- Bartoli et al
- Comparison

Results: Dependence on K

(Torresani face dataset)

Results: Missing Data

(Torresani face dataset)

Outline

- Problem formulations
- Torresani et al
- Algorithm
- Results
- Summary
- Bartoli et al
- Comparison

Things to Remember

- simple extension of linear subspace shape model
- max likelihood optimization minimizes reprojection error
- robust against overfitting

Outline

- Problem formulations
- Torresani et al
- Bartoli et al
- Algorithm
- Results
- Summary
- Comparison

Reminder: Linear Subspace Model

- "shape": set of n points on an object

$$
\vec{s}_{i}(t) \in \mathbb{R}^{3}
$$

Reminder: Linear Subspace Model

- "shape": set of n points on an object

$$
\vec{s}_{i}(t) \in \mathbb{R}^{3}
$$

- allowable shapes lie in a K-dimensional subspace of $\mathbb{R}^{3 n}$

$$
\begin{aligned}
\vec{s}_{i}(t) & =\bar{s}_{i}+V_{i} \vec{z}^{\prime}(t) \\
\text { mean shape } \bar{s}_{i} & =\frac{1}{m} \sum_{t=1}^{m} \vec{s}_{i}(t)
\end{aligned}
$$

Another World Model

Bartoli et al, CVPR08

- linear subspace shape model

$$
\vec{s}_{i}(t)=D_{t}\left(\bar{s}_{i}+V_{i} \vec{z}(t)\right)
$$

Another World Model

Bartoli et al, CVPRR08

- linear subspace shape model

$$
\vec{s}_{i}(t)=D_{t}\left(\bar{s}_{i}+V_{i} \vec{z}(t)\right)
$$

- full perspective projection model

$$
\begin{gathered}
\stackrel{\rightharpoonup}{p}_{i}(t)=P_{t}\left(\stackrel{\rightharpoonup}{s}_{i}(t)+\vec{t}_{t}\right) \quad \text { (up to a scalar) } \\
P_{t}=K_{t} R_{t} T_{t}
\end{gathered}
$$

Another World Model

Bartoli et al, CVPR08

- linear subspace shape model

$$
\vec{s}_{i}(t)=D_{t}\left(\bar{s}_{i}+V_{i} \vec{z}(t)\right)
$$

- full perspective projection model

$$
\begin{gathered}
\stackrel{\rightharpoonup}{p}_{i}(t)=P_{t}\left(\stackrel{\rightharpoonup}{s}_{i}(t)+\stackrel{\rightharpoonup}{t}_{t}\right) \quad \text { (up to a scalar) } \\
P_{t}=K_{t} R_{t} T_{t}
\end{gathered}
$$

- makes problem much harder

Algorithm

Bartoli et al, CVPR08

1. rigid SFM (with standard techniques) assuming projection matrices known

- produces mean shape and camera-world transformations

Algorithm

Bartoli et al, CVPR08

1. rigid SFM (with standard techniques) assuming projection matrices known

- produces mean shape and camera-world transformations
- bad (explanation in a bit)

Algorithm

Bartoli et al, CVPR08

1. rigid SFM (with standard techniques) assuming projection matrices known

- produces mean shape and camera-world transformations
- bad (explanation in a bit)

2. iteratively
(a) optimize one additional basis shape to minimize reprojection error

Algorithm

Bartoli et al, CVPR08

1. rigid SFM (with standard techniques) assuming projection matrices known

- produces mean shape and camera-world transformations
- bad (explanation in a bit)

2. iteratively
(a) optimize one additional basis shape to minimize reprojection error
(b) cross-validate (novel for SFM)

Algorithm

Bartoli et al, CVPR08

1. rigid SFM (with standard techniques) assuming projection matrices known

- produces mean shape and camera-world transformations
- bad

2. iteratively
(a) optimize one additional basis shape to minimize reprojection error
(b) cross-validate

Decomposition of Camera Matrix

- Torresani: $\vec{p}_{i}(t)=c(t) R_{t}\left(\vec{s}_{i}(t)+\vec{t}_{t}\right)+\vec{n}(t)$
- Bartoli:

$$
\begin{gathered}
\vec{s}_{i}(t)=D_{t}\left(\bar{s}_{i}+V_{i} \vec{z}(t)\right) \\
\vec{p}_{i}(t)=P_{t}\left(\vec{s}_{i}(t)+\vec{t}_{t}\right) \quad \text { (up to a scalar) }
\end{gathered}
$$

Decomposition of Camera Matrix

- Torresani: $\vec{p}_{i}(t)=c(t) R_{t}\left(\vec{s}_{i}(t)+\vec{t}_{t}\right)+\vec{n}(t)$
- Bartoli:

$$
\begin{gathered}
\vec{s}_{i}(t)=D_{t}\left(\bar{s}_{i}+V_{i} \vec{z}(t)\right) \\
\vec{p}_{i}(t)=P_{t}\left(\vec{s}_{i}(t)+\vec{t}_{t}\right) \quad \text { (up to a scalar) }
\end{gathered}
$$

- overparameterizes but ignores P_{t}

Decomposition of Camera Matrix

- Torresani: $\vec{p}_{i}(t)=c(t) R_{t}\left(\vec{s}_{i}(t)+\vec{t}_{t}\right)+\vec{n}(t)$
- Bartoli:

$$
\begin{gathered}
\vec{s}_{i}(t)=D_{t}\left(\bar{s}_{i}+V_{i} \vec{z}(t)\right) \\
\vec{p}_{i}(t)=P_{t}\left(\vec{s}_{i}(t)+\vec{t}_{t}\right) \quad \text { (up to a scalar) }
\end{gathered}
$$

- overparameterizes but ignores P_{t}
- set D_{t} under rigidity assumption; never refine

Decomposition of Camera Matrix

- Torresani: $\vec{p}_{i}(t)=c(t) R_{t}\left(\vec{s}_{i}(t)+\vec{t}_{t}\right)+\vec{n}(t)$
- Bartoli:

$$
\begin{gathered}
\vec{s}_{i}(t)=D_{t}\left(\bar{s}_{i}+V_{i} \vec{z}(t)\right) \\
\vec{p}_{i}(t)=P_{t}\left(\vec{s}_{i}(t)+\vec{t}_{t}\right) \quad \text { (up to a scalar) }
\end{gathered}
$$

- overparameterizes but ignores P_{t}
- set D_{t} under rigidity assumption; never refine - scene reconstruction can end up completely wrong

Algorithm

Bartoli et al, CVPR08

1. rigid SFM (with standard techniques) assuming projection matrices known

- produces mean shape and camera-world transformations
- bad

2. iteratively
(a) optimize one additional basis shape to minimize reprojection error
(b) cross-validate

Objective Function

- reprojection error plus temporal and spatial smoothness terms
$O\left(\left\{V_{i}\right\},\{\vec{z}(t)\}\right)=\sum_{\text {ponini } i, \text { mase } t}\left(v_{i, t}\left|\vec{p}_{i}(t)-\vec{p}_{i}^{\text {reproj }}(t)\right|^{2}\right)+\lambda O_{\text {temporal }}+\kappa O_{\text {spatial }}$
($v_{i, t}$ visibility flags)

Objective Function

- reprojection error plus temporal and spatial smoothness terms
$O\left(\left\{V_{i}\right\},\{\vec{z}(t)\}\right)=\sum_{\text {pointi } i \text { imaset }}\left(v_{i, t}\left|\vec{p}_{i}(t)-\vec{p}_{i}^{\text {reproj }}(t)\right|^{2}\right)+\lambda O_{\text {temporal }}+\kappa O_{\text {spatial }}$
($v_{i, t}$ visibility flags)
- approximate so each point i presents an independent subproblem
- still nonlinear
- very efficient

Temporal Smoothness Term

Bartoli et al, CVPR08

O (basis shapes, basis weights) $=$ reprojection error $+O_{\text {temporal }}+O_{\text {spatial }}$
temporal smoothness term a slight generalization of

$$
O_{\text {temporal }}=\sum_{t=1}^{m}|\vec{z}(t)-\vec{z}(t-1)|^{2}
$$

Spatial Smoothness Term

Bartoli et al, CVPR08

O (basis shapes, basis weights $)=$ reprojection error $+O_{\text {temporal }}+O_{\text {spatial }}$

$$
O_{\text {spatial }}=\sum_{\text {points } i, j \text {, basis shapes } k} \psi(i, j)\left|\vec{v}_{i k}-\vec{v}_{j k}\right|^{2}
$$

$\psi(i, j)$ a decreasing function of distance between points i, j on the mean shape,
$\vec{v}_{i k}$ the location of point i in shape mode k

Spatial Smoothness Term

Bartoli et al, CVPR08

O (basis shapes, basis weights $)=$ reprojection error $+O_{\text {temporal }}+O_{\text {spatial }}$

$$
O_{\text {spatial }}=\sum_{\text {points } i, j, \text { basis shapes } k} \psi(i, j)\left|\vec{v}_{i k}-\vec{v}_{j k}\right|^{2}
$$

$\psi(i, j)$ a decreasing function of distance between points i, j on the mean shape,
$\vec{v}_{i k}$ the location of point i in shape mode k

Initialization

actual basis representation:

$$
\begin{aligned}
\stackrel{\rightharpoonup}{s}_{i}(t) & =\bar{s}_{i}+\quad \stackrel{\rightharpoonup}{z}(t) \\
& =V_{i} \\
& =\bar{s}_{i}+\sum_{\text {basis } k}\left(\begin{array}{cl}
a_{k t} & \left.b_{i t} \vec{C}_{i t}\right)
\end{array}\right.
\end{aligned}
$$

Initialization

actual basis representation:

$$
\begin{aligned}
& \vec{s}_{i}(t)=\bar{s}_{i}+ \\
& =\bar{s}_{i}+\sum_{\text {basis } k}\left(\begin{array}{ll}
a_{k t} & \left.b_{i t} \vec{C}_{i t}\right)
\end{array}\right.
\end{aligned}
$$

(d)

Initialization

actual basis representation:

$$
\begin{aligned}
& \vec{s}_{i}(t)=\bar{s}_{i}+ \\
& \vec{z}(t) \quad V_{i} \\
& =\bar{s}_{i}+\sum_{\text {basis } k}\left(\begin{array}{ll}
a_{k t} & \left.b_{i t} \vec{C}_{i t}\right)
\end{array}\right.
\end{aligned}
$$

Initialization

actual basis representation:

$$
\begin{aligned}
\vec{s}_{i}(t) & =\bar{s}_{i}+\quad \vec{z}(t) \\
& =\bar{s}_{i}+\sum_{\text {basis } k}\left(\begin{array}{cl}
a_{k t} & \left.b_{i t} \vec{C}_{i t}\right)
\end{array}\right.
\end{aligned}
$$

Initialization

actual basis representation:

$$
\begin{aligned}
\vec{s}_{i}(t) & \left.=\bar{s}_{i}+\quad \begin{array}{cc}
\vec{z}(t) & V_{i} \\
& =\bar{s}_{i}+\sum_{\text {basis } k}\left(\begin{array}{cl}
a_{k t} & \left.b_{i t} \vec{C}_{i t}\right)
\end{array}\right.
\end{array}\right)
\end{aligned}
$$

initialize directions, then magnitudes

Initialization

- direction vectors $\left\{\vec{C}_{i t}\right\}$

| I_{1} | I_{3} | I_{5} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Initialization

- direction vectors $\left\{\vec{C}_{i t}\right\}$

image t, point i

Initialization

- direction vectors $\left\{\vec{C}_{i t}\right\}$

image t, point i

Initialization

- direction vectors $\left\{\vec{C}_{i t}\right\}$

image t, point i

Initialization

- direction vectors $\left\{\vec{C}_{i t}\right\}$

Initialization

- direction vectors $\left\{\vec{C}_{i k}\right\}$

- magnitudes $\left\{b_{i k}\right\}$, basis weights $\left\{a_{k t}\right\}$

Initialization

- direction vectors $\left\{\vec{C}_{i k}\right\}$

- magnitudes $\left\{b_{i k}\right\}$, basis weights $\left\{a_{k t}\right\}$
- each point in each image constrains one a and one b

a function of $a_{k t} b_{i k}$

Initialization

- direction vectors $\left\{\vec{C}_{i k}\right\}$

- magnitudes $\left\{b_{i k}\right\}$, basis weights $\left\{a_{k t}\right\}$
- each point in each image constrains one a and one b

a function of $a_{k t} b_{i k}$
- need one more constraint for each k th basis; $\left|\vec{a}_{k}\right|=1$ will do

Outline

- Problem formulations
- Torresani et al
- Bartoli et al
- Algorithm
- Results
- Summary
- Comparison

Results: Dependence on K

(Candide face dataset)

Results: Effect of Cross-Validation

(y)

(z)

(Candide face dataset)

Results: Missing Data

(Candide face dataset)

Outline

- Problem formulations
- Torresani et al
- Bartoli et al
- Algorithm
- Results
- Summary
- Comparison

Contributions

Torresani et al (2000, 2001, 2003)

- linear subspace shape model
- max-likelihood algorithm

Contributions

Torresani et al (2000, 2001, 2003)

- linear subspace shape model
- max-likelihood algorithm

Bartoli et al (2008)

- efficient solution
- no costly refinement (of anything)
- independence approximation
- cross-validation as a termination criterion

Outline

- Problem formulations
- Torresani et al
- Bartoli et al
- Comparison

Head-to-Head

Torresani

Bartoli

- probabilistic model + max likelihood solution
- approximate solution with regularization; each point independent

Head-to-Head

Torresani

Bartoli

- probabilistic model + max likelihood solution
- must choose $\sigma_{\text {noise }}$ carefully
- approximate solution with regularization; each point independent
- must choose smoothness-term weights λ, κ carefully

Head-to-Head

Torresani

- probabilistic model + max likelihood solution
- must choose $\sigma_{\text {noise }}$ carefully
- refine camera transformations each iter

Bartoli

- approximate solution with regularization; each point independent
- must choose smoothness-term weights λ, κ carefully
- solve for camera transformations once (bad)

Head-to-Head

Torresani

- probabilistic model + max likelihood solution
- must choose $\sigma_{\text {noise }}$ carefully
- refine camera transformations each iter
- predefine K, let EM make some weights small

Bartoli

- approximate solution with regularization; each point independent
- must choose smoothness-term weights λ, κ carefully
- solve for camera transformations once (bad)
- cross-validate after adding each basis shape

