Rational decisions

Chapter 16

Outline

- Rational preferences
- Utilities
- Money
- Multiattribute utilities
- Decision networks
- Value of information

Rational preferences

Idea: preferences of a rational agent must obey constraints. Rational preferences ⇒ behavior describable as maximization of expected utility

Constraints:

- Orderability
 \[A \succ B \lor (B \succ A) \lor (A \sim B) \]
- Transitivity
 \[(A \succ B) \land (B \succ C) \Rightarrow (A \succ C) \]
- Continuity
 \[A \succ B \succ C \Rightarrow \exists p \ [p, A; 1 - p, C] \sim B \]
- Substitutability
 \[A \sim B \Rightarrow [p, A; 1 - p, C] \sim [p, B; 1 - p, C] \]
- Monotonicity
 \[A \succ B \Rightarrow (p \geq q \Leftrightarrow [p, A; 1 - p, B] \sim [q, A; 1 - q, B]) \]

Preferences

An agent chooses among prizes \((A, B, \text{ etc.})\) and lotteries, i.e., situations with uncertain prizes

Lottery \(L = [p, A; (1-p), B] \)

Notation:

- \(A \succ B\): \(A\) preferred to \(B\)
- \(A \sim B\): indifference between \(A\) and \(B\)
- \(A \preceq B\): \(B\) not preferred to \(A\)

Maximizing expected utility

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
Given preferences satisfying the constraints there exists a real-valued function \(U\) such that

\[U(A) \geq U(B) \Leftrightarrow A \succeq B \]
\[U([p_1, S_1; \ldots ; p_n, S_n]) = \sum p_i U(S_i) \]

MEU principle:
Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tic-tac-toe

Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced to give away all its money

If \(B \succ C\), then an agent who has \(C\) would pay (say) 1 cent to get \(B\)

If \(A \succ B\), then an agent who has \(B\) would pay (say) 1 cent to get \(A\)

If \(C \succ A\), then an agent who has \(A\) would pay (say) 1 cent to get \(C\)
Utilities

Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities:
- compare a given state \(A \) to a standard lottery \(L_p \) that has
 - "best possible prize" \(u_1 \) with probability \(p \)
 - "worst possible catastrophe" \(u_2 \) with probability \((1-p) \)

Adjust lottery probability \(p \) until \(A \sim L_p \)

\[
\begin{align*}
 &p = 0.999999 \quad \text{continue as before} \\
 &p = 0.000001 \quad \text{instant death}
\end{align*}
\]

Pay $30 ~

Student group utility

For each \(x \), adjust \(p \) until half the class votes for lottery \((M=10,000)\)

Utility scales

- **Normalized utilities**: \(u_1 = 1.0, u_2 = 0.0 \)
- **Micromorts**: one-millionth chance of death
 - useful for Russian roulette, paying to reduce product risks, etc.
- **QALYs**: quality-adjusted life years
 - useful for medical decisions involving substantial risk

Note: behavior is **invariant** w.r.t. +ve linear transformation

\[
U'(x) = k_1 U(x) + k_2 \quad \text{where } k_1 > 0
\]

With deterministic prizes only (no lottery choices), only **ordinal utility** can be determined, i.e., total order on prizes

Decision networks

Add action nodes and utility nodes to belief networks

to enable rational decision making

\[
\begin{align*}
 &\text{Algorithm:} \\
 &\text{For each value of action node} \\
 &\text{compute expected value of utility node given action, evidence} \\
 &\text{Return MEU action}
\end{align*}
\]

Multiattribute utility

How can we handle utility functions of many variables \(X_1 \ldots X_n \)?

E.g., what is \(U(Deaths, Noise, Cost) \)?

How can complex utility functions be assessed from preference behaviour?

Idea 1: identify conditions under which decisions can be made without complete identification of \(U(x_1, \ldots, x_n) \)

Idea 2: identify various types of **independence** in preferences

and derive consequent canonical forms for \(U(x_1, \ldots, x_n) \)

Money

Money does **not** behave as a utility function

Given a lottery \(L \) with expected monetary value \(EMV(L) \), usually \(U(L) < U(EMV(L)) \), i.e., people are **risk-averse**

Utility curve: for what probability \(p \) am I indifferent between a prize \(x \) and a lottery \([p, \$M; (1-p), \$0] \) for large \(M \)?

Typical empirical data, extrapolated with **risk-prone** behavior:
Strict dominance

Typically define attributes such that \(U \) is monotonic in each

Strict dominance: choice \(B \) strictly dominates choice \(A \) iff
\[
\forall i \ X_i(B) \geq X_i(A) \quad \text{(and hence } U(B) \geq U(A))
\]

\[X_2 \]
\[X_1 \]

Deterministic attributes

Uncertain attributes

Strict dominance seldom holds in practice

Stochastic dominance

Distribution \(p_1 \) stochastically dominates distribution \(p_2 \), iff
\[
\forall x \int_{-\infty}^{x} p_1(x)dx \leq \int_{-\infty}^{x} p_2(x)dx
\]

If \(U \) is monotonic in \(x \), then \(A_1 \) with outcome distribution \(p_1 \)
stochastically dominates \(A_2 \) with outcome distribution \(p_2 \):
\[
\int_{-\infty}^{\infty} p_1(x)U(x)dx \geq \int_{-\infty}^{\infty} p_2(x)U(x)dx
\]

Multiattribute case: stochastic dominance on all attributes \(\Rightarrow \) optimal

Stochastic dominance contd.

Stochastic dominance can often be determined without exact distributions using qualitative reasoning

E.g., construction cost increases with distance from city

\(S_1 \) is closer to the city than \(S_2 \)

\(S_1 \) stochastically dominates \(S_2 \) on cost

E.g., injury increases with collision speed

Can annotate belief networks with stochastic dominance information:

\[X \rightarrow Y \] (\(X \) positively influences \(Y \)) means that
For every value \(z \) of \(Y \)’s other parents \(Z \)
\[
\forall x_1, x_2 \ x_1 \geq x_2 \Rightarrow P(Y|x_1, z) \text{ stochastically dominates } P(Y|x_2, z)
\]
Preference structure: Deterministic

X_1 and X_2 preferentially independent of X_3 iff
preference between (x_1, x_2, x_3) and (x'_1, x'_2, x_3)
does not depend on x_3

E.g., (Noise, Cost, Safety):
(20,000 suffer, 4.6 billion, 0.06 deaths/1pmp) vs.
(70,000 suffer, 4.2 billion, 0.06 deaths/1pmp)

Theorem (Leontief, 1947): if every pair of attributes is P.I. of its complement, then every subset of attributes is P.I of its complement: mutual P.I.

Theorem (Debreu, 1960): mutual P.I. \(\Rightarrow \exists \) additive value function:
\[
V(S) = \sum_i V_i(X_i(S))
\]

Hence assess \(n \) single-attribute functions; often a good approximation

Preference structure: Stochastic

Need to consider preferences over lotteries:
X is utility-independent of Y iff
preferences over lotteries in X do not depend on y

Mutual U.I.: each subset is U.I of its complement
\(\Rightarrow \exists \) multiplicative utility function:
\[
U = k_1 U_1 + k_2 U_2 + k_3 U_3 + k_1 k_2 U_1 U_2 + k_2 k_3 U_2 U_3 + k_3 k_1 U_3 U_1
\]

Routine procedures and software packages for generating preference tests to identify various canonical families of utility functions

Value of information

Idea: compute value of acquiring each possible piece of evidence
Can be done directly from decision network

Example: buying oil drilling rights
Two blocks A and B, exactly one has oil, worth k
Prior probabilities 0.5 each, mutually exclusive
Current price of each block is $k/2$

“Consultant” offers accurate survey of A. Fair price?

Solution: compute expected value of information

\[
= \text{expected value of best action given the information} \\
- \text{minus expected value of best action without information}
\]

Survey may say “oil in A” or “no oil in A”, prob. 0.5 each (given!)
\[
= 0.5 \times \text{value of “buy A” given “oil in A”} + 0.5 \times \text{value of “buy B” given “no oil in A”} - 0
= (0.5 \times k/2) + (0.5 \times k/2) - 0 = k/2
\]
General formula

Current evidence E, current best action α
Possible action outcomes S_i, potential new evidence E_j

$$EU(\alpha|E) = \max_a \sum_i U(S_i) P(S_i|E, \alpha)$$

Suppose we knew $E_j = e_{jk}$, then we would choose α_{jk} s.t.

$$EU(\alpha_{jk}|E_j = e_{jk}) = \max_a \sum_i U(S_i) P(S_i|E, a, E_j = e_{jk})$$

E_j is a random variable whose value is currently unknown

\Rightarrow must compute expected gain over all possible values:

$$VPI(E_j) = \left(\sum_k P(E_j = e_{jk}) EU(\alpha_{jk}|E_j = e_{jk}) \right) - EU(\alpha|E)$$

(VPI = value of perfect information)

Properties of VPI

Nonnegative—in expectation, not post hoc

$$\forall j, E \; VPI(E_j) \geq 0$$

Nonadditive—consider, e.g., obtaining E_j twice

$$VPI(E_j, E_k) \neq VPI(E_j) + VPI(E_k)$$

Order-independent

$$VPI(E_j, E_k) = VPI(E_k, E_j) = VPI(E_k) + VPI(E_j|E_k)$$

Note: when more than one piece of evidence can be gathered, maximizing VPI for each to select one is not always optimal

\Rightarrow evidence-gathering becomes a sequential decision problem

Qualitative behaviors

a) Choice is obvious, information worth little
b) Choice is nonobvious, information worth a lot
c) Choice is nonobvious, information worth little