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1. Introduction: A new mobility application 
 Each of us has a complex and reciprocal relationship with our environment.  Based 
on limited knowledge of this interwoven set of influences and consequences, we 
constantly make choices: where to live, how to go to work, what brands to buy, what to 
do with our leisure time. These choices evolve into patterns, and these patterns become 
driving functions of our relationship with the world around us.  With increasing ease, 
devices we carry can sense, process, and transmit data on these patterns for our own use 
or to share, carefully, with others. In particular, here we will focus on location time 
series, gathered from GPS-enabled personal mobile devices.  From this capacity emerges 
a new class of hybrid mobile-web applications that, first, enable personal exploration of 
our own patterns and, second, use the same data to index our life into other available 
datasets about the world around us.  Such applications, revealing the previously 
unobservable about our own lives, offer an opportunity to employ mobile technology to 
illuminate the ramifications of our choices on others and the effects of the 
“microenvironments” we move through on us.  
 This paper proposes and demonstrates how easily gathered location time series 
data can be used as an index into geospatial models to infer personal environmental 
impact and exposure.  It focuses on three areas of interaction between individuals and 
the environment: transportation mode choice, overall carbon footprint, and 
opportunities for healthy eating.  This class of applications represents a novel use of 
mobile systems, web-based mapping, and geospatial data and services.  They pose 
interesting technical challenges and require multidisciplinary research. In the spirit of 
[20] we offer this anecdote: 
 Glancing at her phone, Lori sees that she has only a few minutes left before her meeting. She 
pays for her coffee, stows a proofread copy of her daughter’s report on a historical article, The 
Computer for the 21st Century, in her bag, and dashes out. She texts her daughter that she has 
some ideas for the end, pulls up a traffic report and, sighing, heads off on surface roads, 
fashionably late to another hour of Powerpoint. Later on, the pair meet downtown for dinner at 
they heard about on a food blog and head back home together.  
 Home on a Saturday four days later, they visit their Personal Environmental Impact Report 
web pages together for fun, comparing results in good-natured banter. Lori tries to use her 
daughter’s low emissions score from the train trip downtown and constant bike riding as another 
reason to not help her buy a car, but teenage logic sees it as more of a reason for a hybrid. (That 
way, when she drives instead of her friends, she’ll reduce their emissions!) As they’re exploring the 
pages, created dynamically from location data uploaded by their phones, Lori realizes to herself 
that her surface street route took her right by a school at recess; she decides try a different route 
and see how her impact score changes next week. She also wonders why they let traffic go so fast 
there in the first place—if it were a little calmer there might be less drivers tempted to go through 
there.  Looking back to their monthly summaries, the two realize they walk more on the days when 
they’re together.  They decide the report on Mark Weiser’s article should end with that.  
Effective stewardship of our environment requires an understanding of our complex 
relationship with it that matures through new knowledge and self-reflection. This is 
true not just for individuals, but on community and global scales as well. Some of the 
most persistent challenges attributed to urban living occur through a complex set of 
person-environment interactions.  Researchers in urban planning, public health, 
environmental science, and other fields have increasingly emphasized the importance of 



disaggregated analysis and modeling, based on individual behavior and detailed 
environmental information, to better explain phenomena as diverse (but intertwined) as 
travel, pollution, energy consumption, physical health, and social cohesion.   Whether 
concerned with exposure or impact, the unit of analysis in environmental research and 
policymaking has increasingly become the individual (in a spatial context) rather than 
results aggregated by local or regional geographic units.[3,4,7,14,18]. 
 For reasons of cost and convenience, it is rarely feasible for individuals to gather 
longitudinal data on their own environmental exposure and impact directly. An example 
is measurement of air pollutant concentrations, which at this time still requires large, 
expensive equipment to make local measurements of the precision and accuracy needed 
to improve on coarse-grained aggregate models. However, the availability of geolocated, 
time-stamped data from a small number of these stationary and mobile sensors is 
increasing, as is limited-coverage survey data and coarser-grained remote sensing data.  
We envision these types of data being used in conjunction with environmental models to 
provide ongoing feedback to individuals based only on their time-location series, with 
higher accuracy than demographic estimates, and greater feasibility than domain-
specific personal instrumentation. The prevalence of positioning support in emerging 
devices suggests this approach is scalable up to large populations. It also scales down 
to small numbers of users because it does not require broad dissemination in 
order for it to provide value to a user; yet, as more users engage with the system, 
their participation offers opportunities for model refinement. 
 The Personal Environmental Impact Report (PEIR) introduced in the story above 
is our working example of a relevant use case for this technology, and we are developing 
the components needed for such a system.  It echoes the often government-mandated 
process of creating Environmental Impact Reports that assess and, where necessary, 
propose mitigation for the biophysical, social, and other important effects of construction 
and development before major decisions and commitments are made. Our first 
implementation focuses in particular on (a) exposure to pollution while traveling on 
urban roadways (air quality), (b) the impact of our own travel-related emissions on 
locations such as schools and hospitals (air quality/land use planning), (c) access to 
unhealthy foods (healthy living), and (d) our contribution to greenhouse gas emissions 
(global warming) 
 PEIR is a mechanism for longitudinal documentation of both impact—what an 
individual does to the environment—and what the environment does to the individual, 
or exposure. Significant health problems are a result of “complex interactions between 
genetic and environmental factors”, and activity patterns can have a significant 
influence on personal exposure to environmental risk factors. Individual location traces, 
combined with activity characterization and micro-environmental models make personal 
exposure assessment possible in PEIR.   
2. System architecture/framework  
 We are developing an online system that combines personal location traces and 
web based data and models. Our prototype system uses GPS-equipped mobile handsets. 
We have developed custom handset software (Campaignr, described elsewhere in press) 
for automatic location time-series collection, robust upload, over-the-air 
upgrade/tasking, just-in-time annotation with voice or text. We have also begun to 
develop web server side tools to analyze individual spatiotemporal patterns and 
calculate corresponding impact and exposure metrics to inform and advise users. Of 
equal importance are the web-based interfaces informing and advising users, which 



provide reports, real-time feedback, visualizations and exploratory data analysis tools 
for non-professional users. 
As a PEIR user contributes location traces, feedback on impact and exposure is refined 
through the following process: (1) Location trace collection: Traces of an individual’s 
location are gathered from an installed base of mobile phones using GPS, Cell Tower, 
and WiFi beaconing. (2) Trace correction and annotation: Where possible, the error 
prone, under-sampled location traces are corrected and annotated using techniques such 
as map matching with road network and building parcel data. (3) Activity and 
location classification: The corrected and annotated data are automatically classified 
using web services (e.g., estimating time spent traveling by car vs. on foot for a given 
day) to provide a first level of refinement to the model output for a given person on a 
given day. (4) Context lookup: Both this corrected, fine-grained location data and the 
classified data are used as input to web-based information sources on weather, road 
conditions, real-time traffic monitoring, aggregated driver behaviors, and 
zoning/planning data.  Derived features can reveal significant individual factors such as 
driver-specific behaviors (e.g., acceleration and braking patterns) (5) Exposure/Impact 
Calculation: Finally, the fine-grained, classified, and derived data are used as input to 
geospatial data sets and microenvironment models that furthering turn are used to 
provide an individual’s personalized estimates and documentation of localized impacts 
(e.g., on particular neighborhoods or vulnerable facilities such as schools or retirement 
homes).   
3. Trace Correction and Classification 
 We can build upon existing work related to activity characterization [1,9,12]  and 
map matching algorithms designed for other contexts to turn a location time series into 
a geo-coded activity-time series. Using additional map information (such as public 
transportation stops) the 
inferred data can indicate not 
only the velocity of 
movement, but also with high 
probability the likelihood 
that the person is traveling 
by foot, car, or public 
transportation.  
 There has been a 
substantial amount of work 
on determining activities 
from location traces. Much of 
this previous work is based 
on either machine learning or clustering.  Liao et al [12] use relational Markov networks 
in order to learn high level activities as well as significant locations. By combining raw 
GPS points with additional features including temporal information, such as time of day 
and day of week, average speed, and data from geographic information systems; they 
are able to achieve very high level of accuracy (>90%) for classification of activities. 
These existing methods have achieved a high amount of success by leveraging historical 
information about users. In many cases PEIR applications will benefit from this 
approach.   
 In addition, we are investigating a complementary approach for interpreting 
activity from real time location traces, in particular, by using the speed attribute in the 

Figure 1: Speed distributions for walking and automobile



GPS trace.  
Figure 1 shows the speed distributions of automobile and walking travel modes.  The 
definitive peaks indicate that speed variation has the potential to determine 
transportation mode. Given a stream of GPS data, we divide the information into a 
sliding window of two minute chunks.  For each chunk, we calculate the max, min, 
average, and standard deviation of the speed.  We create classifiers based on labeled 
data for the classes of interest (walking, automobile, still) and then evaluate future 
readings based on these classifiers.  Initial results shows that this technique, although 
simple, is very promising.  Based on evaluation on sets of data obtained from a small set 
of local users with varied transportation patterns, we have achieved over 90% accuracy 
using Bayesian, linear trees, and support vector machines classifiers.  Most of the mis-
classifications occurred during transition periods in which a user was going from one 
state to another (walking to driving an automobile or standing still to taking public 
transportation). Future work will attempt to estimate speed from Cell Tower traces 
when GPS is not available.  The results will necessarily be far less accurate than with 
GPS but it will be interesting to see whether the speed estimates will be good enough to 
support accurate activity classification. Also we plan to consider external map 
knowledge to infer more specific mode of automobile, public transportation or car, 
because speed would not be enough to capture that information.  
 Individual GPS points often deviate from the physical road being traversed due to 
both inaccuracies in GPS measurements and the maps themselves. Map matching 
techniques have been developed to improve the interpretation of GPS location data, such 
as in the case of navigation systems. Similarly, these techniques can be used to improve 

the performance of activity classification. For example, 
it would be easier to identify that a person is riding a 

bus if we find that GPS traces stop along the bus route. 
Liao et al [12] use conditional random fields to associate 
GPS measurements with street patches prior to inferring 
activities.  
  Naive map matching module find the nearest road 
segment as a correct match. Although they are simple and 
fast, they are sensitive to the spatial road network and 
often fails in practice [17]. For example, figure 2 shows one 
example of GPS data errors and the points that depart from 
the street. The algorithm identified the Highway 10 to 
highway 405 interchange ramp as the nearest and correct 
road while a person was driving on a surface street, 

Sawtelle Blvd, as shown in Table 1. There are two points from this simple example: that 
it is strikingly simple to classify activities using very simple techniques, albeit with 
errors, and there are interesting challenges and directions for improvement. For 
example, Krumm et al [10,11] take into account time constraints as well as distance to 
the road: the sequence of road matches must be traversable in the time   interval 
computed from measured timestamps. Najjar et al [16] developed an algorithm dealing 
with distance, direction and velocity using Belief theory and Kalman filtering. 
 

Table 1: Candidate road matches for 
GPS point marked 128. Road data from 

ESRI/Teleatlas StreetPro 2007. 
          

Figure 2: Inaccurate GPS points 



4. Technical Challenges 
 We have identified several technical challenges including: Context lookup and 
environmental inference, Selective sharing and privacy, and Effective data presentation.  
A. Context Lookup and Inference 
 The personal exploration of patterns enabled by the data above is on its own 
valuable, but in this system, it is a means to an end: indexing these patterns of activity 
into other available datasets to glean insight into our own impact and exposure.  PEIR 
uses GPS location trace data to provide the context necessary to make the models 
useful/actionable/”real” to people.  (1) Exposure to particulates on highways:  This 
model will determine the amount of time an individual spends in area that puts them at 
a higher risk of exposure to particulate matter, with in 200 meters of a road segment 
with high traffic volumes.  Caltrans average annual daily traffic counts are the source 
for determining these traffic volumes.   (2) Exposure to fast food establishments 
and advertising: This model will calculate the number of fast food restaurants that are 
adjacent to the users transportation corridors.  (3) Impact through local emissions 
on sensitive populations:  Location data is used to determine the emissions generated 
from the individuals automobile by the use of the California Air Resources Board’s 
(CARB) emissions model.  (4) Impact through carbon footprint associated with 
consumption of fossil fuels: Carbon dioxide is calculated through the same CARB 
model.   
B.  Responsibility & Privacy 
 PEIR uses sensitive personal data, and its systems must be designed to minimize 
the data released from the user’s control to avoid various privacy threats [10,11].  For 
example, instead of releasing complete time series data to a server, a trusted component 
could execute the algorithms “close” to the data, exporting only the relevant statistics 
about activities and exposure, release activity classification without location, or location 
without time, or employ other forms of spatial and temporal cloaking [6,10,11]. In 
certain cases, derived features may be more sensitive than raw data: researchers have 
found that significant places like home and workplaces provide very useful context 
information and can be learned using inference processes [10,11], but releasing this data 
unnecessarily should be avoidable. We are exploring methods that could use patterns of 
movement among such places without requiring actual coordinates. 
C. Representation & Personalization 
 Applications like PEIR must support users in connecting sensed information to 
their daily practices and long-term goals. To this end, analysis, aggregation, and 
alerting certainly must be configurable but also data and high-level inferences navigable 
from a number of perspectives.  Support (1) understanding of own patterns (2) personal 
development of experimentation & alternatives (3) goal-setting / coaching (4) 
comparison, (5) understanding of phenomena / relationship.  
5. Conclusions and future work 
 By combining the power of mobile sensing with web-based geospatial data and 
models, we can begin to see our own signals, the patterns of our daily life as we interact 
with the world around us.  If systems like the Personal Environmental Impact Report 
are successful, they will provide actionable feedback to individuals to help them to make 
responsible choices in the stewardship of their own health and that of others. Used 
institutionally, such approaches could supplement surveys of activity patterns such as 
the EPA’s Consolidated Human Activity Database [ref] in risk assessment studies, 
though privacy and data security are even more of a concern than in personal reporting.  
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