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Mobiscopes 
for Human Spaces

A
mobiscope is a federation of distrib-
uted mobile sensors into a taskable
sensing system that achieves high-
density sampling coverage over a
wide area through mobility. Mobis-

copes affordably extend into regions that static sen-
sors cannot, proving especially useful for applica-
tions that only occasionally require data from each

location. They represent a new
type of infrastructure—virtual in
that a given node can participate
in forming more than one mobis-
cope, but physically coupled to
the environment through carri-
ers, including people and vehi-
cles. Mobiscope applications
include public-health epidemio-
logical studies of human expo-
sure using mobile phones and
real-time, fine-grained automo-
bile traffic characterization using
sensors on fleet vehicles. Although
mobility has proven critical in
many scientific applications, such
as Networked Infomechanical
Systems for science observato-
ries,1 we focus on the challenges
and opportunities mobiscopes
pose in human spaces.

Mobiscopes complement sta-
tic sensing systems by address-
ing the fundamental limitations
created by fixed sensors. System

designers can’t always place sensing devices with
sufficiently high spatial density to accurately 
sample the field of spatially varying phenomena,

making it impossible to satisfy the spatial band-
limiting guarantees that traditional sampling cri-
teria require. Covering large areas can be chal-
lenging because of the need for long dwell times,
the unavailability of wired power, the impracti-
cality of battery replacement, the inability of any
entity to install devices across the entire area, and
the expense of purchasing and maintaining
enough devices. Equally important, target sensor
types might be unavailable or unaffordable in the
form of autonomous instruments, further moti-
vating mobile, human-in-the-loop instruments.
For example, city-scale air quality measure-
ments—which typically use costly mass spec-
trometers to measure pollutants—are expensive
when using fixed-sensor infrastructures but could
be substantially cheaper and could cover much
larger areas if sensors were mounted on mobile
nodes (for example, cars). 

This combination of application demand and
increasingly powerful wireless and sensing tech-
nology suggests that it’s time to consider a general
architecture for mobiscopes. To understand
what’s needed to build a unified system, we con-
sider several broad classes of mobiscope. We dis-
cuss common architecture challenges, existing
solutions, and major areas for future work.

Classes of mobiscopes
Early mobiscopes arose directly from widely

available sensing modalities in networked devices.
Examples include image sensors in mobile
phones, GPS in phones and vehicles, and the
increasingly diverse telemetry available in vehi-
cles. We consider these as representatives of two
broad categories of mobiscope.

Mobiscopes extend the traditional sensor network model, introducing
challenges in data management and integrity, privacy, and network
system design. Researchers need an architecture and general
methodology for designing future mobiscopes.
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Vehicular mobiscopes
One category is vehicular applications

for traffic and automotive monitoring,2

where a subset of equipped vehicles senses
various surrounding conditions such as
traffic, road conditions, or weather. These
mobiscopes exploit the spatial oversam-
pling often provided by dense vehicle traf-
fic to produce useful information before
all vehicles can send data. However, even
when vehicular instrumentation achieves
nearly 100 percent market penetration,
subsampling the data intelligently will
prevent network congestion and save
storage and processing space. 

Initial probe applications have already
been deployed commercially. For exam-
ple, Inrix (www.inrix.com) uses anon-
ymous GPS data to provide real-time
traffic measurements for freeways and
local streets. Vehicular mobiscopes can
query for certain traffic types. For exam-
ple, the EZCab application uses vehicle-
to-vehicle communication to find avail-
able taxi cabs.3 The probe-car concept
can extend to other applications, such as
augmenting the number of NavTeq or
TeleAtlas vehicles used for street map-
ping or increasing the update frequency
of Microsoft’s street-level imagery cap-
ture for Virtual Earth. Probe cars can
also acquire high-density maps of road-
ways and measure road conditions,
weather, and pollution using sensors
built into cars and phones. 

Handheld mobiscopes
The second emerging category is

mobiscopes that use handheld devices.
Coarse-grained location information can
inform studies ranging from the health
impact of exposure to highway toxins to
an individual’s use of transportation sys-
tems. Researchers have proposed auto-
mated image and acoustic capture to
provide user feedback on diet, exercise,
and personal interaction as well as to
identify and share real-time information
about civic hazards and hotspots. An

interesting example is civic participation
during a crisis, where individuals could
exercise a loose form control over sen-
sor placement.4 Users ranging from
police officers to citizens could use their
cell phone cameras to photograph trou-

ble spots in their neighborhood. Such a
civic system could request that police
officers document unexplored areas or
intervene in trouble spots. 

A similar concept of camera-based
mapping can apply to tourism. For
example, tourists at the Taj Mahal might
share their photographs in virtual al-
bums that potential visitors can then
browse to see all perspectives of the mau-
soleum. Researchers have paid special
attention to metadata management to
facilitate such sharing.5

Common requirements
The applications we’ve mentioned

share several important requirements that
are also a priority for mobiscope opera-
tion and acceptance. For example, data
persistence must be assured even when
sensing nodes leave the data collection
area or when no mobile nodes are pre-
sent. At the same time, data access tends
to be spatially correlated with the users’
location and can change rapidly (some-
what predictably) as the user moves. The
system can use data to make decisions in
real time. It might use a human-in-the-
loop as an actuator, sensor, interpreter, or
responder. Because the system will exploit
sensors and mobility sources already in
the environment, social constraints on
system behavior come into play. Many
private and public entities will likely share
ownership of sensors and the resulting
data, so we can’t assume trust, coordi-

nated deployment, and respect of users’
privacy. The needed sensor data might be
fragmented across multiple networks, and
connectivity and user needs might change
dynamically with motion. Furthermore,
the metadata (such as sensor position, ori-

entation, and calibration parameters)
must also compatibly cross networks.

The commonality of problems across
a wide range of envisioned mobiscope sys-
tems calls for a general architecture and
design guidelines for future mobiscopes.
This architecture will not only encourage
component reuse and reduce develop-
ment costs but also promote interoper-
ability among future mobile sensing sys-
tems. The systems will need common
interfaces to negotiate privacy settings,
exchange data feeds, distill information,
and perform coordinated actuation on the
physical world. The literature discusses
such architectures’ components but often
focuses on a specific application type—
for example, an architecture for vehicle-
to-vehicle live video streaming6,7 or archi-
tectural support for heterogeneity based
on a MediaBroker.8

Mobility and sampling
coordination 

Fundamentally, mobiscopes’ perfor-
mance depends on mobility patterns of
transporters—which are stochastic and
whose movement patterns range from
highly structured (such as road traffic)
to less structured (such as foot traffic)—
and on sensor densities that can vary
widely over time and space. Several chal-
lenges arise from mobility. The network
organization can be highly variable, both
in terms of sensing coverage and radio
connectivity. Nodes might not have con-
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nectivity at all times and locations when
they collect data. Understanding data
acquisition and distribution behavior in
the network is therefore nontrivial. 

Often, uncoordinated mobile nodes
sense areas that other nodes have already
visited, but they don’t visit rarely trav-
eled areas frequently enough. For exam-
ple, in MIT’s CarTel project (see figure
1), researchers have equipped cars with
small embedded computers, wireless
radios, and GPS sensors and cameras for
measuring road speed and capturing
road conditions.9 Members of the com-
munity drive the cars as they go about
their daily business. Unfortunately, their
daily business often takes them on the
same routes, providing only sparse cov-

erage of back roads and outlying com-
munities while the MIT campus is highly
(and redundantly) covered.

Mobility also causes challenging dy-
namic behavior in sensor allocation and
network topologies. In a typical mobis-
cope, particular regions in space will likely
be of interest, but the motion of the sen-
sors (especially when commuters or pe-
destrians are carrying them) might make
coverage for those regions poor. For
example, the midblock regions of road-
ways with traffic lights often contain no
cars, so data might be unavailable from
that region, creating a hole in the peer-to-
peer network as well. The mobile sensing
devices’ availability can depend on user
behavior and device characteristics. For

example, users might forget or turn off
their phones, making them unavailable to
the mobiscope, or a data service might not
be available during a telephone conver-
sation. We need solutions to these chal-
lenges. Sensors’ availability can also
change drastically with time, as with cars
and pedestrians at rush hour compared
to low availability at midnight.

Application adaptation 
Applications must adapt to the net-

work’s available communication and
sensing characteristics. For instance, they
could buffer data when connectivity is
unavailable or dynamically adapt their
spatial scope. Mechanisms from disrup-
tion-tolerant networks and data-mulling
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Figure 1. CarTel—a typical mobiscope.



contexts will be increasingly important.
Analytic foundations also help explain
global network behavior and the extent
to which adaptation can help maintain
acceptable system performance. Research
has addressed adaptation to some
extent—for example, summarizing data
in low-bandwidth environments10 or
trading latency for bandwidth by using
vehicles to carry large amounts of data.11

Yet, substantial questions remain, par-
ticularly with respect to global resource
optimization. It’s unclear how to best
relate diverse resources such as total data
transfer bandwidth, data freshness, data
propagation latency, and application-rel-
evant metrics such as traffic conditions
or time of day.

Actuated mobility
In some mobiscopes, it might be possi-

ble to task some or all of the nodes to visit
a specific location to collect information
on demand. We call such mobiscopes
actuated, and the actuatable nodes actua-
tors. In an actuated mobiscope, server
nodes can record areas that most need to
be visited and can task actuators to visit
those areas either one at a time or as part
of a circuit. Actuated mobiscopes present
numerous interesting research challenges
related to determining the value of observ-
ing a particular location or collecting infor-
mation versus the cost of sending an actu-
ator to that location. One common way
to address these challenges is to formulate
them as an optimization problem that
aims to maximize the utility of informa-
tion collected in a particular time period
or subject to an energy or cost constraint.12

Distributed robotics has also addressed
similar coverage problems.1,13

Opportunistic connectivity 
In networks without predictable

mobility, opportunistic connectivity—
where nodes happen to come into con-
tact with each other or with network
infrastructure (such as an open 802.11

network)—can substantially improve
connectivity. This technique performs
better than mechanisms that wait until
nodes return to some “home” location
where infrastructure connectivity exists
and can be cheaper and potentially more
efficient than solutions that rely on fixed
cellular infrastructure (where upstream
data rates are typically highly con-
strained). Important techniques worth
exploiting include 

• building low-level network protocols
that can quickly identify and associ-
ate with nearby nodes (without, for
example, long address acquisition or
channel negotiation delays)9 and 

• designing routing algorithms that can
deliver data through such oppor-
tunistic connections (for example, by
using limited-scope flooding or ex-
ploiting point-to-point long-haul con-
nections in the network). 

Prioritization 
In many mobiscopes, it’s likely that the

system will capture more information
than it can deliver in real time. One solu-
tion is aggregation,14 but another alter-
native is prioritization, which assigns dif-

ferent priorities to pieces of collected
data and delivers data in priority order.
In some cases, simple prioritization,
where particular data types (such as
emergency alerts15) are given greater im-
portance, might be sufficient. However,
a more coordinated form of prioritiza-

tion is necessary when different nodes
cover overlapping geographic areas to
avoid wasting valuable bandwidth on
redundant data reports. To avoid redun-
dant reports, you need coordination—
for example, before sending large col-
lections of sensor readings to a server
responsible for presenting data to the
user, a mobile node might first send a
compact summary of its data. The server
can then examine the summary and
determine what information is valuable
given the data it has already received
from other mobile nodes. CarTel em-
ploys a similar technique.16 In addition,
many applications have data require-
ments that vary with time, location, and
their need for frequent, low-latency data
delivery. This might be summarized by
a more complex utility function that can
radically increase efficiency over fixed-
priority approaches.17

Challenges and opportunities
of heterogeneity

Mobiscopes will come into being
through many different mechanisms. In
some cases, hardware will be explicitly
deployed as a single mobiscope to achieve
a particular data-collection goal. In oth-
ers, already deployed devices will be fed-

erated into an ad hoc collection through
their owners’ participation. In still dif-
ferent cases, virtual mobiscopes will be
formed by correlating gathered data
without edge devices. 

Mobiscopes will thus take on various
topologies and structures, federate devices
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with different capabilities, and draw
together components with varying levels
of trust and credibility. We can classify
heterogeneity in mobiscopes across sev-
eral dimensions: structure and topology,
transducer performance, data ownership,
and data dissemination qualities (such as
resolution). Irregular data streams are in-
evitable owing to sensors’ mobile nature.
We must prepare applications that can
adapt task allocations and service levels
to the available resources.

Heterogeneity is a fundamental, bene-
ficial quality of mobiscopes, not just a
problem to overcome. Heterogenous sens-
ing systems are far more immune to the
weaknesses of sensing modalities and far
more robust against defective, missing, or
malicious data sources than even carefully
designed homogeneous systems. In some
cases, the information the application
needs is available only by fusing data from
several different sensing modalities. More-
over, the same qualities necessary to sup-
port heterogeneous sensors also help the
system adapt to new varieties of sensors
that are developed over time or brought
from other areas into the sensed space.

Heterogeneity of ownership
Unlike a sensor network that a single

entity (such as a corporation or univer-
sity laboratory) has assembled, mobis-
copes must be federated from individu-
ally owned devices, held or worn by
owners who might not be trustworthy
and might not maintain their devices in
good condition. This exposes the mobis-
cope to intentional or accidental injec-
tion of incorrect data or biased sampling.
It also raises issues of data integrity, trust,
security, and selective sharing that the
architecture should address.

Heterogeneous data resolution
and types

Applications can use the available data
to derive and maintain metrics at multiple
resolutions with varying coverage in space
and time. For instance, imagine a system
of wearable ski-slope monitoring devices
that collect data from poll-mounted sen-
sors.18 Coarser granularity measurements
might be available for more area and time
instances, while finer-granularity data is
served only for specific regions (namely,
the more populated slopes). Applications

can receive regularized grid interpolations
derived from raw data. Simple interpola-
tions might be sufficient for smoothly
varying data such as temperature, while
more complex known or learned dynam-
ics models fill in the gaps in faster-vary-
ing or sparser data. In addition, buffering
data and providing aggregates over mul-
tiple time-window sizes might allow the
data from an irregularly sampled world
to yield reasonably uniform coverage as
data trickles in over time. Researchers
have examined using model-based tech-
niques to improve the quality of data
despite missing values,19,20 but adapting
this work to heterogeneous data of vary-
ing types remains a challenge.

Data heterogeneity also presents chal-
lenges when trying to integrate data from
many different sensors. Nokia’s Sensor-
Planet effort (www.sensorplanet.org; see
figure 2) and the Microsoft SensorMap
project invite users to submit data from
their own sensing deployments. Although
these efforts present a great potential
resource, to effectively use the data, we
need to a way to combine and query these
different data sets.
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Robustness through
data heterogeneity

So, heterogeneity is both a difficulty
and an asset. Heterogeneity of devices
implies that different transducers (for
example, image, acoustics, physical sen-
sors, and user annotations) are available
at different times at the nearby locations.
However, mobiscopes’ nature implies
that any sensor fusion algorithm relies
on the transporters and the network to
determine when it will receive data and
what type of data will arrive. This puts
additional stress on the sensor fusion and
estimation algorithms. This also suggests
significant advantages for model-driven
approaches such as Kalman filters21 or
particle filters,22 which adapt well to
irregular sampling and allow the use of
heterogeneous sensor models and sys-
tems dynamics models. In some cases,
system designers can even harness het-
erogeneity to increase the robustness to
defective, malicious, or unavailable sen-
sors.23

Tackling data privacy
The topic of privacy hinges on com-

plex policy issues that vary culturally and
legally among societies, but fundamen-
tally, it’s about people’s ability to control
information flow about themselves.
These issues are especially difficult in
mobiscopes because the connection
between the observed party and the sen-
sor collecting information is implicit in
the transporters’ relationships and be-
cause entities collecting data often inad-
vertently reveal information about them-
selves. The nodes’ distributed ownership
and control makes policies even more
difficult to define, let alone enforce.

Policy definition
Beyond data distribution and manage-

ment, data privacy issues present impor-
tant trade-offs between the need for selec-
tive sharing and the network information
output’s fidelity, configurability, usability,

and verifiability. The inability to publicly
associate data with sources (for privacy
reasons) could lead to loss of context,
which reduces the network’s ability to
generate useful information. Conversely,
revealing too much context can poten-
tially thwart anonymity, violating privacy
requirements. 

For example, consider sampling ambi-
ent sound from a carried cell phone to
map sound pollution profiles or as a
proxy for exposure to highways and
associated fumes. Similarly, consider the
use of cell phone cameras as a form of
civic engagement where citizens docu-
ment concerns such as uneven sidewalks,
lack of handicap access, and overflow-
ing trash cans. Clearly, these data are
more meaningful if the users send the
associated GPS readings along with the
primary data. However, transmission of
GPS data could reveal the user’s identity
(for example, if the GPS trace ends up at
a particular address most nights). It can
also shed light on user activities. 

This problem is often termed location
privacy.24 Ensuring location privacy is a
cross-cutting challenge that has implica-
tions for routing25 and energy manage-
ment.26 A mobile node isn’t restricted to
a known private space under a single
user’s jurisdiction but passes through
multiple spaces. Furthermore, a mobile
node isn’t part of a dedicated application
but might serve different applications at
different times. So, the system might
require effective user interfaces and, in
some cases, automatic adaptation. 

Local processing
Related to these concerns is an indi-

vidual’s need to keep something from

becoming data, not just reducing access
to collected data. In many contexts, this
means putting the selectivity and filtering
capabilities on the end-user node itself
rather than relying on post facto filter-
ing. Another alternative is to give the
user a private server space in which to
review his or her data before release4—

at the expense of latency and other
usability aspects, of course.

Verification
Another related issue is trust and data

integrity. It’s important to develop sys-
tems where users can verify data’s cor-
rectness without violating the source’s
privacy. Moreover, because distributed
data management in mobiscopes relies
on user cooperation, a challenge becomes
introducing proper incentives that pro-
mote successful participation and prevent
abusive access with the purpose of “gam-
ing the system.” In some cases (such as a
peer-to-peer vehicle or handheld device
network), privacy constraints, transience
of communication between participants,
and the sheer number of participants
might actually make cryptographically
authenticating the user’s identity unde-
sirable or impractical. In these cases, the
correct solution might be to instead rely
on redundancy in the sensor data to val-
idate a data source anonymously.27 The
literature presents an early account of
many other privacy (and security) issues
in sensor networks.28

Privacy preserving data mining
Although we can resolve several pri-

vacy challenges by employing a trusted
authority that guarantees nondisclosure,
the need to be trusted increases the bar-
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rier to entry for anyone who might want
to contribute aggregation and search
functions to the sensor Web. This begs
the question: Can a system achieve pri-
vacy-preserving aggregation and search
without trusting the entity performing
these operations? In this case, a user isn’t
willing to share his or her data (with the
untrusted node) but might be interested

in the result of aggregation over the tar-
get community. An important field that
solves this problem is privacy-preserving
statistics and data mining.29 Typically,
the system uses additive random noise
to perturb data without affecting the sta-
tistics to be collected. It can then use per-
turbed data, for example, to compute
original data distributions30 or construct
decision trees for data classification31

without disclosing original values. 
Consider a trivial example where a

population wants to compute its aver-
age undetected number of speeding vio-
lations per month (as measured by speed
sensors mounted in vehicles that corre-
late actual speed to the speed limit read
from a map at the vehicle’s current GPS
location). A trivial solution is one where
each sensor adds a zero-mean random
number to the actual number of viola-
tions, sharing the resulting total. The dis-
closed total doesn’t reveal the actual pri-
vate data. Nevertheless, averaging the
totals over a large population gives the
true population average (because the
added noise averages out). This has the
additional benefit that if the population
isn’t large enough, the computed statis-
tic isn’t accurate. This is an advantage
because in a small population (for exam-

ple, a society of three), knowing an accu-
rate average can reveal a lot about the
individual values. 

The choice of the best perturbation
algorithm for a data set is a nontrivial
problem that has received much atten-
tion.32 Researchers have also studied the
extent to which additive noise improves
privacy, revealing cases where private data

can be reconstructed in violation of the
intent from perturbation. For example,
private data reconstruction is possible in
the presence of high data correlation.33

Another challenge is developing ro-
bust solutions (with respect to various
attacks on privacy) that apply to statis-
tical operations such as regression (used
in the traffic example) and classification
(used in learning). In general, because
future mobiscopes’ main goal will be
information distillation from raw data,
system designers will need theoretical
foundations for obfuscating the raw data
in a way that reconciles privacy require-
ments on individual measurements with
the ability to compute certain aggregate
properties of the collective.

Networking challenges
Integrating sensing-capable mobile

devices into the networking infrastruc-
ture shifts the network’s main utility
from data communication to informa-
tion filtering. For humans to make sense
of the constantly increasing flow of data
from sensors (and other sources), they
must have tools to selectively filter,
aggregate, and disseminate data on the
basis of individual data consumers’
expressed or statistically most likely

needs. A direct result of this information
reduction requirement is the need for
network storage as a key service because
aggregation and filtering both imply a
need to buffer information for a poten-
tially long time. Users might need to use
disruption-tolerant protocols and archi-
tectures34 to diffuse data toward desti-
nations and buffer data when no oppor-
tunities exist for making progress. 

Information reduction in disruption-
tolerant networks raises a host of research
challenges. One such challenge is proto-
cols that integrate opportunistic en route
aggregation mechanisms with buffering.
The interplay between storage and data
reduction in mobiscopes also offers inter-
esting directions for rethinking other basic
network functions such as congestion con-
trol. For example, you can reduce infor-
mation more aggressively as a congestion
control mechanism to alleviate high stor-
age use or to increase user privacy by keep-
ing data local. A direct consequence of the
need to process (for example, reduce) data
inside the mobiscope is having to focus on
network programming issues. So, a mobis-
cope architecture should present not only
communication protocol and data man-
agement interfaces but also programming
interfaces for in-network computation. In
short, the advent of ubiquitous networks
of mobile embedded devices shifts the fun-
damental networking paradigm, offering
application programmers interesting chal-
lenges in network architecture, protocol
design, and exported abstractions. Resolv-
ing these challenges to shape future net-
work standards will be a most interesting
task for the research community over the
next decade.

Human factors
and social implications

Mobiscopes will be tightly coupled with
their users. This presents significant
human-factors design challenges and many
sociocultural implications that extend
beyond limited notions of privacy in data
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transmission and storage. Both of these
issues should become integral considera-
tions for designing future mobiscopes. 

Academics contemplating observing sys-
tems for various disciplines—including
social sciences, public health, arts, and
humanities—have considered social issues
stemming from the autonomous observa-
tion of individuals by information tech-
nology.35–37 Mobiscopes are part of our
maturing ability to silently watch ourselves
and others, and their design and develop-
ment must consider related social issues.
Traditional responses to these concerns
often postpone serious investigation
because the technology is somehow con-
sidered immature. This is no longer true,
so we propose four areas for the commu-
nity to have a richer discussion of these
observing technologies’ social implications:

• explicitly considering broader policy
precedents in information privacy as
they apply to mobiscopes, 

• extending popular education on infor-
mation technology’s new observation
capabilities, 

• facilitating individuals’ participation
in sensing their own lives, and 

• helping users understand and audit
their own data uploads.

For example, Rakesh Agrawal and his
colleagues applied the Organisation for
Economic Co-operation and Develop-
ment international guidelines for data pro-
tection—collection limitation, data qual-
ity, purpose specification, use limitation,
security safeguards, openness, individual
participation, and accountability—to
medical-record databases.37 They demon-
strated that implementing or supporting
such ideals in technology presents rich
research problems with few immediate
solutions to practical concerns. Similarly,
Harry Hochheiser compared the World
Wide Web Consortium’s Platform for Pri-
vacy Preference with the US data privacy
policy.38 Mobiscope system design should

begin with a similarly broad consideration
of the existing policy base and the practi-
cal concerns of the people being sensed
rather than focusing solely on narrower
challenges, such as protecting sensitive
data during transmission and storage.

Finally, mobiscope design can involve
user interfaces of mobile devices, which
haven’t been present in traditional embed-
ded systems. We also suggest that having
a local UI provides a key opportunity for
ambient and explicit feedback to the user
on what data uploads are occurring from
mobile devices at any given time. It can
also help users configure their sensing par-
ticipation and provide feedback on oper-
ational status. An effective interface might
present real-time streams or historical
examples of locally collected data to help
users decide their desired privacy and
sharing settings. Or it might present long-
term features extracted from local or
remote data over some geographic region. 

For instance, an application providing
both upload feedback and location-based
information might display a stream of
automobile traffic information from an
aggregation service on a map by color or
line thickness (instead of actual numbers
of passing cars in a part of a city) or
through simple classification such as
avoid, heavy traffic, easy, and practically
no traffic categories on a speech-enabled
interface. At the same time, the display of
a multimodal interface might remind users
that the system was anonymously sharing
their positions to contribute to the traffic
map and give them the option to disable
it. This alone presents many challenges in
guaranteeing to the user that the system is
actually doing what it says it’s doing.

E
xisting research partially ad-
dresses some of the challenges
mobiscopes pose—for example,
several researchers have ad-

dressed privacy in sensor networks25,39 and
examined network architectures for par-

ticular classes of mobiscopes.9 Unfortu-
nately, this early work didn’t address the
broader architectural issues that must be
considered before mobiscopes can be
widely deployed. Much work must still be
done on platforms and APIs that offer effi-
cient, robust, private, and secure net-
working and sensory data collection in the
face of heterogeneous connectivity and
mobility.
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