Bounded Fixpoints for Complex Objects

Dan Suciu*

August 1993

^{*}With thanks to Val Breazu-Tannen and Peter Buneman

Purpose: Desing a *robust* query language which:

- Works on complex objects
- Is in PTIME
- Can express recursive queries (at least DATALOG)

Plan:

- ullet Introduce the Nested Relational Algebra
- Introduce the Bounded Fixpoint
- State the main result
- Sketch the proof

The Language

Types:

$$\tau ::= unit \mid b \mid \tau \times \tau \mid \{\tau\}$$

 $b \in \text{an unspecified set of base types } (nat, bool, string, etc). unit \stackrel{\text{def}}{=} \{()\}.$

Complex Objects

E.g.
$$x = \{(a, \{a, c\}), (b, \{\}), (c, \{a, b, c\})\}$$
 of type $\{char \times \{char\}\}$.

The Nested Relational Algebra

Formalism: from Breazu, Buneman and Wong.

Other names:

The Nested Algebra (Paredaens and Van Gucht)

The Algebra without Powerset

(Abiteboul and Beeri), etc.

• Union (\cup) , empty set (\emptyset) , cross product (\times)

•

$$\overline{\eta_{\sigma}: \sigma \to \{\sigma\}} \qquad \overline{\mu_{\sigma}: \{\{\sigma\}\}\} \to \{\sigma\}}$$

$$\frac{f: \sigma \to \tau}{map(f): \{\sigma\} \to \{\tau\}}$$

$$\eta(x) \stackrel{\text{def}}{=} \{x\}
\mu(\{x_1, \dots, x_n\}) \stackrel{\text{def}}{=} x_1 \cup \dots \cup x_n
map(f)(\{x_1, \dots, x_n\}) \stackrel{\text{def}}{=} \{f(x_1), \dots, f(x_n)\}$$

 $\frac{f \in \Sigma}{f : d_f \to c_f}$ A given set of external functions

Facts About the Nested Relational Algebra

- 1. All queries are in PTIME
- 2. It is a conservative extension of the First Order queries. (Paredaens and van Gucht, Wong, Van den Bussche). Hence, it cannot express recursive queries, like transitive closure $tc: \{b \times b\} \to \{b \times b\}$.

Problem: Extend NRA such as to preserve (1), and to express recursive queries.

First attempt: Add a fixpoint, as for first order logic:

$$\frac{f: \sigma \times \{\tau\} \to \{\tau\}}{fix(f): \sigma \to \{\tau\}}$$

 $fix(f)(x) \stackrel{\text{def}}{=} \bigcup_{n \geq 0} y_n$, where:

$$y_0 \stackrel{\text{def}}{=} \emptyset$$

$$y_{k+1} \stackrel{\text{def}}{=} y_k \cup f(x, y_k)$$

(inflationary semantics).

BUT: can express powerset, an exponential time (and space) query!

The Powerset

$$f: \{\sigma\} \times \{\{\sigma\}\} \to \{\{\sigma\}\}$$

$$f(x,Y) \stackrel{\mathrm{def}}{=} \{\emptyset\} \cup map(\eta)(x) \cup map(\cup)(Y \times Y)$$

Then, fix(f)(x) = powerset(x). More, $\mathcal{NRA} + fix = the \ algebra \ (with \ powerset)$ of Abiteboul and Beeri.

The Bounded Fixpoint (idea due to Peter Buneman)

$$\frac{f: \sigma \times \{\tau\} \to \{\tau\} \ g: \sigma \to \{\tau\}}{bfix(f,g): \sigma \to \{\tau\}}$$

Inflationary Semantics: $bfix(f,g)(x) \stackrel{\text{def}}{=} \cup_{n\geq 0} y_n$, where:

$$y_0 \stackrel{\text{def}}{=} \emptyset$$

$$y_{k+1} \stackrel{\text{def}}{=} y_k \cup f(x, y_k) \cap g(x)$$

Partial Semantics: $bfix(f,g)(x) \stackrel{\text{def}}{=} y_n$, where:

$$y_0 \stackrel{\text{def}}{=} \emptyset$$

$$y_{k+1} \stackrel{\text{def}}{=} f(x, y_k) \cap g(x)$$

and $y_{n+1} = y_n$.

When no external functions are present $(\Sigma = \emptyset)$, at *flat* types (i.e. set height 1), bfix and fix are equivalent.

Example Transitive closure:

$$f: \{b \times b\} \times \{b \times b\} \to \{b \times b\},\$$

$$f(x,y) \stackrel{\mathrm{def}}{=} x \cup (x \circ y)$$

Then, $tc(x) = fix_i(f)(x) = fix_p(f)(x)$.

For bfix, take $g: \{b \times b\} \rightarrow \{b \times b\}$:

$$g(x) \stackrel{\text{def}}{=} (\Pi_1(x) \cup \Pi_2(x)) \times (\Pi_1(x) \cup \Pi_2(x))$$

Then $tc(x) = bfix_i(f,g)(x) = bfix_p(f,g)(x)$.

Bounding is "harmless" at flat types.

Main Result

Theorem 1 The following properties hold:

- 1. Even with external functions ($\Sigma \neq \emptyset$), we have:
 - $\mathcal{NRA}(\Sigma) + bfix_i \subseteq PTIME$
 - $\mathcal{NRA}(\Sigma) + bfix_p \subseteq PSPACE$

2.

- $\mathcal{NRA} + bfix_i + order = PTIME$
- $\mathcal{NRA} + bfix_p + order = PSPACE$

(Does not follow directly from Immerman, Vardi's results).

3.

- $\mathcal{NRA} + bfix_i$ is a conservative extension of FO + LFP (First Order Logic with Least Fixpoints), i.e. of DATALOG (with inflationary fixpoints).
- $\mathcal{NRA} + bfix_p$ is a conservative extension of FO+ partial fixpoints, i.e. of $DATALOG^{*,\neg}$, i.e. of the while-queries.

Proof of the Conservativity Result

Technique: **index type** I

 $left: unit \rightarrow I$

 $right : unit \rightarrow I$

 $pair : I \times I \rightarrow I \text{ injective}$

- 1. Translate $\mathcal{NRA}(\Sigma) + bfix$ into $\mathcal{RA}(\Sigma \cup I) + bfix$ (i.e. the **relational algebra** extended with Σ , I, and bfix).
 - Translate types to flat types $\tau \rightsquigarrow \pi_{\tau}$.
 - Translate functions $f : \sigma \to \tau$ to $R_f : \pi_{\sigma} \to \pi_{\tau}$.
 - Encode complex objects $x : \tau$ by flat relations (with indexes) $r : \pi_{\tau}$.
- 2. When $f: \sigma \to \tau$, show how to eliminate the indexes from $R_f: \pi_\sigma \to \pi_\tau$. Write: $x \sim r$ (a one to many relation)

1. The Translation

Lemma 1 $\pi = \{s_1\} \times ... \times \{s_k\}$ flat type. Then:

$$[I \Rightarrow \pi] \stackrel{\text{def}}{=} \{I\} \times \{I \times s_1\} \times \ldots \times \{I \times s_k\}$$

can encode all partial finite functions $\psi: I \to \pi$ and, hence, all elements of $\{\pi\}$.

E.g.
$$\pi = \{s_1\} \times \{s_2\}$$
:

i_1	
i_2	
i_3	
i_4	

i_1	a
i_1	b
i_1	c
i_2	a
i_2	c

encodes the partial function:

$$i_{1} \mapsto \begin{pmatrix} \boxed{a} \\ \boxed{b} \\ \boxed{c} \end{pmatrix}$$

$$i_{2} \mapsto \begin{pmatrix} \boxed{a} \\ \boxed{c} \end{pmatrix}$$

$$i_{3} \mapsto \begin{pmatrix} \emptyset, \boxed{m} \\ \boxed{n} \end{pmatrix}$$

 $i \mapsto \text{undefined, when } i \notin \{i_1, i_2, i_3, i_4\}$

and, hence, encodes the complex object:

$$\{(\{a,b,c\},\{m\}),(\{a,c\},\emptyset),(\emptyset,\{m,n\}),\emptyset\}$$

Translation of Types, and Encoding of Complex Objects

- Base types: $\pi_b \stackrel{\text{def}}{=} \{b\}$. Values of base types: $x \sim \{x\}$.
- Product types: $\pi_{\sigma \times \tau} \stackrel{\text{def}}{=} \pi_{\sigma} \times \pi_{\tau}$. Values of product types: $(x, y) \sim (r, q)$ iff $x \sim r$ and $y \sim q$.
- Set types: $\pi_{\{\sigma\}} \stackrel{\text{def}}{=} [I \Rightarrow \pi_{\sigma}].$ Values of set types: $\{x_1, \dots, x_n\} \sim r$ iff r encodes some finite, partial function $\psi : I \to \pi_{\sigma}$, and $\forall k = 1, n, \exists i \in I \text{ s.t. } x_k \sim \psi(i)$:

Translation of Functions

Lemma 2 For any $f : \sigma \to \tau$ in $\mathcal{NRA}(\Sigma) + bfix$, there is some $R_f : \pi_{\sigma} \to \pi_{\tau}$ in $\mathcal{RA}(\Sigma \cup I) + bfix$, such that:

•
$$\forall x, r, x \sim r \Rightarrow f(x) \sim R_f(r)$$
.

The interesting cases are:

Flatten (μ) (μ ({ x_1, \ldots, x_m }) $\stackrel{\text{def}}{=} x_1 \cup \ldots \cup x_m$) Take R_{μ} to be:

		i_1	i'_{11}	r_{11}		$pair(i_1, i'_{11})$	r_{11}
			:	:			:
			i'_{1n_1}	r_{1n_1}		$pair(i_1, i'_{1n_1})$	r_{1n_1}
R_{μ}		:	:		$\stackrel{\text{def}}{=}$:	:
	-	$ i_m $	i'_{m1}	r_{m1}		$pair(i_m, i'_{m1})$	r_{m1}
			•••	••			:
			i'_{mn_m}	r_{mn_m})	$pair(i_m, i'_{mn_m})$	r_{mn_m}

Union (\cup) Cannot take $R_{\cup} \stackrel{\text{def}}{=} \cup$. Instead, translate $doubleton : \sigma \times \sigma \to \{\sigma\}, doubleton(x,y) \stackrel{\text{def}}{=} \{x,y\}$:

Then, $x \cup y = \mu(\{x, y\})$.

Map ((map(f))

$$\frac{f:\sigma\to\tau}{map(f):\{\sigma\}\to\{\tau\}}$$

We have $R_f: \pi_{\sigma} \to \pi_{\tau}$.

Take $R_{map(f)}: [I \Rightarrow \pi_{\sigma}] \to [I \Rightarrow \pi_{\tau}],$

$$R_{map(f)} \stackrel{\text{def}}{=} [I \Rightarrow R_f]$$

(need induction on R_f).

Bounded Fixpoint (bfix(f,g)) More complicated than $bfix(R_f, R_g)$, because indexes in R_f and R_g have no connection: "Rename" those in R_f .

2. Elimination of Indexes

 $f:\sigma \to \tau, \ \sigma \text{ is flat} \Rightarrow \text{use the elements of } x \in \sigma \text{ as indexes themselves. } pair \stackrel{\text{def}}{=} \text{ tuple concatenation.}$

Need a lot of work to keep the types right.

Conclusion

• Fills in a gap:

First Order Logic	FO with fixpoints	
(= Relational Algebra)	$(= DATALOG^{\neg})$	
Nested Relational Algebra		
(= Nested Algebra,	?	
= Algebra w/o powerset		
= Strictly Safe Calculus)		

We propose: "?" = Nested Relational Algebra with bounded fixpoints.

- "Bounding" works for other kinds of iterations as well.
- Rather powerful proof technique: it is order independent, and suggests a implementation technique (could be used for flattening of *nested parallelism*).