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Activity and Location
Recognition Using
Wearable Sensors

C
ontext awareness—determining a
person’s current location and recog-
nizing what he or she is doing—is a
key functionality in many pervasive
computing applications. Location-

sensing techniques are based on either relative or
absolute position measurements.1 Much of the cur-
rent research in this area, described in the “Related
Work” sidebar, uses absolute-measurement–based
approaches (also called reference-based systems).
However, using both relative and absolute methods,
as robotics often does, is usually more effective in

terms of cost and performance.
The fundamental idea of the rel-
ative measurement approach is to
integrate incremental motion
information over time. This is
known as dead reckoning or
odometry.
We began our project to study the

feasibility of applying the dead-reckoning method
to recognize a person’s location in indoor environ-
ments. We focused on detecting walking behavior,
because human locomotion is achieved mainly via
walking. If a system can recognize walking behav-
iors and count the number of steps, it can estimate
a person’s current location referenced on a known
starting location. As a first attempt, we suggested a
combined method involving a simple active beacon
and dead reckoning that could track a person’s loca-
tion continuously with reasonable accuracy.2 How-

ever, it also showed an inherent problem of dead
reckoning—that heading errors cause large lateral-
position errors. To avoid this problem, we devel-
oped a location recognition method based not on a
description of motion in 2D space but on verbal
descriptions of path segments, such as “walk
straight, then go down the stairway, and turn
right.”3 We obtained a promising result: 86.7 per-
cent of the average recognition ratio (the number of
correctly detected transitions divided by the total
number of location transitions) for 12 transitions
between 6 locations in an office environment. How-
ever, the method was limited in the case of a long
path, because it determined transitions based on
accumulated numbers of steps instead of a whole
sequence; thus, it showed the location transition
before the person reached the destination. In addi-
tion, the main source of error originated from mis-
recognizing the person’s activity.

This article suggests an improved method to
tackle these limitations. This involves

• Improving activity recognition by adding differ-
ent types of sensors, finding an optimal sensor
position on the body, or both

• Finding an appropriate descriptor for the relative
displacement of the subject

The basic idea of our new approach has not
changed: detecting a location transition by inte-
grating the subject’s motor activities.

Using measured acceleration and angular velocity data gathered through
inexpensive, wearable sensors, this dead-reckoning method can determine
a user’s location, detect transitions between preselected locations, 
and recognize and classify sitting, standing, and walking behaviors.
Experiments demonstrate the proposed method’s effectiveness.
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The system 
To improve activity recognition, we mod-

ified the hardware, recognition method,
and position of the sensors on the body. The
system consists of a Linux-based PDA and
a sensing module (see Figure 1). The PDA
(YOPY from Gmate) has an Intel Stron-
gArm SA-1110 CPU, 16 Mbytes of RAM,
32 Mbytes of flash memory, a 320 ×
240–resolution TFT-LCD touch screen, and
other peripherals.

The body-worn sensing module consists
of an 8-bit microcontroller (the 10-MHz
PIC 16F873 from Microchips), a biaxial
accelerometer (ADXL 202EB from Analog
Devices), a simple digital compass sensor
(Digital sensor No.1490 from Dinsmore),
an angular velocity sensor (Gyrostar ENV-
05D from Murata), and other electrical
parts, including a 9V battery, power regu-
lator, RS-232 signal converter, and con-
nector. The sensing module is implemented
in two separate 50 × 35 × 75 mm boxes.
Using these simple and wearable sensors,
our methods detect the following prede-
fined activities, called unit motions: sitting,

standing, and three types of walking behav-
ior—walking on level ground, going up a
stairway, and going down a stairway.

We use a 3D position vector instead of a
verbal sequence of unit motions as a new
descriptor. When the system detects a
walking behavior, the proposed location

recognition method updates a current dis-
placement vector using dead reckoning.
The system then compares the calculated
current vector with a location transition
vector table that was built during a train-
ing phase. In the training phase, the sys-
tem first requires a set of data to determine
the parameters of the unit motion recog-
nizer for the three walking behaviors.
From this data, the unit motion recognizer
can determine the parameters automati-
cally. The system records unit motions and
heading measurements while the user
walks from one location to another. Using
the recorded sequences, the system can eas-
ily build a location transition table. In the
recognition phase, the system continuously
tries to find unit motions and recognize a
location transition from a known starting
location. 

Figure 2 shows the use of the sensing
modules and the direction of a measure-
ment obtained from each sensor. One box,
the leg module, contains the biaxial

Figure 1. The proposed PDA and sensing
module.
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accelerometer and the gyroscope. It is
located in the user’s right or left trouser
pocket and measures the acceleration and
angle of the user’s thigh. We can easily esti-
mate the leg module’s degree of movement
depending on the pocket’s shape and size.
We assume that the basic directions of
measurements do not change—that the leg
module is not turned upside down while it
operates. In general, this condition could
be satisfied for most kinds of trouser pock-
ets. The second box, the waist module, is
attached to the middle of the user’s waist
and detects direction as the person moves.
After some experimentation, we con-
cluded that these are the best positions for
activity and location recognition; the sys-
tem is also comfortable and provides unobstructed wearability.

The accelerometer in the leg module measures the forward and
upward accelerations of the user’s thigh, which are denoted by
ax(t) and az(t), respectively, where t stands for time. The acceler-
ation signals are low-pass-filtered via a second-order elliptic dig-
ital filter with a 2.5-Hz cutoff frequency. The system measures
the angle θ (t) of the user’s thigh movement using a digital inte-
grator of the angular velocity, (t), obtained from the gyroscope.

The digital compass sensor can give us only the four azimuth
headings (N, E, S, and W) as logic signals, which are read by
the microcontroller’s digital input ports. Using the 10-bit built-
in analog-to-digital converter, the microcontroller reads the two
acceleration and angular velocity signals every 20 milliseconds.
It then sends the data to the PDA via a serial communication
channel.

The proposed location recognition system has the same three
function blocks (from the conceptual functional layer) used in
our previous work: a sensing block (which starts at the bottom
layer) a unit motion recognizer (at the middle layer), and a loca-
tion recognizer (which ends at the top layer).3 The sensing block
reads the data from the sensors via the PDA’s serial port and
then executes a set of preprocessing tasks, including filtering
and computing statistical properties. When the unit motion rec-
ognizer identifies one of the five predefined types of unit motion,
the location recognizer calculates the current displacement vec-
tor by dead reckoning. Then, the location recognizer tries to
find this location in a table containing other locations’ relative
displacements from a starting point. If it finds a matched loca-
tion, it changes the user’s current location. This process repeats

with each new starting location.
Let’s consider an example. A coffee maker is located somewhere

away from the user’s seat or office. First, the user goes to the cof-
fee area to get a cup of coffee. We can describe these motor activ-
ities in terms of unit motions:

Path: standing → 2 steps north → 40 steps east → 3 steps south
→ 6 steps west

The transition vector from the user’s seat to the coffee maker
is (north: 2, east: 40, south: 3, west: 6). If the accumulated current
descriptor matches the descriptor in the trained vector table, the
system detects change in the user’s location. We can compute the
transition vector from the number of steps, with the heading as
(–34, –1, 0), where one step size is 1, and the east and north head-
ings are the x and y directions, respectively.

Unit motion recognition
The robust and reliable recognition of unit motion is impor-

tant for both situation awareness and location recognition. We
define the following values for unit motion recognition as a basic
feature vector:

{σx(t), σz(t), σθ(t), ∆θ1(t), ∆θ2(t), ∆θ3(t)}, (1)

where σx(t), σz(t), and σθ(t) are a standard deviation over 50 sam-
ples of the forward acceleration, upward acceleration, and the
thigh angle, θ(t), respectively. The ∆θ{1,2,3}(t) are the past three
angle differences when the angle direction changed. Each value

θ̇
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Figure 3. Typical trajectories of sensor
signals for level walking behavior of two
subjects (a) and (b).



of the angle difference can be obtained from the integration of
angular velocity in a time interval between zero crossings of θ(t).

Figures 3, 4, and 5 show the typical trajectories of two accel-
erations and an angular velocity for the three walking behaviors;
they also show distinguishable characteristics in the sensor sig-
nals for the three walking behaviors, especially in the angular
velocity changes. Based on this information, we derive the unit
motion recognition process as follows.

We can easily recognize sitting and
standing using the accelerometer to detect
an absolute gravitational acceleration.
When the following conditions are satis-
fied, the unit motion recognizer determines
the subject’s nonwalking behaviors:

• If σθ(t) > 16, ∆θ1(t) > 70°, ax(t) > 0.7 g,
then the current activity is sitting.

• If σθ(t) > 16, ∆θ1(t) < −70°, ax(t) <
0.3 g, then the current activity is
standing.

Here, g represents one gravitational accel-
eration. The proposed method can also rec-
ognize not only the activity but also the
user’s current status or pose.

In contrast, for walking behavior, the
system must not only recognize the user’s
activities but also count the number of
steps. This means that the system must dis-
criminate human walking in one cycle unit.
In ergonomics,4 one cycle of human walk-
ing (called the “gait cycle”) is generally
defined in terms of a time interval during
which one sequence of a regularly recur-
ring succession of events is completed.

To discriminate one cycle of level walk-
ing behavior, we use the positive peak value
of upward acceleration az(t) (denoted by
blue down arrows in Figure 3). Using a
conventional peak detection algorithm, the
system tries to find the accelerations’ pos-

itive and negative peak values. When it finds the positive peak of
az(t), the system tests the following conditions to determine a new
level behavior:

1. σx(t) > Thσx AND σz(t) > Thσz AND σθ(t) > Thσθ, where
Thσx,z,θ are threshold values for three feature values.

2. Whether the following feature value ≥ 2:
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Figure 4. Typical trajectories of sensor 
signals for up walking behavior.
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a. Find a number at the zero crossing
(the red circles in Figure 5a) of θ

.
(t) in

some interval.
b. If this number < 2, then the unit
motion recognizer tries to find the
number of angle changes (denoted by
the blue upward arrows in Figure 5b).

Because we found two types of typical
characteristics of sensor signals for many
people, we have introduced two feature
values for detecting a level behavior.

After detecting a level behavior, the unit
motion recognizer tries to classify it into
one of three subcategories: slow, normal,
or fast. This more specific recognition of
level walking behavior can help improve
the performance of the proposed location recognition method.
This classification technique is based on a simple fuzzy-logic rea-
soning method5 with the following input vector:

(2)

We build a fuzzy rule base Ri
l for the three kinds of walking

behaviors as follows:

Here, Mj
i is a fuzzy set characterized by a membership function,

which is defined as a Gaussian function:

, (3)

where j = 1, 2, 3 and i = S, N, F.
Using a Gaussian function as a membership function offers

several advantages. First, we can easily adjust the fuzzy set’s char-
acteristics with its parameters. Second, if it is possible to get sto-
chastic properties such as the mean and standard deviation from
a set of sampled training data, we can use them to design the mem-
bership function. Therefore, we can describe a fuzzy set with
paired numbers of mean and standard deviation values (denoted
m/σ). For example, Figure 6 shows plots for membership func-
tions of the fuzzy sets for (a) the input σx(t) for level behaviors

and (b) ∆θ1(t) for up and down behaviors.
Using the fuzzy rules and given input vector, we compute the

truth values of each proposition as

(4)

Here, we use the min operation as the AND operation in the fuzzy
rules.

Recognizing the up behavior is also based on the fuzzy logic
reasoning method. First, the recognizer tries to find the end of a
cycle of up behavior when the angular velocity goes to positive
near the moment of positive peak az(t), as Figure 4 shows. At this
moment, the recognizer performs the same fuzzy reasoning process
to determine an up behavior. The input vector for the fuzzy rea-
soning is defined as

. (5)

From the same process, we can get a truth value with the given cur-
rent input vector as

. (6)

To recognize a down behavior, the unit motion recognizer per-
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forms fuzzy reasoning with a different set of input values when-
ever zero crossing of the angular velocity occurs. The input vec-
tor for down recognition is defined as

(7)

and we can get a truth value as

. (8)

The unit motion recognizer finds a maximum value from
the obtained truth values ω i, i = S, N, F, U, D as defined in
Equations 4, 6, and 8. When the maximum truth value is
greater than a threshold value Thf, the unit motion recognizer
eventually determines the current step as one of the walking
behaviors.

Location recognition
After the location recognizer has estimated the subject’s cur-

rent displacement, it tries to find a matched location in the loca-
tion transition table, which has a set of relative displacements of
other locations from a known starting point. This means that our
location recognition method uses only a relative measurement for
the user’s location changes. We use a simple nearest-neighbor
method to find a current location.

In our proposed location recognition method, we define the
current displacement vector of the subject as a point in 3D space:

, (9)

where k represents the time stamp of detection of a walking
behavior.

When the unit motion recognizer detects a new walking behav-
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J onny Farringdon and colleagues and

Kristof V. Laerhoven and Ozan Cakmakci

have proposed interesting activity recogni-

tion methods that use accelerometers capa-

ble of distinguishing various human activi-

ties (sitting, standing, walking, ascending

and descending a stairway, and so on).1,2

We have suggested a recognition method

not only to classify user activities but also to

count steps, like a pedometer.3

Jeffrey Hightower and Gaetano Borriello

have tried various systems, sensors, and

techniques for indoor location sensing,

because global positioning systems are

unavailable in indoor situations.4

After Roy Want and colleagues developed

an infrared-signal-based Active Badge sys-

tem,5 others studied many active-markers

approaches. Recent work has suggested

location-sensing systems that use an ultra-

sound time-of-flight lateration technique

with radio frequency signal-based synchro-

nization.6,7 Instead of using an ultrasound

signal, others suggested location sensing

methods that use the RF signal strength as

an indicator of the distance between a

transmitter and a receiver on an already

existing RF data network.8,9

Another approach is the use of a camera

and natural or artificial passive markers.

Hisashi Aoki and colleagues10 developed a

positioning system that uses a forward-

looking, hat-mounted camera and a

dynamic programming algorithm on a

stand-alone PC. Brian Clarkson and

colleagues suggested a similar system that

uses a wearable camera and a Hidden

Markov Model algorithm to recognize a

user’s spatial situation, for example, “enter-

ing or leaving an office.”11

All of the systems described identify dis-

crete events. In contrast, Wasinee Rungsar-

ityotin and Thad E. Starner have proposed

a system that uses an omnidirectional cam-

era and a probabilistic algorithm to track a

person’s location.12
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ior, the location recognizer updates
the displacement vector by adding
the three axial components with the
heading measurement

cx(k + 1) = cx(k) + Sl cos (2πAh),
cy(k + 1) = cy(k) + Sl sin (2πAh),
cz(k + 1) = cz(k) + Ss ,

(10)

where Sl represents a normalized
stride length and Ss represents a
normalized height of one stair (1 for
up or −1 for down). Ah represents
an azimuth heading obtained from
the digital compass sensor. Because
this sensor can provide only four
azimuth headings, the Ah can be one
of four values: 0.25 n, n = 0, 1, 2, 3
for west, south, east, and north,
respectively.

The defined normalized stride length has the following values
for recognized walking behaviors:

(11)

We obtained the values for slow and fast with respect to normal
from the relationship between the stride length and speed derived
in our previous work.6 Even when the same user walks in free
form, the stride length has some variances due to speed. Gener-
ally, if a user walks faster, the stride length increases. We chose
the selected values from the linear model suggested in our previ-
ous work. To reduce the error caused by the variance of stride
length, we use a specific slow, normal, or fast level behavior to
estimate the current position. 

Even though there is a horizontal component in the case of up
and down behaviors, the major purpose of detecting those behav-
iors is to expand the working area into a multifloor environment
that can be covered by the proposed method. In addition, if we
consider the horizontal components of up and down behaviors,
the misrecognition of such behaviors can also affect the x and y
components. Therefore, we selected a zero stride length for up
and down behaviors.

As we mentioned earlier, after updating the vector, the location
recognizer tries to match it with a vector in the table. We define

the location transition vector from location i to location j as the
relative distance as follows:

, (12)

where N is the number of locations trained and i represents a start-
ing location. To find a matched location, we compare the distance
between the current position and the transition vectors with
respect to each component, then test whether the computed dis-
tances are less than each component of a threshold vector Thl ≡
{thx, thy, thz}. We test for

(13)

If the condition is satisfied, the recognizer eventually determines
the transition from the starting location to the current location.
Once the location recognizer determines the current location, the
current position vector and the starting location are reset to zero
and the changed location, respectively.

Experimental results
We tested the proposed method using a set of location transi-

tions between selected locations in an office environment.
To evaluate the performance of the unit motion recognizer, we

collected the walking data of eight subjects, two females and six
males aged 23 to 51. They wore different types of shoes, such as
sneakers, slippers, and high heels, and different types of pants,
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Figure 7. Location map showing
the selected locations and paths.
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such as jeans and slacks. For the training phase, each subject
walked approximately 20 cycles of level behavior at three speeds
and went up and down a stairway with 24 steps. Next, we col-
lected test data as each subject walked on level ground for 90
meters and went up and down between two floors.

From the training data, the unit motion recognizer automati-
cally extracts parameters such as threshold values and the mean
and standard deviations of the sensor signals. Table 1 shows the
parameters of the Gaussian membership functions of one subject
(also shown in Figure 6). We can see that if a user walks faster, both
feature values σx and σz increase. The threshold values used were 

Table 2 shows the average results of our activity recognition
method for eight subjects. Recognition performance was satisfactory
for counting steps as well as for classifying walking behaviors.

To evaluate the proposed location recognition method, we
chose five locations (see Figure 7): Lee’s seat (0), a colleague’s seat
(1), the printer room (2), the coffee area (3), and the entrance to
the second-floor laboratory (4). These locations are often used in
daily office activities. In the figure, solid blue lines denote paths
between two locations.

From the three to five trials for one path (transition from loca-
tion i to j), we built a location transition table for a subject with the
average relative distance between the source and destination. Table
3 shows the obtained location transition table and threshold vec-
tors for each path. For example, in Figure 8, we plot the distances
from Lee’s seat to all other locations.

For N given locations, we should build N(N − 1)
location transition vectors to recognize the total
number of paths. In our evaluation, we only built
10 transition vectors out of a maximum of 20 tran-
sitions, where N is 5. As Figure 8 shows, we can
roughly see the real displacement of other locations
from location 0. We can see some deviations for the
same location: the error source is the incorrect esti-
mation of stride length and heading detection. The
heading error is most significant in terms of its influ-
ence on the current position. In our approach, we
just use a relative measurement, because it does not
require an absolutely accurate detection of the user’s
heading, just a reasonable repeatability.

We performed a set of location transition exper-
iments with one subject to evaluate the method’s
performance. First, we used circular paths. We also
tried a set of more complex paths such as 0 → 1 →

Th Th Th Th
x z fσ σ σ= = = =0 08 0 1 2 5 0 6. , . , . , . .

θ
 and 
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TABLE 1
The mean and standard deviation values of membership

functions for one subject.

Input σx σz σθ ∆θ1 ∆θ2 ∆θ3

Level m1
i m2

i m3
i – – –

Slow 0.211 0.191 12.99 – – –

Normal 0.236 0.288 11.92 – – –

Fast 0.269 0.363 12.05 – – –

Level σ 1
i σ 2

i σ 3
i – – –

0.1 0.1 5 – – –

Up m1
U m2

U m3
U m4

U m5
U –

0.207 0.226 15.45 −45.78 38.88 –

σ 1
U σ 2

U σ 33
U σ 44

U σ 55
U –

0.1 0.2 7 20 20 –

Down – – – m1
D m2

D m3
D

– – – 7.65 −24.48 25.11

– – – σ 1
D σ 2

D σ 3
D

– – – 7 15 15

TABLE 2
Recognition ratios (%) of the unit motion recognizer

for eight subjects.

Unit Total number
(%) Level Up Down Missing of steps

Level 95.91 0.51 0.67 2.92 978
Up 0 94.35 0 5.65 195
Down 0.51 0 92.85 6.63 199

Lee's seat
Colleague's seat
Printer room
Coffee area
Entrance to 2nd-floor lab

5

0

-2

-4

–6

–8

–10

–12

10

0

–10

–20

–30–20

–15

–10

–5

0

Figure 8. Relative displacement vectors from 
location 0 to locations 1 to 4. 



2 → 0. As Table 4 shows, we obtained promising results, indi-
cating an improvement from our previous approach even with
minimal hardware and processing power. The total average
recognition ratio for 10 location transitions was 91.8 percent.

The method was limited in the case of a long path. The pro-
posed method is based on dead reckoning, so it has the same prob-
lem as our previous method: an accumulated error increases pro-
portionally to the distance the user travels. As Table 3 shows, we
selected bigger threshold values for longer paths. However, we
think we can partially solve this problem by introducing more
locations with smaller path lengths. This would mean that the
location recognizer would achieve the accumulated error of zero
more frequently.

The other limitation is that the proposed method is prone to
drift—meaning that if the recognizer incorrectly determines a loca-
tion transition from a starting location, the method will not be
able to determine an appropriate location transition. This limi-
tation is an inherent characteristic of all dead-reckoning-based
location-sensing systems. 

W e believe that our proposed method can help
enhance conventional methods based on absolute
measurement, such as active-marker methods, in
terms of accuracy, scalability, and cost. We would

like to study ways to find an optimal combination of two mea-
surements for better location sensing. We also plan to implement
a pervasive device for inclusion in our environment.
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TABLE 3
Location transition table for the selected paths.

Path dx
ij dy

ij dz
ij (thx, thy, thz)

0 → 1 −3.79 −3.07 0 (1.6, 1.6, 1.2)
0 → 2 −13.20 −2.85 0 (2.0, 1.6, 1.2)
0 → 3 −19.00 0.75 0 (2.5, 1.6, 1.2)
0 → 4 0.40 −15.97 −11.30 (2.5, 2.5, 4.0)
1 → 0 3.34 3.32 0 (1.6, 1.6, 1.2)
1 → 2 −10.50 0.50 0 (1.6, 1.6, 1.2)
2 → 0 12.40 2.65 0 (1.6, 1.6, 1.2)
2 → 3 −5.60 1.18 0 (1.6, 1.6, 1.2)
3 → 0 19.50 0.25 0 (2.5, 1.6, 1.2)
4 → 0 −2.73 14.63 10.33 (2.5, 2.5, 4.0)

TABLE 4
Results of running the location recognizer for four circular 

paths and two complex paths.

Number Number Accuracy 
Path of trials of failures (%)

0 → 1 22 0 100.0
1 → 0 22 1 95.5
0 → 2 22 0 100.0
2 → 0 22 1 95.5
0 → 3 20 1 95.0
3 → 0 20 3 85.0
0 → 4 15 2 86.7
4 → 0 15 3 78.6
0 → 1 → 2 →0 16 1 93.8
0 → 2 → 3 →0 14 0 100.0
Average 91.8
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