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Abstract 

In large distributed networks of computers, it is often the 
case that a subset of machines wants to cooperate to per- 
form a task. Before they can do so, these machines need to 
learn of the existence of each other. In this paper we are 
interested in distributed algorithms whereby machines in a 
network learn of other machines in the network by mak- 
ing queries to machines they already know. The algorithms 
should be efficient both in terms of the time required and 
in terms of the total network communication required until 
all machines have discovered all other machines. We pro- 
pose a very simple algorithm called Name-Dropper whereby 
all machines learn about each other within O(log’ n) rounds 
with high probability, where n is the number of machines in 
the network. The total number of connections required is 
O(n log2 n) and the total number of pointers which must be 
communicated is O(n2 log2 n), with high probability. Each 
of the preceding bounds is optimal to within polylogarithmic 
factors. 

1 Introduction 

In large distributed networks of computers, it is often the 
case that a subset of machines want to cooperate to perform 
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a common task. For example, machines may cooperate to 
implement a distributed web caching protocol, to form a dis- 
tributed file system, or to do some distributed computation. 
A first step in any of these applications is for the machines 
to learn about the existence of each other. In other words, 
machines need to know “Who on the network wants to co- 
operate with me. 7” This common first step is what we call 
the Resource Discovery Problem. 

Resource discovery algorithms need to be efficient in terms 
of time and network communication. That is, machines 
should learn about each other quickly, without using an in- 
ordinate amount of communication. This is particularly im- 
portant in applications where the algorithm may be used 
repeatedly to obtain updated information about the status 
of machines in the system. 

An instance of the resource discovery problem is mod- 
eled as a directed graph. Each machine is represented by a 
node of the graph and edges represent the relation “machine 
A knows about machine B.” As machines learn about each 
other, new edges are added to the graph. Communication 
can only take place between machines that know about each 
other, in contrast to, say, a “global ping” on the network, 
that every machine responds to. In terms of the graph, a 
node u can only communicate with another node v if there 
is a directed edge from u to v. In this case v is considered 
to be a neighbor or ‘(I. We will use the terms “network” 
and “graph” and the terms “machine” and “node” inter- 
changably. 

We are interested in distributed resource discovery algo- 
rithms, where there is no central control in the network and 
machines operate independently of each other, making lo- 
cal queries to their neighbors and transferring information 
about part or all of their neighbor lists. Figure 1 gives an 
example of a connection between adjacent nodes where one 
node, A, makes a connection with node B and is sent B’s 

entire neighbor list, causing A’s neighbor list to increase by 
two nodes. 

We model resource discovery algorithms as proceeding 
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in synchronous parallel rounds. We define one round as 
the time for each machine in the network to contact ‘one 
or more of its neighbors and exchange some subset of its 

neighbor list. The running time of a resource discovery algo- 

rithm is the number of rounds required until every machine 

knows about every other machine, i.e., a complete graph is 

formed. Observe that different rounds can have different 

running times. One difference is caused by the fact that the 

“neighbors” of a node may be of different distances from 

the node in the underlying physical network. However, it 

can also turn out that communicating between two nodes 

which are physically close may be more costly than com- 

municating between two nodes which are far apart because 

of differences in the speeds of the routers and speeds of the 

machines. Thus we simply use the number of rounds as our 

run time metric. In practice there is enough time between 

rounds that each round is able to complete. 

Another performance measure of resource discovery al- 
gorithms is the amount of network communication they re- 

quire. We measure network communication in two ways: 

The pointer communication completity is defined to be the 

total number of pointers communicated during the course 

of the algorithm. The connection communication complez- 

ity is defined to be the total number of connections which are 

opened during the course of the algorithm, where a connec- 

tion between u and v is created when u contacts v. During 

the connection, u is allowed to transmit as much information 

as it likes to v. The operation shown in Figure 1 for example 

has connection communication complexity of 1 and pointer 

communication complexity of two, since one connection is 

openned and two pointers are transferred. As another ex- 

ample, suppose we have a d-regular graph and each node 

picks one of its neighbors and sends it its entire neighbor 

list (including itself). Then the total pointer complexity for 

that round is n(d+l), whereas the communication complex- 

ity for the round is n. We consider both the pointer com- 

munication complexity and the connection communication 

complexity because, in practice, network communication is 

a linear combination of the two. 

Our only assumption about the network is that it is ini- 

tially weakly connected. That is, if we ignore edge directions 

then the graph is connected. In practice, this boils down 

to giving every newly added machine a pointer to at least 

one machine in the network. Weak connectivity is a nec- 

essary assumption because otherwise we allow disconnected 

networks where there is no hope of ever evolving into one 
component. 

Our goal is to design a resource discovery algorithm which 

requires few rounds and requires low network communica- 

tion. For practical reasons it is more important that the 

algorithm be very simple than that it achieve absolutely op- 

timal performance. In this paper we propose a randomized 

resource discovery algorithm with the following properties: 

l Our algorithm is distributed and each machine exe- 

cutes the same simple local protocol. 

l Machines learn about each other quickly: If there are n 
machines, then with high probability within O(log2 n) 
rounds, all machines know about each other. 

l Our algorithm does not flood the network with com- 

munication. In particular the connection communica- 

tion complexity is O(n log2 n) and the pointer commu- 

nication complexity is O(n2 log2 n), with high proba- 

bility. 

Each of the preceding bounds is optimal to within polylog- 

arithmic factors. 2 

1.1 Some Candidate Algorithms 

Before describing our algorithm, we llrst describe a few nat- 

ural algorithms for resource discovery, some of which are 

used in real systems. Our algorithm uses ideas from each of 

these. The performance of these algorithms is summarized 

in Table 1. 

1.1.1 The Flooding Algorithm 

The Flooding algorithm is used by Internet routers today [8]. 

In the Flooding algorithm, a machine is initially config- 

ured to have a lixed set of neighboring machines, and direct 

communication is only allowed with machines in this set. In 

terms of the graph, a node only communicates over the edges 

that were initially in the graph; new edges that are added 

to the graph are not used for communication. Observe that 

those edges that constitute the “initial neighbors” are not 

necessarily the links in the underlying physical network, but 

rather they are virtual links, each possibly corresponding to 

a path in the underlying network. 

We denote by I(v) the set consisting of v and of all the 

nodes that v points to. In every round of the Flooding 

algorithm, each node v contacts all of its initial neighbors 

and transmits to them the updates to I’(v), (denoted by 

I-(v) 
Updates ), i.e., those nodes in I(v) that are new since 

the last time v sent information. A node u that receives 

I’(v)Updates then updates its set of neighbors by merging 

I’(u) and I’(v)Updates, (r(2L) t r(2L) u ryvpdates). 
The number of rounds required for the Flooding algo- 

rithm to converge to a complete graph is equal to the di- 

ameter, dinitial, of the initial graph. If dinitial is small then 

the algorithm is fast; however dinitiar could be large: O(n). 

2Following this paper, a deterministic algorithm has been proposed 

for the problem with running time O(log nlog’ n), [ll]. 
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Thus the Flooding algorithm could be very slow if we are 
not careful to start with an initial graph that has small di- 

ameter. 

The communication complexity of the Flooding algo- 
rithm also depends on the initial graph. Let rni,,itial be the 

number of edges in the initial graph. The pointer communi- 
cation complexity of the Flooding algorithm is O(n.mi,,itial) 

because every pointer must be sent over every edge during 

the algorithm. The connection communication complexity 

of the Flooding algorithm is O(d;,+al .m;,,iti,,r). The above 

bound can be obtained by the following argument: If the di- 

ameter is din;tial, then every point s is at least d/2 distance 
away from some other point, which means that there is a 

shortest path to s of length at least d/2. Thus s learns new 

pointer information in one of the next 2 d/2 rounds. Thus 

s must open up a connection with all of its initial neighbors 

during each of the new rounds, so that it can communi- 

cate this new information to them. Hence every one of the 

minitial edges is used during at least the next d/2 rounds. 
Thus the lower bound is G(dinitiol * minitiar). Observe that 

this is also an upper bound since there are dinitioi rounds, 

and during each round at most minitiol connections can be 

open. 

The bottom line is that the network complexity depends 

on both dinitial and mi,,it;al, and often at least one of these 

will be high. Observe that minitial is always 2 n, since the 

inital graph is weakly connected. 

1.1.2 The Swamping Algorithm 

As we mentioned above, the Flooding algorithm is used by 

Internet routers today. However the Internet routers are 

in fact designed with the capability of opening connections 

to any machine they know about, not just machines in the 

“initial set.” Although this capability is not currently being 

used in the context of the Internet, it is available in case 

future algorithms require it. 

The Swamping algorithm is identical to the Flooding al- 

gorithm except that machines may now open connections 

with all their current neighbors, not just their initial neigh- 

bors. Also since the neighbor sets change, all of the current 

neighbor set is transfered, not just the updates. That is, a 

machine v now sends l?(v) to every machine in I’(v), instead 

of only sending to its initial set of neighbors. 

The advantage of the Swamping algorithm is that the 

graph always converges to a complete graph in O(logn) 
steps, irrespective of the initial configuration. 

The disadvantage of the Swamping algorithm is that 

the network communication complexity is increased. The 

pointer communication complexity of the Swamping algo- 

rithm is Q(n”), since during the last round, when the graph 
is almost complete, each of the n machines sends each of its 

n pointers to each of its n neighbors. The connection com- 

munication complexity of the Swamping algorithm is n(n”) 

since during the last round, when the graph is almost com- 

plete, each of n machines makes connections with each of its 
n neighbors. 

The bottom line is that the Swamping algorithm is very 
fast (only O(log n) rounds), but this speed is obtained at 
the cost of wasted communication where many machines are 

being told of machines they already know about. 

1.1.3 The Random Pointer Jump Algorithm 

The disadvantage of the Swamping algorithm is that the 
communication complexity grows quickly. To reduce the 

communication complexity one might consider having each 

machine communicate with only one randomly-chosen neigh- 
bor during each round. 

The Random Pointer Jump Algorithm works as follows: 

In each round, each machine v contacts a random neighbor 

u E I’(v). The chosen neighbor u then sends P(U) to v, who 

then merges P(u) with P(v). An example of the Random 

Pointer Jump operation is given in Figure 1. Note that this 

operation corresponds to the classical pointer jump opera 

tion, commonly used in parallel algorithm design, see [7]. 

The Random Pointer Jump Algorithm can only be ap- 

plied to strongly connected networks (i.e., there must exist 

a path between every pair of machines), because otherwise 

the graph will never converge to a complete graph. Consider 

for example the graph with two nodes and a single directed 

edge between them: the remaining edge cannot be formed. 

Given that the graph is strongly connected, the Random 

Pointer Jump might seem like a good idea. For example a 

ring of n nodes converges to a complete graph in O(logn) 

rounds with high probability and the total connection com- 

munication complexity is only O(nlogn), since there are 

log n rounds during which each of n machines opens up one 

connection. 

Interestingly, it turns out that this algorithm is not a 

good choice - even for strongly connected graphs. Figure 3 
gives an example of a graph that is strongly connected and 

requires, with high probability 8(n) rounds to converge to 

a complete graph. 

Claim 1 With high probability, the graph in figure 3 requires 

O(n) time to converge to a complete graph using the random 

jump local query. 

Proof: We only include a sketch here. Consider the time it 

takes for the outside ring to shrink to a clique. The problem 

is that at every round there are only a small number, O(l), of 

ring nodes that choose their successor in the ring to run the 
protocol with (each ring node only has probability 0(1/n) 

231 



Flooding 

Swamping 

Random Pointer Jumn 

Name-Dronner 

Num. Rounds 

dinitiol 

W-x 4 
C?(n) in worst case 

O(log2 n) 

Pointer Communication Connection Communication ~1 
Table 1: This table shows the performance of 3 natural resource discovery algorithms, as compared with our own resource 

discovery algorithm, Name-Dropper. In the above notation: m;n;t;ot is the number of edges in the initial gmph, n is the 

number of nodes in the graph, and dinitiot is the initial diameter of the gmph. The Name-Dropper algorithm outperforms 

the other 3 algorithms in terms of worst-case communication complexity by a factor of Sl(n/log2n), while the runtime of the 

Name-Dropper algorithm is close to optimal. 

(0 (ii) 

Figure 1: (i) Before the Random Pointer Jump. Node A chooses at random one of its neighbors and opens a connection with 
it. Here the chosen neighbor is labeled B. (ii) After the Random Pointer Jump. Node B has passed to node A all of its 

neighbors, and now A also points to them. The newly formed edges are shown with dashed lines. 

of choosing its neighbor in the ring). Thus, in expectation, 

pointer jumping within the ring alone will only shrink the 

ring by a constant number of nodes at each round, thus 

requiring e(n) rounds to shrink the ring. 

Unfortunately, pointer jumping from within the central 

clique is not of much helpful use. The single edge pointing 

out of the center clique is replicated to all of the nodes in the 

clique in O(log n) time. At this point, this edge is chosen by 

one of the center nodes, and the single ring node pointed to 

by this edge effectively becomes part of the central clique. 

At this point, we are in a very similar situation to what 

we started with. Again we have a central clique and a ring 

(with one fewer nodes), where the central clique has one edge 

pointing out to the ring. This process repeats, but every 

O(logn) steps, the ring will only shrink by O(1) nodes due 

to pointer jumping from the central clique. n 

1.1.4 Random Pointer Jump with Back Edge 

Consider what went wrong with the Random Pointer Jump 

algorithm of the previous section. The problem was that 

the central clique of Figure 3 was very slow to accumulate 

pointers out to the outside ring, and therefore we couldn’t 
exercise the power of that central clique to quickly shrink 

the ring. A natural idea for improving the Random Pointer 

Jump algorithm of the previous section is to add a back 

edge every time a pointer jump is performed. Specifically, 

when node A chooses node B and node B passes to A all 

of its neighbors, node B also obtains a pointer back to A, 

as shown in Figure 2. This would cause the central clique 

in Figure 3 to almost immediately obtain pointers to all 

points on the outer ring. We call the new algorithm Random 

Pointer Jump with Back Edge. 
We believe that Random Pointer Jump with Back Edge 

will have very good performance, however we have not been 

able to prove good bounds on the time for this algorithm to 

converge. The natural types of argument which one would 

like to make involve trying to show that every u --+ v + w 

path gets jumped every O(log n) steps so that the diameter 

of the graph is cut by a factor of two every O(logn) steps. 

However when one tries to make this type of argument about 

Random Pointer Jump with Back Edge, one runs into the 

problem of not being able to ensure that a particular pointer 
will be jumped, i.e. a particular edge will be chosen. The 

difficulty is that a node may have many neighbors, i.e. many 

distracters, keeping it from choosing the particular edge that 

we would like it to choose. For this reason, we have instead 

chosen to study an algorithm which is very similar to Ran- 
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(ii) 

Figure 2: (i) Before the Random Pointer Jump with Back Edge. Node A chooses at random one of its neighbors and opens 
a connection with it. Here the chosen neighbor is labeled B. (ii) After the Random Pointer Jump. Node B has passed to 
node A all of its neighbors, and now A also points to them. In addition node B is also given a pointer to node A. The newly 
formed edges are shown with dashed lines. 

0) 

Figure 3: (i) A strongly connected graph with n nodes that takes time Q(n) to converge to a complete graph using the random 
pointer jump local query. The “center” of the graph is a complete graph on n/2 nodes. Each node in the ring around the 
center is connected to every node in the central clique. There is a single node in the clique that points out to a single node 
on the ring - therefore making the graph strongly connected. 

dom Pointer Jump with Back Edge, but where the direction 
of information transfer is opposite to Random Pointer Jump 
with Back Edge. We will describe this algorithm, which we 
call Name-Dropper, in the next section and see that it is in 
fact surprisingly easy to reason about. 

1.2 Our Algorithm - Name-Dropper 

The Name-Dropper algorithm looks very similar to the Ban- 
dom Pointer Jump with Back Edge algorithm presented in 
the previous section. 

The Name-Dropper algorithm works as follows: During 
each round, each machine v transmits I’(v) to one, randomly 
chosen neighbor. A machine u that receives I’(v) merges 
I’(v) with I’(U) es in the previous algorithms. Figure 4 il- 
lustrates one connection in the Name-Dropper algorithm.3 

3Name-Dropper derives its name from the following social behav- 

ior commonly called “name dropping.” A newcomer approaches a 

group of people and introduces himself. During the ensuing conver- 

sation, the newcomer inserts into the conversation all the names of 

the people he knows, usually in the belief that he will profit from his 

In Section 2 we will prove that Name-Dropper terminates 
in O(log2 n) rounds with high probability whereas the Ban- 
dom Pointer Jump algorithm can take D(n) rounds. As a 
consequence, we will also conclude that the network com- 
munication complexity of Name-Dropper is very low: The 
connection communication complexity is O(n log2 n) and the 
pointer communication complexity is O(n2 log’ n). All these 
bounds are within polylogarithmic factors of optimal. 

The Name-Dropper algorithm has been implemented at 
the Laboratory of Computer Science at MIT as part of a 
project to build a large-scale distributed cache. The project 
enables certain machines on the Internet to cooperate in 
caching information. In order for these machines to coop- 
erate they must first locate each other - this is where the 
Name-Dropper resource discovery algorithm is used. The 
Name-Dropper algorithm has been licensed to Akamai Tech- 
nologies, which is building an Internet-wide content-distribution 
system. 

associations, however this aspect of the social behavior is irrelevant 

to our algorithm. 
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1.3 Previous Work 

The Flooding algorithm which we describe in Section 1.1.1 

is used today by routers on the Internet, see the Internet 

Request For Comments number 1583 [8]. 
Communication and broadcast by local queries has been 

extensively studied under the name “gossiping” [6, 4, 2, 191. 

The “classical” gossiping problem assumes that either’ all 

machines know about each other, or that there is a fixed 

communication network. Gossiping is used to broadcast in- 

formation from every machine to every machine. In [6], a 

survey of general lower bounds on the number of connec- 

tions that need to be made to broadcast information from 

every machine to every other machine can be found. In ad- 
dition, [S] describes tight upper bounds for gossiping on 
fixed specific communication networks. 

In contrast to the classical gossiping problem, we address 

the problem of broadcasting in networks where machines 

may not initially know about each other. Our results show 

that if we allow machines to learn about other machines dur- 

ing the gossip process, then gossiping can be done efficiently 

starting from any weakly connected graph. 

Gossip type algorithms have been used in various prac- 
tical distributed systems and algorithms [l, 3, 5, 10, 9, 121. 

For example, in [l, 31, gossiping is used to maintain consis- 

tency in a distributed replicated database. Recently [12], 

gossiping has been used to gather information about fail- 

ures in a network of machines. Most of these gossiping al- 

gorithms assume that all the machines on the network-are 

already aware of each other, and that information needs to 

be broadcast from one or more of the machine to the oth- 

ers. This broadcast is carried out by an algorithm similar to 

the Name-Dropper: choose a random neighbor and tell him 

your information. 

In [12], it is assumed for simplicity that only a single ma- 

chine gossips at every round, and the authors give empirical 

evidence that information is propagated to all machines in 

linear time. Our analysis proves that even if machines are 

not aware of each other at the start, after O(log2 n) paml- 

lel rounds of gossiping, information has propagated to the 

whole network. 

2 Performance Analysis of Name-Dropper 

The main theorem in this paper is as follows: 

Theorem 2 Let G be any weakly connected directed graph 
on n vertices. Then, after O(log2 n) rounds of the Name- 
Dropper algorithm, the gmph evolves into a complete graph 

with probability greater than 1 - ;;$m. 

Observe that there is a lower bound of log n steps for any 

resource discovery algorithm since the diameter of the graph 

can at most halve with every round. We conjecture that this 

lower bound can be achieved with high probability using the 

Name-Dropper algorithm; however we have not been able to 

find a proof nor a counterexample to this conjecture. 

As a corollary to Theorem 2, we obtain an upper bound 
on the network communication complexity required by the 

Name-Dropper algorithm. 

Corollary 1 The connection communication complexity of 
Name-Dropper is O(n log2 n) with probability greater than 

1 - --&. The pointer communication wmplezity of the 

Name-Dropper algorithm is O(n2 log’ n) with probability greater 
than 1 - ;;dm. 

Proof: With respect to connection communication com- 

plexity, during each round, each of n machines only makes 

one connection, and there are O(log2 n) rounds. 

With respect to pointer communication complexity, each 

round may require each machine to transfer O(n) point- 

ers. Thus the pointer communication complexity is upper 

bounded by n2 times the number of rounds. n 

The rest of this section is devoted to proving Theorem 2. 

We begin with an overview of the proof. 

We break the evolution of the graph into stages that are 

each O(logn) rounds long. We then show that, with high 

probability, the distance between every two nodes (measured 

after undirecting the edges) goes down by a constant factor 

every stage. Therefore, after O(logn) stages, the graph is 

complete since the distance between every two nodes is one 

with high probability. 

The main step in showing that a stage is successful (namely 

that the distance between every two nodes goes down by a 

constant factor) is to show that every node on a shortest 
path makes a “pointer jump” with high probability. More 

specifically, if u -+ u + w is a subsequence of a short- 

est path, then we show that after O(log n) rounds, v has an 

edge to w with high probability. 

In fact,we’ll show that every triple v + u + w has a 

very good chance of making a pointer jump within O(log n) 

rounds. Then we’re done by the following argument: Pick 

one shortest path between each of the n2 pairs of nodes. 

Each of these shortest paths has at most n triples. Thus 

we have n3 triples which we care about, and each of these 

makes a pointer jump with probability 1 - 5, where c is a 

constant. Assuming c is high enough (in this case > 4), then 
all the n3 triples will make a pointer jump with probability 

at least l- 3. 
We will use the above type of union-bound argument re- 

peatedly in our analysis. To avoid extensive notation we will 

always denote the above constant by c, however it is impor- 
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(ii) 

Figure 4: (i) Before Name-Dropper. Node A chooses a random neighbor, here the neighbor is labeled by B. 

round of the Name-Dropper algorithm. A has passed to B all of its neighbors and B has added edges to these 

addition, B learns about A. The edges added to the graph are dashed. 

tant to realize that each time we use this type of argument 

the constant c needs to be chosen appropriately. 

We now prove Theorem 2: 

Let G = (V, E) be the graph. We abuse notation and 

always denote the edge set of the graph by E, although it 

may increase at every step. A directed edge from u to v is 

denoted by (u, v). The following lemma is the main step in 

proving Theorem 2. 

Lemma 2.1 Given any u,v, w E V such that (w,u) E E 

and (w,v) E E. Then for any constant c, with probability 

greater than 1 - --J& after O(clog n) steps of the Name- 

Dropper algorithm we have (u, v) E E and (v, u) E E. 

Figure 5 shows the setup of Lemma 2.1. 

(9 (ii) 

Figure 5: (i) The setup of the nodes u, v, and w in Lemma 

2.1. (ii) The configuration guamnteed to occur with high 

probability by Lemma 2.1 after O(logn) steps of the Name- 

Dropper algorithm. 

For now we simply assume Lemma 2.1 to be true and 
continue with our proof of Theorem 2. Our original graph 

G = (V, E) is weakly connected. As a first step, we will 

prove that the graph will become strongly connected after 

O(logn) steps of the name dropper algorithm. In fact we 

will prove something stronger, namely that for every edge 

in E, an edge in the opposite direction will be created. 

Lemma 2.2 If (u, v) E E, then with probability at least l- 

-&, after O(clogn) steps the edge (v,u) E E. 

(ii) After one 

neighbors. In 

Proof: We will apply Lemma 2.1. Suppose there exists a 

node w E V such that (w,u) E E and (w, v) E E. In this 

case, Lemma 2.1 immediately applies and we are done. Now 

suppose there does not exist such a node w. In this case, 

either u contacts v directly in the next round, forming the 

edge (v, u), or else u contacts some other node w in the next 

round. In the latter case, w will now get a pointer back to 

u and a pointer to all of u’s neighbors, including v. At this 

point, w will satisfy the condition for Lemma 2.1. n 

So by running Name-Dropper for O(clogn) steps, the 

graph becomes strongly connected with probability at least 

1 - --&. After this first stage, we divide the evolution 

of the graph into stages consisting of O(log n) rounds each. 

At the beginning of each stage we measure the distance be- 

tween each pair of nodes (note that since the graph is al- 

ready strongly connected, there is a path between each pair 

of nodes). Our goal is to show that after O(c log n) rounds, 

or one stage, the distance between each pair of nodes is at 

most half of what it was at the beginning of the stage, with 

probability 1 - --&. We will focus on one particular pair 

of nodes u and v and show that the above statement is true 

for that pair. Then, since there are only O(nz) paths, we 

can use a union bound to show that all the paths shrink by 

the desired amount with probability greater than 1 - -&. 

Let u + 201 + wz + . . . + v be the shortest path 

between u and v at the start of a stage. We show that with 

probability greater than 1 - & every node on the path 

executes a “pointer jump” after O(clog n) steps, for every 

constant c. We focus on one particular node, s, in the path, 

and prove that it does a pointer jump with probability at 

least 1 - --& after O(clogn) rounds. Since there are at 
most n nodes in the path, a union bound suffices to show 

the result. 

Let s + t -+ z be three nodes in the path. We first 

invoke Lemma 2.2 to show that after O(clog n) rounds, with 

probability greater than 1 - --&, the edge (t, s) is added 

235 



to the graph. Now we have exactly the configuration of 

Lemma 2.1, and thus the edge (~,a) is added to the graph 

with probability greater than 1- --& after O(clog n) steps. 

Since there can be at most O(logn) stages where dii- 

tances go down by a constant factor, the graph must be 

complete with probability greater than l- --& in O(log’ n) 

steps. 

The only thing that remains is proving Lemma 2.1. 

Proot[Proof of Lemma 2.11 Let A denote the set of nodes 

that have edges to both nodes u and v. The set A is not 

empty by the assumption of the lemma, w E A. By symme- 

try it suffices to focus on one of the edges (u, v), (v, u), say 
(u, v). The overview of the proof is as follows: We will show 

that during every round one of two things are true: Either 

1. 

2. 

This 

The probability that the edge (u, v) is formed is at 

least some constant, or 

The probability that the set A grows by some constant 

factor is at least some constant. 

suffices to prove the lemma since (2) can happen at 

most O(log n) times and if (1) happens O(clog n) times then 

the probability that the edge (u, v) is formed is at least 1 - 

$3. 
Observe that the only way that the edge (u,v) can be 

formed is if some node in A contacts U. Let & denote the 

degree of node i in A. Then, 

Pr {edge (u, v) is formed} 

= 1 - Pr {edge (u, v) is not formed} 

So, if the probability that (u,v) is formed is less than 

1 -e-a, then: 

This in turn implies that at least half of the nodes in 

A have degree greater than 21AI. We now show this last 

statement in turn implies that the size of A will increase by 

a constant factor with constant probability at the next step. 

In particular we show that at least l$ nodes that were not 

in A are contacted by a node in A with probability at least 
1 

ii. 

Denote by the “special set” the set of l$ nodes in A that 
have degree at least 21AI. Each of the nodes in the special 

set point to at least IAl nodes that are not in A. Thus, 

each node in the special set contacts a node not in A that 
no other node in the special set contacts with probability at 

least a. Thus, the expected number of new nodes in A is at 
least +.i=l$l. 

We now use a “bounded Markov argument” to show that 

the probability that the number of new nodes in A is less 

than + is less than +$. 

Bounded Markov Argument Let X be a random vari- 
able that is bounded from below by 0 and from above by U. 

That is, 0 5 X 5 U. Then for t 5 U, 

Pr{X 5 t} < “,“‘,“‘. 

Thus by the bounded Markov argument we see that 

IAl - v _ 14 
Pr {Number of new nodes in A < $ } < - - -. 

IAl-+ 15 

We have shown that at every round either there is a 

constant probability that the edge (u, v) is formed or a con- 

stant probability that the set A grows by a constant factor. 

A simple Chernoff argument will now show that if an event 

has a constant probability at every step of occurring and 

there is independence between the steps then after O(c log n) 
steps the event will happen O(log n) times with probability 

greater than 1 - ;;$rsr . 

This concludes the proof of Lemma 2.1 and thus the proof 

of Theorem 2 as well. w 

3 Conclusion and Future Work 

In thii paper we consider the problem of resource discovery 
in a distributed network and propose several natural and 

simple distributed algorithms to solve the problem. All of 

our algorithms involve machines making local queries to one 

or more neighboring machines, whereby a machine trans- 

fers its neighbor list, or part thereof to a neighboring ma- 

chine. Our analysis shows that the Name-Dropper algorithm 

achieves near-optimal performance both with respect to time 

complexity and with respect to the network communication 

complexity. 

One thing that makes this result peculiar is that the 

Name-Dropper algorithm is almost identical to the Ran- 

dom Pointer Jump algorithm, however the worst-case per- 

formance of the Random Pointer Jump algorithm is very 

poor (0(n) rounds are required by Random Pointer Jump 

as compared with O(log2 n) rounds for Name-Dropper). In 

both the Name-Dropper and the Random Pointer Jump al- 
gorithms, during each round, each machine a chooses one, 

random machine b from its neighbor list at random. In the 

case of Name-Dropper, a sends to b a pointer to each ma- 

chine on a’s neighbor list (which includes itself). In the case 
of Random Pointer Jump, b sends to a a pointer to each 

machine on b’s neighbor list. 
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As mentioned earlier, the Name-Dropper algorithm is 

currently being implemented within the Laboratory of Com- 

puter Science at the Massachusetts Institute of Technology 

as part of a project to build a large-scale distributed cache. 

The idea is to have certain machines on the Internet coop- 
erate in caching information. In order for these machines 

to cooperate they must first locate each other, which is 
where the Name-Dropper resource discovery algorithm is 
used. The Name-Dropper algorithm has been licensed to 

an LCS startup company, Akamai Technologies, which is 

building an Internet-wide content-distribution system. 

There are many issues which we have not explored in 

this paper. For one thing, our analysis has assumed that 

the network is static, i.e., that there are no machines being 

added or removed while the algorithm is running. In real- 

ity, a machine can unexpectedly crash and be brought back 

online, can change location, or can become temporarily un- 

available. Such circumstances are likely to occur in large 

systems with no centralized control, and resource discovery 

algorithms should be capable of operating in such environ- 

ments. Currently the time for one or more new machines to 

be fully incorporated into the network is the running time of 
the algorithm, but that assumes that no new machines are 

added to the network during the time the algorithm is run- 

ning. We have some preliminary results for the running time 

of the algorithm in the presence of ongoing births. However 

we are finding the presence of deaths more difficult to ana- 

lyze. 
A second, somewhat related problem, is the question of 

how the cooperating machines know that they have all dis- 

covered each other (and can thus stop running the algo- 

rithm). In particular, there might be more machines out 

there which just haven not been discovered yet. Unfortu- 

nately, knowing when to stop depends on first knowing the 

number of machines which are out there, which is a related 

problem of interest proposed by Lipton [Personal communi- 

cation, 19981. 
Thirdly, one weakness of our current model is that it 

allows for the possibility that in some given round, many 

machines in the network might all choose to contact the 

same one particular host. In reality that host could only 

maintain a small number of simultaneous connections and 

would have to deny access to all the other machines trying to 

contact it. Even under those more stringent circumstances, 

however, we conjecture that the Name-Dropper algorithm 

would still converge to a complete graph in O(log2 n) rounds. 

Finally, an interesting open problem is whether the run- 

ning time of the Name-Dropper algorithm can be shown 

to be O(logn) rounds, or whether there exists some other 

equally simple algorithm which only requires Q(log n) rounds. 
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