Network technology: privacy implications

Keunwoo Lee
590T (Society and Technology seminar)
8 May 2006

Plan

- What do
 - my computer & local network
 - my Internet connection
 - websites I visit
 know about me?
- How can this data be aggregated?
- How can we mitigate the risk of exposing “too much information”?

Your computer

“Personal information”:
- Your files, keystrokes, etc…
- Software IDs from online registration, etc.
- Assorted hardware IDs
 - Intel unique CPU ID, hard drive serial number, etc.

No “good reason” to transmit the above; hence, you “trust” your software not to send over the network

Then there’s your network card…

Your network card

- Most local network hardware is Ethernet
- MAC address:
 - Every Ethernet card in the world has unique ID number called a MAC address
 - Implicitly & necessarily broadcast to peers
 whenever connecting to network (and sometimes when not)

Plan

- What do
 - my computer & local network
 - my Internet connection
 - websites I visit
 know about me?
- How can this data be aggregated?
- How can we mitigate the risk of exposing “too much information”?

The Internet

Microsoft
Barnes & Noble
Speakeasy

“The Internet(s)”

Keunwoo’s laptop
Cybercafe access point

00:00:35:52:88:32
The Internet

- UW
- Microsoft
- Barnes & Noble
- Speakeasy
- GigaPop
- AT&T (Backbone)
- Pacific Wave.net
- SGNS.net

Internet Protocol (IP) subnets

- UW
- Microsoft
- Barnes & Noble
- Speakeasy
- GigaPop
- AT&T (Backbone)

IP address assignment

- Keunwoo’s UW-CSE workstation: 128.208.3.7
- Keunwoo’s home DSL connection: 216.254.13.6

IP sharing via NAT

- Keunwoo’s UW-CSE workstation: 128.208.3.7
- Keunwoo’s home DSL router: 216.254.13.6

When Google’s your ISP...

- Google Web Search Server
- Google server farm
- Google municipal access point
- Google ISP

IP address assignment

- Broadband: typically static, i.e. assigned for months or years on end
- Dial-up, cybercafes, other transient connections: dynamic, i.e. assigned for minutes/hours from pool
 - Provider can still keep logs of which customer had which IP at any given time; will produce if subpoenaed etc.
- Network address translation (NAT)
 - multiple machines to share one IP address
 - plausible deniability?
So what?

- IP address is necessarily communicated to any machine that you talk to directly
 - Visit website, incl. search engine
 - Send instant message
 - Share file via peer-to-peer
 - Play online game
 - …

- Many applications log these addresses...

Plan

- What do
 - my computer & local network
 - my Internet connection
 - websites I visit
 - know about me?
- How can this data be aggregated?
- How can we mitigate the risk of exposing “too much information”?

Application protocols

- TCP/IP provides “pipes”; application protocols determine what goes through the pipes

 - Email
 - Web (HTTP)
 - …

HTTP

- How a browser asks a server for information
- Like all other direct Internet connections, communicates your IP address
- HTTP referer: When you click a hyperlink, your browser tells the target web server what page you’re coming from
 - Not required, but all browsers do this by default
- Cookies: a way for web servers to ask your browser to store a small amount of information on their behalf
 - Browser may reject cookies

HTTP server logs

Whenever you visit a web server (e.g., www.washington.edu), that server probably records at least the following:

- Your IP address
- What web browser you’re using
- What language your web browser’s configured to use
- The time
- The name of the page you requested

Modern web pages: many pieces
Plan

- What do
 - my computer & local network
 - my Internet connection
 - websites I visit
 know about me?
- How can this data be aggregated?
- How can we mitigate the risk of exposing "too much information"?

Databases

<table>
<thead>
<tr>
<th>Name</th>
<th>Birth</th>
<th>CustID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice Acker</td>
<td>2/17/1950</td>
<td>12345</td>
</tr>
<tr>
<td>Bob Booth</td>
<td>1/2/1960</td>
<td>63563</td>
</tr>
<tr>
<td>Carol Collins</td>
<td>NULL</td>
<td>27729</td>
</tr>
<tr>
<td>Dave Dawkins</td>
<td>5/4/1980</td>
<td>26626</td>
</tr>
<tr>
<td>Dave Dawkins</td>
<td>5/6/1990</td>
<td>60009</td>
</tr>
</tbody>
</table>

Database fusion

- Database join: fundamental operation, as old as databases
- Combines records from 2 or more tables that "match" on some column value

Join example

<table>
<thead>
<tr>
<th>ISPCustomers</th>
<th>Telemarketinglist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Address</td>
</tr>
<tr>
<td>Alice Acker</td>
<td>1 First St.</td>
</tr>
<tr>
<td>Bob Booth</td>
<td>200 2nd St.</td>
</tr>
<tr>
<td>Dave Dawkins</td>
<td>3 Third St.</td>
</tr>
<tr>
<td>Carol Collins</td>
<td>4 Fourth St.</td>
</tr>
</tbody>
</table>

Complications in practice

- How did one entity get both of these databases?
 - Incentives to share data?
- Hard if data doesn't match perfectly
 - What if one database used the name "David F. Dawkins"?
- Ongoing CS research problem: database fusion with imperfectly matching data
 - State of the art: can get statistically good matches, but not absolute confidence
 - What you can expect in the future (Keunwoo’s non-specialist opinion): automated statistical matching will get "as good as people" i.e. still imperfect but say, >95% confidence seems likely

Giga-scale databases

- "Giga-scale database" (word I made up this morning):
 - Billions+ of records in many tables
 - Data gathered by multiple entities
 - Errors/nulls/imperfect matches inevitable
 - What are imperfect matches good for?
 - Targeted advertising (exact matches don’t matter)
 - Blackmail? (public opinion does not require proof)
 - Prompt for further investigation
 - Not (directly) legal proceedings?
 - Costs on the order of tens of millions of $ per year to "mine" this scale of data
 - Will come down with time
Plan

- What do
 - my computer & local network
 - my Internet connection
 - websites I visit
 - know about me?
- How can this data be aggregated?
- How can we mitigate the risk of exposing "too much information"?

Mitigating privacy risk: technological measures

- “Separation of powers”
- Encryption
- Anonymizers
- Post hoc data scrubbing

“Separation of powers”

- Don’t get your Internet connection from the company that runs your web apps
 - Depending on data you want to remain correlated, may not be effective
 - Once you buy something from Amazon, they have your IP and your name/address
- Don’t get all your web services from one place
 - May reduce risk of database fusion

Encryption

- Prevents interception of communications by third parties
- Good to have, but not the real privacy problem

The Internet

- UW
- Microsoft
- Pacific Wave.net
- Barnes & Noble
- GigaPop
- AT&T (Backbone)
- Speakeasy
- Keunwoo’s laptop
- Pacific Wave.net (Backbone)
- Keunwoo’s home DSL router
- SGNS.net
- Barnes & Noble
- Pacific Wave.net
- AT&T (Backbone)

Anonymizers

- Severe performance penalty, probably for the foreseeable future
- Hard for novice users to set up (& who has the business incentive to make it easy?)
Post hoc data scrubbing

- Why doesn’t Google “scrub” its logs?
 - It wants to mine statistics
 - Hard (or sometimes impossible) to scrub data well without losing statistical properties
 - Hard to scrub data “enough” to prevent recovery by data fusion later