Bounded Fixpoints for Complex Objects

Dan Suciu*

August 1993

*With thanks to Val Breazu-Tannen and Peter Buneman

1

Purpose: Desing a robust query language which:

e Works on complex objects
e Isin PTIME

e Can express recursive queries (at least DAT ALOG™)

Plan:

e Introduce the Nested Relational Algebra
e Introduce the Bounded Fizpoint

e State the main result

e Sketch the proof

The Language
Types:

To=unit |b| 7 x71|{r}

b € an unspecified set of base types (nat, bool, string,
-, def
etc). unit = {()}.

Complex Objects

Eg z= {(av {av C})7 (b7 {})7 (C7 {av b, C})}

of type {char x {char}}.

The Nested Relational Algebra

Formalism: from Breazu, Buneman and Wong.
Other names:

The Nested Algebra (Paredaens and Van
Gucht)

The Algebra without Powerset
(Abiteboul and Beeri), etc.

e Union (U), empty set (), cross product (x).

Moo= {0} po:{{o}} — {o}
fro—T
map(f) : {c} = {7}
n(x) < {z}
p{zy, . x)) € U U,
map(f)({z1,...,2a}) € {f(@1),. .., S}

A given set of external functions

Facts About the Nested Relational Algebra

1. All queries are in PTIME

2. It is a conservative extension of the First Order queries.
(Paredaens and van Gucht, Wong, Van den Bussche).
Hence, it cannot express recursive queries, like tran-
sitive closure te : {b x b} — {b x b}.

Problem: Extend NRA such as to preserve (1), and to
express recursive queries.

First attempt: Add a fixpoint, as for first order logic:

f:ox{r}—={r}
fix(f) 0 — {7}

fiz(f)(x) def Un>0 Yn, Where:

o = 0
f
Yret = Yr Y f(@, ur)
(inflationary semantics).

BUT: can express powerset, an exponential time (and
space) query !

The Powerset

fiioy x o} = o}

P, Y) < {8} Umap(n)(z) Umap(U)(Y x Y)

Then, fiz(f)(x) = powerset(x). More, NRA + fix =
the algebra (with powerset) of Abiteboul and Beeri.

The Bounded Fixpoint (idea due to Peter Buneman)

fiox{r}—=A{r} g:0— {7}
bfix(f,g):0 — {1}

Inflationary Semantics: bfix(f,g)(z) def Un>0 Yn,
where:

def
v = 0
def
Uk1 = YU fz,yr) Ng(x)

Partial Semantics: bfiz(f,g)(z) ¥

Yn, Where:

and Y11 = Yn.

When no external functions are present (3 = (Z)), at flat
types (i.e. set height 1), bfix and fix are equivalent.

Example Transitive closure:
f:{bxb} x{bxb} — {bxb}

flz,y) € zU(zoy)

Then, te(x) = fiz;(f)(x) = fiz,(f)(z).

For bfiz, take g : {b x b} — {b x b}:
g(x) * (Mi(z) UTly(x)) x (Mi(z) U T (x))

Then te(x) = bfizi(f, g)(x) = bfiz,(f, g)(x).

Bounding is “harmless” at flat types.

Main Result
Theorem 1 The following properties hold:

1. Even with external functions (¥ # (), we have:

e NRA(X) + bfiz; C PTIME
o NRA(X) + bfiz, C PSPACE

e NRA+bfix;+ order = PTIME
e NRA+bfix, + order = PSPACE

(Does not follow directly from Immerman, Vardi’s
results).

o NRA + bfix; is a conservative extension of
FO+LFP (First Order Logic with Least Fix-
points), i.e. of DATALOG™ (with inflation-
ary fizpoints).

e NRA+ bfix, is a conservative extension of
FO+ partial fizpoints, 1.e. of DATALOG*™,
i.e. of the while-queries.

Proof of the Conservativity Result
Technique: index type [

left : unit — I
right . unit — [
pair : I X I — I injective

1. Translate NRA(X) + bfix into RAXSUI) + bfix
(i.e. the relational algebra extended with ¥, I,
and bfix).

e Translate types to flat types 7 ~ .

e Translate functions f : 0 — 7 to Ry : 7, —
.

e Encode complex objects = : 7 by flat rela-

tions (with indexes) r : m;.

2. When f : 0 — 7, show how to eliminate the indexes
from Ry : m, — m,. Write: ~ r (a one to many
relation)

10

1. The Translation
Lemma 1 7 = {s1} x ... x {s;} flat type. Then:
T=m Y} x {Ixs}x...x{Ixs}

can encode all partial finite functions ¢ . I — m and,
hence, all elements of {m}.

E.g m={s1} x {s2}:

— 11| a
? . -
1 11| b 11| m
19 . -
: 11| C 31 M
L3 . .
: 2| @ 3|1 N
(7 :

19 | C

encodes the partial function:

a [E—

il > b e
C

. a

19 , (Z))

. m

13 +> (Z),)

n
i4 > (Z)

i +— undefined, when i & {iy, s, 143,4}
and, hence, encodes the complex object:

{({a,b, ¢}, {m}), {a,c},0), (0, {m,n}),0}

11

Translation of Types, and Encoding of Com-
plex Objects

e Base types: m, % {b}.
Values of base types: = ~ {x}.

def
e Product types: myu; = T, X ;.

Values of product types: (x,y) ~ (r,q) iff z ~ r and
y~q.
e Set types: T, 1=)

Values of set types: {z1,...,x,} ~ riff r encodes
some finite, partial function ¢ : I — m,, and Vk =
L,n,di € I st. xp ~ (i)

1| T11
T T1ing
[aY)
Tn im 'm1
Tmnm

12

Translation of Functions
Lemma 2 For any f : 0 — 7 in NRA(X) + bfix,
there is some Ry : my — 7 in RAXZUI) +bfix, such
that:

o Vu,r, x ~r = f(x)~ Rs(r).

The interesting cases are:

Flatten (1) (u({z1,...,zm}) ¥ 21 U...Uz,,) Take

R, to be:
. 'l . . -l
i1 |y | T pair(iy,iyy) |
-/ . (- -l)
My | T1ng pair (i, iy,,) | Tin
: def :
R/J/ . —
. cl . . cl
i | Ty | T pair(im, 1) | Tm1
-/ . . ./
Zmnm Tmnm pazr(zﬁw Zmnm) Irmnm
. def
Union (U) Cannot take R, = U. Instead, trans-

late doubleton : o x o — {o}, doubleton(z,y) def

{z,y}:

af || left | rm
Rdoublet0n<rlar2) = ’I“ight Ty

Then, z Uy = u({, y}).

13

Map ((map(f))

fio—T

map(f) : {0} = {7}

We have Ry : w5 — m-.

Take Rmap(f) : [I = 7Ta] — [I = WT];
ef
Rmap(f) = [I = Rf]

(need induction on Ry).

Bounded Fixpoint (bfiz(f,g)) More complicated than
bfiz(Ry, R,), because indexes in Ry and R, have no
connection: “Rename” those in R.

14

2. Elimination of Indexes

f 0o — 71, o is flat = use the elements of x € o as
indexes themselves. pair dof tuple concatenation.

Need a lot of work to keep the types right.

15

Conclusion

e Fills in a gap:
First Order Logic FO with fixpoints

(= Relational Algebra) | (= DATALOG™)
Nested Relational Algebra
(= Nested Algebra, ?

= Algebra w/o powerset
= Strictly Safe Calculus)

We propose: “?” = Nested Relational Algebra with
bounded fixpoints.

e “Bounding” works for other kinds of iterations as
well.

e Rather powerful proof technique: it is order inde-
pendent, and suggests a implementation technique
(could be used for flattening of nested parallelism).

16

