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L ast Week

Problem Space

e Recover 3D Shape

Shape hypothesis

» Single viewpoint image (Monocular)

Input image
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Types of Shape M odel

Physics-based models
cons: requires material properties,
models smoothly deforming objects
pros: computationally efficient,
infers shape in un-textured regions
Global models learned from data

cons: requires lots of data,
object-shape-specific,
linear or quadratic models
Local models learned from data

pros: same model for all parts of a homogeneous surface,
more constrained than global models

(compiled from multiple original slides)
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| ocal Defor mations Approach

- N

given to find
® space of all shapes ® shape at each timestep
$» animage at each timestep

® 2-d point tracks for these images

» 3D object known
ad to 3D correspondences for a reference view

Reference view
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Making the Problem Harder
- -

given to find
® space-ofallshapes ® shape at each timestep
® animage at each timestep ® space of all shapes

® 2-d point tracks for these images
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A Global Shape M odé€l
B -

Bregler/Hertzmann/Biermann, CVPROO: linear subspace model

#® ‘“shape”. set of n points on an object

—\



A Global Shape M odel
B -

Bregler/Hertzmann/Biermann, CVPROO: linear subspace model

#® ‘“shape”. set of n points on an object

—\

S (t) S R3
# allowable shapes lie in a K-dimensional subspace of R>"
nape 5, — — zmj 5 ()
mean Sna , = '
PE S; - i
t=1
si (1) = 5+V;z (1)

L(can concatenate vectors) J
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A World M odél
-

Torresani/Hertzmann/Bregler, PAMIO8
# linear subspace shape model

s; (t)=8+V; z (t)



A World M odél
-

Torresani/Hertzmann/Bregler, PAMIO8
# linear subspace shape model

—\

si(t)=5+V, z (¢)

#® weak perspective projection model

—\ N\

Pi (1) = c()Ri(s: ()+ to)+ n (1)

—\

n (t) zero-mean Gaussian noise with stdev o,
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Smoothness Prior

-

Torresani/Hertzmann/Bregler, PAMIO8

z (t) ~N(0,I)



Smoothness Prior

-

Torresani/Hertzmann/Bregler, PAMIO8

z (t) ~N(0,I)

® similar deformations at different times
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Smoothness Prior

-

Torresani/Hertzmann/Bregler, PAMIO8

z (t) ~N(0,I)

® similar deformations at different times
® force small deformations? no

o |
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Smoothness Prior

-

Torresani/Hertzmann/Bregler, PAMIO8 T

z (t) ~N(0,I)

® similar deformations at different times
® force small deformations? no

#® 2-d projection Ei (¢) Is distributed normally (weak
perspective)

o |
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Algorithm
fTorresani/Hertzmann/BregIer, PAMIO8

# probabilistic model = can use max-likelihood
principle

—\

pOIntZ Hp Rt7 tt,Si ‘/270-710@36)

o |
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Algorithm
-

Torresani/Hertzmann/Bregler, PAMIO8

# probabilistic model = can use max-likelihood
principle

—\

p0|nt’L Hp Rt7 tt SZ)‘/:L?O-TZO’LSQ)

TV
M step updates these

# do EM to allow for missing point tracks

s E step: update posterior over basis weights 2 (t) Vt

s M step: maximize data likelihood L(-) by optimizing
mean shape, basis shapes, camera parameters, and
noise

o |
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EM Initialization

-

EM needs Initial estimates for everything



EM Initialization

-

EM needs Initial estimates for everything
® pick a K (# bases) that’s not too small
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EM Initialization

-

EM needs Initial estimates for everything
® pick a K (# bases) that’s not too small

# use affine rigid SFM (Tomasi-Kanade) to get mean
shape and camera transformations

o |
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EM Initialization

fEM needs initial estimates for everything
® pick a K (# bases) that’s not too small

# use affine rigid SFM (Tomasi-Kanade) to get mean
shape and camera transformations

® 0,.sc Should be large

|

—p. 12/38



fE
o
o

°

EM Initialization

M needs initial estimates for everything

pick a K (# bases) that’s not too small

use affine rigid SFM (Tomasi-Kanade) to get mean
shape and camera transformations

Tnoise Should be large

iteratively add basis shapes (and basis weights) so as
to minimize reprojection error

|
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Results. Dependenceon K
B - -

== B05

=v=XCK 1
_u -=-BCD-LS
g ——EM-PPCA
g ~~EM-LDS I
(]
@
i
S
@
(]
=
nm
1 2 3 8 g 10

4 5 6 7
number of shapes (K)

(Torresani face dataset)



Results: Missing Data

—=-BCD-LS
-o=EM-PPCA
~-EM-LDS

h'|

A r——

||3D err0r||F/||3D shapellF

15 . 2.0 25
% missing data

(Torresani face dataset)
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Thingsto Remember

- N

# simple extension of linear subspace shape model
# max likelihood optimization minimizes reprojection error
# robust against overfitting

o |
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Reminder: Linear Subspace M odél

- N

# “shape”:. set of n points on an object

—\

S, (t) c RS



Reminder: Linear Subspace M od€

- N

# “shape”:. set of n points on an object

—\

S ; (t) ~ Rg

# allowable shapes lie in a K-dimensional subspace of
RBn

si(t) = si+Viz (t)

I o —
mean shape 5; = E; s; (1)



Another World Model
=

Bartoli et al, CVPR08
# linear subspace shape model

—\

s; (1) =Dy (57: +Viz (t))



Another World Model
=

Bartoli et al, CVPR08
# linear subspace shape model

—\

s; (t) = Dy (5 LV (t))
o full perspective projection model

p;i(t) = Pt(;@ (t)+ t+¢) (up to a scalar)
P = Ky Ri'ly
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Another World Model
=

Bartoli et al, CVPR08
# linear subspace shape model

—\

s; (t) = Dy (5 LV (t))
o full perspective projection model

p;i(t) = Pt(;@ (t)+ t+¢) (up to a scalar)
P = Ky Ri'ly

» makes problem much harder
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Algorithm
-

Bartoli et al, CVPR08

1. rigid SFM (with standard techniques) assuming
projection matrices known

# produces mean shape and camera-world
transformations

o |
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Algorithm

fBartoli et al, CVPRO8 T
1. rigid SFM (with standard techniques) assuming
projection matrices known

# produces mean shape and camera-world
transformations

# Dbad (explanation in a bit)

o |
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Algorithm
- -

Bartoli et al, CVPRO08
1. rigid SFM (with standard techniques) assuming
projection matrices known

# produces mean shape and camera-world
transformations

# Dbad (explanation in a bit)

2. iteratively
(a) optimize one additional basis shape to minimize
reprojection error

o |
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Algorithm
- -

Bartoli et al, CVPRO08
1. rigid SFM (with standard techniques) assuming
projection matrices known

# produces mean shape and camera-world
transformations

# Dbad (explanation in a bit)

2. iteratively
(a) optimize one additional basis shape to minimize
reprojection error

(b) cross-validate (novel for SFM)

o |
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Algorithm
L -

Bartoli et al, CVPRO8
1. rigid SFM (with standard techniques) assuming
projection matrices known

# produces mean shape and camera-world
transformations

®» Dbad
2. iteratively

(a) optimize one additional basis shape to minimize
reprojection error

(b) cross-validate

o |
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Decomposition of Camera Matrix
o - I N
® Torresani: p; (t) = c(t)Ri(s; (t) + t¢)+ n (¢)
o Bartoli:

—\

s; (1) =Dy (52' +Vi 2 (t))

;@' (1) = Pt(gi () + ?t) (up to a scalar)



Decomposition of Camera Matrix
B L -

® Torresani: p; (t) = c(t)Ri(si (1) + ¢ )+ 1 (1)
o Bartoli:

—\

si(t) =Dy 5+ Vi = (1))
;i (1) = Pt(gz- () + ?t) (up to a scalar)

s overparameterizes but ignores F;



Decomposition of Camera Matrix
o - I N
® Torresani: p; (t) = c(t)Ri(s; (t) + t¢)+ n (¢)
o Bartoli:

—\

si(t) =Dy 5+ Vi = (1))
;@' (1) = Pt(gi () + ?t) (up to a scalar)

s overparameterizes but ignores F;
s set D; under rigidity assumption; never refine



Decomposition of Camera Matrix
B L -

® Torresani: p; (t) = c(t)Ri(si (1) + ¢ )+ 1 (1)
o Bartoli:

s (1) =Dy (504 Vi = (1))

;@' (1) = Pt(gi (1) + t+) (up to a scalar)

s overparameterizes but ignores F;

s set D; under rigidity assumption; never refine
s Scene reconstruction can end up completely wrong

o |
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Algorithm
L -

Bartoli et al, CVPR08
1. rigid SFM (with standard techniques) assuming
projection matrices known
# produces mean shape and camera-world
transformations

® bad

2. iteratively
(&) optimize one additional basis shape to minimize
reprojection error

(b) cross-validate

o |
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ODbjective Function

- -

# reprojection error plus temporal and spatial smoothness
terms

N —~reproj

p; (t)— P, (t)

O{Vit.{z thH= > (

point 2,image t

2
) +>\Otempo'ral +"305patial

(v + visibility flags)

o |
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ODbjective Function

-

# reprojection error plus temporal and spatial smoothness
terms

-

N —~reproj

pi(t)—P;  (b)

2
O({‘/Z}7 { 2 (t)}) — Z <’Ui,t ) +>\Otempo'ral+"305patial

point 2,image t

(v + visibility flags)

#® approximate so each point ; presents an independent
subproblem

o still nonlinear

s very efficient

o |
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Temporal Smoothness Term

-

Bartoli et al, CVPR0O8

-

O (basis shapes, basis weights) = reprojection error -+ Otemporal + Ospatial

temporal smoothness term a slight generalization of

m

Otemporal — E

t=1

?(t)_?(t—1)2,

o |
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Spatial Smoothness Term

-

Bartoli et al, CVPR08

-

O (basis shapes, basis weights) = reprojection error -+ Otemporal + Ospatial

2

Y

—\ —\

Uik — Vjk

Ospatial — Z w (Za ])

points 7,7, basis shapes k

Y (i, j) a decreasing function of distance between points i, j on the
mean shape,
v ;1. the location of point ¢ in shape mode k&

o |
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Spatial Smoothness Term

-

Bartoli et al, CVPR08

-

O (basis shapes, basis weights) = reprojection error -+ Otemporal + Ospatial

2

Y

—\ —\

Uik — Vjk

Ospatial — Z ¢ (Za ])

points 7,7, basis shapes k

Y (i, j) a decreasing function of distance between points i, j on the
mean shape,
v ;1. the location of point ¢ in shape mode k&

\ e
| -
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| nitialization

o N

actual basis representation:

Si(t) = S; —+ ;(t) Vi
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| nitialization

o N

actual basis representation:

Si(t) = S; —+ ;(t) Vi
= 8 -+ Zbasisk( At bit Olt)
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| nitialization

-

actual basis representation:

Si(t) = S; —+ ;(t) Vi



| nitialization

-

actual basis representation:



| nitialization

-

actual basis representation:

Si(t) = S; —+ ;(t) Vi
= 8 -+ Zbasis k( At bit Olt)

Linitialize directions, then magnitudes

|
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| nitialization

# direction vectors {(C;}

|1

|2

E

4

E




| nitialization

-

® direction vectors {C:}

iImage ¢, point ;



| nitialization

N\

iImage ¢, point ;

-

# direction vectors {(C;;}




| nitialization

-

# direction vectors {(C;;}

/

iImage ¢, point ¢
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| nitialization

® direction vectors {C:}

/

/

(m)

(n)

(0)




-

| nitialization

# direction vectors {1}

/

/

Z

(p)

® magnitudes {b;.}, basis weights {ax; }

Q)

(r)

|
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| nitialization

- N

# direction vectors {1}

— /-

(s) (t) (u)
® magnitudes {b;.}, basis weights {ax; }

# each point in each image constrains one a and one b

F

a function of a:b;x

o |
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| nitialization

- N

® direction vectors {a-k}
— /

(v) (w) ()
® magnitudes {b;.}, basis weights {ax; }

# each point in each image constrains one a and one b

/

a function of a:b;x

o need one more constraint for each kth basis;
do

o |
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Results. Dependenceon K

=4—=C2F - No prior
=yp=C2F - Priors
| === T Orresani

o

o

3D error (%)

Number of modes

(Candide face dataset)
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Results; Effect of Cross-Validation

3D error (%)

1 A !
—4—~C2F - No prior| :
=v=C2F - Priors ‘ :
=#=Torresani |- b ..................

0.8j

e

©
s

0.2b e N ——

4
Number of modes

(y)

‘IO ................... B e - ..........................
——RE - C2F - no prior
——RE - C2F - priors
& 8 -{—=—RE - Torresani
o —4—CV - C2F - no prior
2 —v—CV - C2F - priors
E 6 ............................................... ...................... e
2 ]
S 5
> AN e
O :
L‘J v -;- hd : v b4
& ol AN L m i S
— XXy —1.- — X 1
0 ‘ ; ;
0 2 4 6 8

Number of modes

(2)

(Candide face dataset)

|
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Results: Missing Data

- . |=—CoF-Priors | ||

%]
on

M™a
T

3D error (%)
o

e . : .
0 1 I i ] J
0 20 40 60 80 100

Missing data (%)

(Candide face dataset)



Outline

Problem formulations
Torresani et al

Bartoli et al
» Algorithm
» Results

s Summary

Comparison

|

—p. 35/38



Contributions

-

Torresani et al (2000, 2001, 2003)
# linear subspace shape model
# max-likelihood algorithm

o |
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Contributions

-

Torresani et al (2000, 2001, 2003)
# linear subspace shape model
# max-likelihood algorithm

Bartoli et al (2008)

# efficient solution
» no costly refinement (of anything)
s Independence approximation

® cross-validation as a termination criterion

o |
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Problem formulations
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Comparison
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Head-to-Head
L -

Torresani Bartoli

e probabilistic model + max likeli- e approximate solution with regular-
hood solution Ization; each point independent

o |
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Head-to-Head
-

Torresani Bartoli

e probabilistic model + max likeli- e approximate solution with regular-
hood solution Ization; each point independent

e must choose o,,,;s. carefully e must choose smoothness-term
weights A, x carefully

|
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Head-to-Head
-

Torresani Bartoli

e probabilistic model + max likeli- e approximate solution with regular-
hood solution Ization; each point independent

e must choose o,,,;s. carefully e must choose smoothness-term
weights A, x carefully

e refine camera transformations e solve for camera transformations
each iter once (bad)

|
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Head-to-Head

Torresani

-

Bartoli

e probabilistic model + max likeli-
hood solution

e must choose o,,,;s. carefully

e refine camera transformations
each iter

e predefine K, let EM make some
weights small

e approximate solution with regular-
Ization; each point independent

e MmMust choose smoothness-term
weights A, x carefully

e solve for camera transformations
once (bad)

e cross-validate after adding each
basis shape

|

—p. 38/38
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