
--^ ̂ -_-__ :__ ---I i...i.- IA-‘-‘.” ._. iL ._

On the Complexity of Database Queries
(Extended Abstract)

Christos H. Papadimitriou
Division of Computer Science

U. C. Berkeley

Berkeley, CA 94720

christosOcs.berkeley.edu

Abstract

We revisit the issue of the complexity of database queries,
in the light of the recent parametric refinement of com-
plexity theory. We show that, if the query size (or
the number of variables in the query) is considered as
a parameter, then the relational calculus and its frag-
ments (conjunctive queries, positive queries) are classi-
fied at appropriate levels of the so-called W hierarchy
of Downey and Fellows. These results strongly suggest
that the query size is inherently in the exponent of the
data complexity of any query evaluation algorithm, with
the implication becoming stronger as the expressibility
of the query language increases. For recursive languages
(fixpoint logic, Datalog) this is provably the case [14].
On the positive side, we show that this exponential de-
pendence can be avoided for the extension of acyclic
queries with # (but not <) inequalities.

1 Introduction

The complexity of query languages has been -next
to expressibility- one of the main preoccupations of
database theory ever since the paper by Chandra and
Merlin twenty years ago [4]; see [6, l] for extensive
overviews of the subject. It has been noted rather early
[14] that, when considering the complexity of evaluating
a query on an instance, one has to distinguish between
two kinds of complexity: Data complexity is the com-
plexity of evaluating a query on a database instance,
when the query is fixed, and we express the complexity
as a function of the size of the database. The other,

Permission to make digital/hard copies of all or pert of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication end its date nppeer. and notice is
given mat copyright is by permission oftbe ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee
PODS ‘97 Tucson Arizona USA
Copyright 1997 ACM O-89791-910-6/97/05 ..$3.50

Mihalis Yannakakis
Bell Laboratories

Lucent Technologies

Murray Hill, NJ 07974

mikalisOresearch.bell-labs.com

called combined complexity, considers both the query
and the database instance as input variables; the com-
bined complexity of a query language is typically one
exponential higher than data complexity.’ Of the two,
data complexity is widely regarded as more meaning-
ful and relevant to database research, since the query
is typically much smaller than the database, and hence
the query size can be productively assumed to be fixed
by comparison.

For a broad range of important query languages (re-
lational languages like conjunctive queries, first-order
(i.e., full relational algebra and calculus), Datalog, fix-
point logic, as well as constraint languages, i.e., cx-
tensions with constraints such as arithmetic compar-
isons, linear and polynomialinequalities etc.) data com-
plexity predicts that the query evaluation problem is
perfectly tractable: the complexity classes spanned by
these query languages range from AC0 to P, well within
what is considered satisfactory in complexity theory.
These tractability results are often quoted in the liter-
ature to suggest that the corresponding computational
problems are tractable, well-understood, solved, under
control. This implication is based on the thesis, broadly
accepted in the theory of algorithms, that, as a rule,
polynomial algorithms that arise in practice are usually
fast, practical, with tolerable constant coefficient and
reasonable exponents. Is this conclusion justified in the
context of database query processing?

It seems to us that neither of the two notions of
complexity is completely satisfactory. On the one hand,
combined complexity is rather restrictive because it treats
queries and databases as part of the input the same way,
even though the size p of queries is typically orders of
magnitude smaller than the size n of the database, In-
deed it is for this reason that the study of the complex-
ity of query languages has mostly concentrated on data
complexity. However, on the other hand, polynomial
time in the context of data complexity means time ng,

IA third kind, expression complezify assun~cs that tho
database instance is fixed, and is rarely differentiated from tho
combined complexity.

and in fact the known algorithms that place the above
mentioned languages in P have precisely such a running
time. Moreover, in the case of fixpoint logic, this is
known to be inherently unavoidable [14]. Even though
q << n, it is not reasonable to consider q fixed, because

even for small values of q, a running time of nq hardly
qualifies as tractable, especially in view of the fact that
n is typically huge. What should the notion of complex-
ity be then? What we would like to have is a running
time in which n is not raised to a power that depends
on q, i.e. the dependence on n is of the form nc where
c is a constant independent of the query (and hopefully
very small).

Let us draw an analogy with the computer-aided
verification area. The basic problem there is the model
checking problem: does a given program P (the ‘model’)
satisfy a desired property 4 (expressed in some specifi-

cation language such as LTL, propositional linear tem-
poral logic). There have been significant advances in
recent years in the development of algorithms and tools
in this area, especially for finite-state programs, which
cover an important set of critical applications. The
model checking problem for finite state programs P and
LTL specifications 4 is PSPACZcomplete. However,
usually specifications are rather small (like queries) and
programs are quite large (like databases). Fortunately,

it turns out that the model checking problem for LTL
specification (6 and program P can be solved in time
exponential in 141 and linear in lPl [9].

Can we hope for such algorithms in the query eval-
uation of important query languages? What are natural
classes of queries that possess this type of algon’thms?
These are the questions we seek to address.

Parametric complexity provides a framework to ex-
amine these problems. We now know that there is a
class of reasonably natural problems that do not fall into
this mold: parametric problems, such as “does graph
G have a clique of size It. 7” This problem, like many
others like it, is currently solvable only by algorithms
of complexity nk. & uer evaluation problems lie omi- y
nously within the scope of this category, with query
length being the obvious analog of h in the parametric
clique problem above. Researchers in complexity have
recently developed a theory of limited nondeterminism
and fixed-parameter tractability [3, 11, 5] which seeks to
make important distinctions, along the lines suggested
above, between problems below NP.

In particular, parametric problems with input, say,
(G, /?) which are solvable in polynomial time when k?
is fixed, can be subdivided into two broad categories:
Those for which the polynomial is of the form nf@) -
i.e., “has k in the exponent”- and those for which it
is of the form g(rl’) nc or some constant c, called respec- f
tively parametrically (orfixed-parameter) intractable and
tractable. It is of great interest to distinguish between

these two categories, and to develop rigorous tools that

classify problems with respect to them. Downey and
Fellows have introduced a sequence of complexity classes
of parametric problems, collectively called the W hierar-
chy, which capture reasonably well this important issue
[5]. The classes of the W hierarchy are indexed by the

numbers 1,2 , . . ., plus two limiting classes W[SAT] and

W[P]. These classes are quite rich in complete problems;
the higher the W class, the less likely that the problem
has a polynomial algorithm with time bound of the form

s(kW.

A point of this paper is that parametric complexity
theory is a productive framework for studying the com-
plexity of query languages, which puts the well-known
tractability results of the query languages mentioned
above under a different perspective, one that is perhaps
more realistic, and less confusing and misleading. In
particular, we prove that the parametric versions of the

query evaluation problem for conjunctive queries, posi-
tive queries, and first-order queries (i.e. relational alge-
bra and calculus) are hard for higher and higher levels
of the W hierarchy. Therefore, it is likely that any algo-
rithm for the corresponding query languages must have
the parameter inherently in the exponent; furthermore,
this likelihood increases measurably with the express-
ibility of the language. At present, this is only a ‘like

lihood’ and not a ‘proof’, because proving that these
languages are indeed not parametrically tractable would
imply that P # NP and P # PSPACE resolving long-
standing conjectures. For languages with recursion, like
fixpoint logic and Datalog, there is however no such ob-
stacle and parametric intractability is provable: Vardi
showed already in [14] that there are flxpoint queries
(and the proof can be adapted for Datalog) such that
the query size must inherently appear in the exponent.

We analyse the complexity of relational queries for
two types of parameters: the query size q and the num-
ber of variables v that appear in the query. The lat-
ter parameter is motivated by recent work of Vardi [15],
who studied the complexity of queries assuming that the
number of variables v is fixed, while the size of the query
can grow along with the database. He found that this
assumption brings the combined complexity closer to
data complexity, namely polynomial time for the above
languages, although the polynomial now has v instead
of q in the exponent of n. Our analysis for the two
parameters yields generally similar results (with some
subtle differences).

Finally, we show a positive result which generalizes
the main tractability result known so far in database
theory, namely, that acyclic conjunctive queries can be
evaluated efficiently (even with respect to combined com-
plexity). We show that the extension of acyclic queries
with inequalities (conjuncts of the form z # y) is para-
metrically tractable, in that the queries can be evalu-

13

ated in time almost linear in the size of the database
and the output, and exponential in the size of the query
or the number of variables (this exponential dependence
on the parameter is unavoidable, as the inequalities turn
the combined complexity of the problem from polyno-
mial to NP-complete). Trying to extend this further to
< constraints leads however to parametric hardness.

In the next section we give the necessary definitions
from the (evolving) field of parametric complexity. In
Section 3 we give the necessary definitions for applying
this theory to query problems. In Section 4 we prove
our classification results. Finally, in Section 5 we discuss
acyclic queries with inequalities.

2 Parametric Complexity Theory

We introduce next the main concepts from the com-
plexity theory of parametric problems. Our definitions
generally follow [5]. A parametric problem is a set L of
pairs (2, k), where z is a string and L an integer param-
eter. A parametric problem is called fixed parameter
(Jp.) t rat a e I t t bl ‘f h ere is an algorithm A that deter-
mines whether (2, L) E L in time bounded by a function
of the form f(h) . 1~1~ f or some constant c; we will say
that A runs in f.p. polynomial time.

Several NP-complete problems when supplied with
a meaningful, natural parameter yield parametric prob-
lems that are f.p. tractable. Examples: Given a graph
and K pairs of nodes, are there node-disjoint paths be-
tween all pairs of nodes? [12] Given a graph and an in-
teger It, is there a path of length R in the graph? [lo, 23
Both problems, and many others like them, have algo-
rithms with running time f(h) . nc, where n is the input
size and c a constant.

In contrast, several other NP-complete problems do
not seem to be tractable when considered as paramet-
ric problems with the natural parameter; examples in-
clude important problems such as clique, dominating
set, bandwidth, etc. All these problems are solvable in
time growing as O(nk) or a similar function, where n is
the input length and Ic the parameter (desired clique
size, dominating set size, and bandwidth size in the
three examples above), and, despite considerable effort
to this end, no algorithm for each one of them is known
with running time without k appearing in the exponent.

It would be very interesting to develop a refinement
of NP-completeness theory that anticipates this sophis-
ticated form of apparent intractability. Such a the-
ory has been emerging from the work of many people,
but most recently and notably Downey and Fellows [5].
There appears to be a hierarchy of parametric problems,
called the W hierarchy, which classifies many of these
problems. We first need to introduce an appropriate no-
tion of reduction (in the literature one finds several more
general kinds of reductions, but the one given next turns

14

out to be the more useful one, certainly for the purposes
of this paper).

A parametric reduction between two parametric prob-
lems A and B is an algorithm which solves any instance
(z:, k) of A using the answers to several instances (n, .&)
of B, where (1) all & are upper bounded by g(lz) (inde-
pendent of Z) for some function g, and (2) the instances
of B and the final answer can be constructed in time
h(k)j@, for some function la and integer s. Such reduc-
tions are often parametric transformations, producing
for any instance (z:, k) of A an equivalent instance (y, 4)
of B, and running in time h(k)l# for some function h
and integer s.

Consider a Boolean circuit with AND, OR, and NOT
gates and one output. We allow OR and AND gates of
unbounded fan-in. The depth of a circuit is the longest
path from any input to the output. Let us now de
fine depth-t weighted satisfiability for t > 1, to
be the following parametric problem: Given a depth-t
circuit C and an integer k, is there a setting of the in-
puts of C with k inputs set to 1 so that the output of
C is l? For t = 1 we require that the given circuit C
be a 3-CNF formula. Also, the (unrestricted) weighted
circuit satisf iability is the same problem with no
depth restriction: Given a circuit C and an integer k, is
there a setting of the inputs of C with k inputs set to 1,
so that the output of C is l? Finally, the weighted
formula satisfiability problem is the case where
the circuit has fan-out 1 (i.e. it is a Boolean formula).

We are now ready to define the classes in the W hi-
erarchy; we give the definition in terms of their com-
plete problems. We define W[t] to be the set of all
parametric problems that reduce to depth-t weighted
satisf iability. The limiting classes W[SAT] and W[P],
are the sets of all parametric problems that reduce re-
spectively to weighted formula and weighted circuit
satisfiability, with unlimited depth. In [5] it is
pointed out that these classes have many natural com-
plete problems, under parametric reductions. For ex-
ample, clique is W[l]-complete and dominating net
is W[2]-complete, while bandwidth is W[t]-hard for all
t > 0. If a parametric problem is W[t]-hard, this means
that it is very unlikely that it is tractable. The higher
the t for which W[t]-hardness is proved (or, at the limit,
W[P]-hardness) the stronger the implication of intractabil-
ity.

It should be noted that the W hierarchy, as defined
in [5], does not appear to have the classification power
of, say, NP-completeness theory and of the polynomial
hierarchy, in that many natural problems are only par-
tially classified, proved hard for one class and in another,
higher one (or, as in the case of bandwidth, W[t]-hard
for all t > 0 but not known to be in W[P]). This im-
perfect classification power is apparent in our results as
well.

3 Parametric Complexity of Query

Languages

We review briefly first basic definitions on databases
and queries. A database d = {D; RI,. . . , R,,,) consists
of a domain D and a set of relations RI, . . . , R, over
D. A query Q is a function that maps a database d to
a relation Q(d) (of certain arity) over the same domain
D. Queries are specified using que y languages. A query
language is capable of expressing a corresponding class
of queries.

We will discuss in this paper the following languages
(classes of queries): conjunctive queries, positive queries,

first-order queries, and Datalog. Conjunctive queries
correspond to relational algebra with selection, projec-
tion, join and renaming (or calculus with conjunction
and existential quantification); positive queries add union
(disjunction in calculus) to this list. First order queries
add set difference (negation in calculus). Datalog adds
recursion to the positive queries. We refer to the text-
books [13, l] for a detailed exposition.

In the evaluation problem for a query Q, we are given
database d and wish to compute Q(d). In the decision
problem, we are given in addition to the database d a
tuple t, and wish to decide if t E Q(d). When discussing
the comple.xity of these problems, we assume a standard
encoding of databases and queries. The complexity of
query languages is usually measured in database theory
via the decision problem. The combined complexity of
a query language A is the complexity of the decision
problem (set) {(Q,d,t)lQ E h,t E Q(d)}. The data
complexity of a query language A is the complexity of
the sets {(d,t)]t E Q(d)], for queries Q E A; that is, the
query is regarded as fixed. Thus for example, the data
complexity of a query language A is polynomial if there
is a function f : A 4 N from queries to positive integers
such that for every Q E A, there is an algorithm which
on input a database d of size n and a tuple t decides if
t E Q(d) in time 0(&(Q)).

In order to define the parametric complexity of query
languages, we must first decide on the appropriate pa-
rameter to use. Two possible parameters come to mind:
The query size q (the length of the string needed to ex-
press the query in A), and the number of variables v ap-
pearing in the query. Another relevant issue is whether
we assume that the schema (set of relations and their
arity) is ilxed or can vary. The relationship between
the resulting four parametric problems (the query com-
plexity problem above parameterized with v as param-
eter, or with q as parameter, each with fixed or variable
schema) is as depicted in the partial order below:

V, variable schema

V, fixed schema q, variable schema

q, fixed schema

Figure 1

Proposition 1 If one of the four parametric problems
in Figure 1 is hard for a class in the W hierarchy, then
all problems above it are also hard. If a problem is in
some class in the W hierarchy, then all problems below
it are also in the same class.

Proof.The identity map is a valid parametric reduction

for all four arcs in the partial order. u
It turns out that in most cases the assumption on the

schema makes no difference (upper bounds hold for vari-
able schema, lower bounds for fixed schema). We will
assume in the following by default a variable schema,
and in the few cases where a fixed schema makes a dif-

ference we will mention what happens.

4 A Classification of Query Lan-
guages

We consider the following query languages: (1) Con-
junctive queries; (2) Positive queries; (3) First-order

queries. All these query languages are known to have
data complexity ACs (which is contained in LOGSPACE
and P).

Theorem 1 The parametric versions of the query eval-
uation problems corresponding to these query languages
are classified as described in the table.

querv parameter

Note: In the case of fixed schema, all the entries
are the same, except that the (conjunctive, parameter
v) problem is in W[l] (and thus, W[l]-complete) if the
arities are fixed.

I

I .

15

Sketch of proof. 1. Conjunctive queries. The lower
bounds follow by a simple reduction from the clique
problem, which is known to be W[l]-complete [5]. For
any instance (G, Iz) of clique we construct a database
consisting of one binary relation G(., .) (the graph). The
query for parameter X: is simply

P + A G(xi,xj).
l_<i<j_<k

The goal proposition (0-ary relation) P is true iff G has
a clique of size Iz. The query size is q = O(k2), while
the number of variables is v = k, so this is a reduction
to both problems. Note that this query just asks if the
join of a set of binary relations is empty.

For the upper bounds, in the case of parameter q, we
can express any conjunctive query in 3-CNF by having
Boolean variables that express the mapping from atoms
of the query to tuples in the database. In the case of the
parameter v, we have Boolean variables for the mapping
from the query variables to the database constants. We
omit the details from this abstract.

2. Positive queries. For the upper bound of W[l]
(parameter q), we transform the query into a union of
(exponentially many in q) conjunctive queries; note that
in this case we need the full power of parametric re-
ductions, as opposed to transformations. The W[SAT]
lower bound (parameter v) is by a reduction from the
weighted formula satisf iability problem (omitted).

3. First-order queries. The reduction is similar
for the two cases. It is from the monotone weighted
circuit satisf iability problem, which is known to
be W[P]-complete. We can assume that the given cir-
cuit alternates between OR and AND gates, and that
the output is an OR gate, at level 2t. Our database
contains only a binary relation C, describing the wiring
diagram (dag) of the given circuit; the constants are
gates (and therefore the variables will stand for gates).
Define the following sequence of first-order queries, for
the even (OR) levels of the circuit

e,(x) = [c(x, xl) v c(x:, x2) v * ’ -v c(x:, zk)],

02i(X) = $/[C(~I Y) A vX(7C(Y, 3) V fl23-2(2)].

Finally, the query is

Q = 3x1322 . . .3xk82t(o),

where o is the constant standing for the output gate
Note: Bst is expanded fully using inductively the previ-
ous formulas in the sequence; the formula of the query
has size O(t + k) an uses k + 2 variables. Intuitively, d
0si(x) means “OR gate 2 at level 2i is true, when inputs
21, x2,. . . , Xk are set to 1,” and thus the query is true
if and only if the given instance of weighted circuit
satisfiability has a solution. Notice that a fixed
schema (only a binary relation) is required. 13

16

For recursive query languages like fixpoint logic and
Datalog, the exponential dependence on the query size
is actually provable. Vardi showed in [14] that there are
fixpoint (and similarly, Datalog) queries of size polyno-
mial in k that can be computed in time nk, but not in
nk-l, i.e. the query size is provably inherently in the
exponent in this case. This holds even if the database
(EDB) relations have all fixed arity, although in the Dat-
alog case the IDB relation does not (it has arity O(k)),
If we restrict all EDB and IDB relations to have fixed
arity (independent of the parameter), then it can be
shown that Datalog is in W[l] (and thus W[l]-complete)
for both parameters.

Can we prove for the first order languages an un-
conditional result, as in the case of recursive languages?
At present, this is not possible without resolving at the
same time some of the classical conjectures in complex-
ity theory. Recall that the combined complexity of con-
junctive and positive queries is NP and of first order
queries is PSPACE. Hence in the unlikely event that P
= NP or P = PSPACE, these query languages would
be tractable. By contrast, the combined complexity of
fixpoint logic and Datalog is EXPTIMEcomplete and
it is known that P # EXPTIME by the Time Hierarchy
Theorem.

5 A Tractable Case

Is there a nontrivial class of queries that is paramet-
rically tractable? Even some simple queries that in-
volve joins are NP-complete in combined complexity,
and, as we saw, probably parametrically intractable as
well. Acyclic joins with projection and selection form
the major exception to this. We will show in this section
a nontrivial extension of that result.

Consider a conjunctive query Q:

G(h) + Ri, (tl), . . . , Ii!&)

Form a hypergraph H, which has the variables of Q as
its nodes and has a hyperedge for every atom in the
body of Q which contains the variables that occur in
the atom. The query Q is called acyclic if the hyper-
graph H is acyclic. We can evaluate Q as follows. For
every atom .&j(tj) in the body of Q, compute a rela-
tion 5” over the set of attributes corresponding to the
variables of tj such that a tuple is in S’ iff the corre-
sponding instantiation of tj is in relation fij of the given
database; 5” can be computed by performing appropri-
ate selections and projection on ej. Let Z be the set of
attributes corresponding to the variables of the tuple to
in the head. Compute nz(Sr W . . . W Sd) from which we
can easily construct the result of the query Q(d), If Q is
acyclic, this evaluation can be done in time polynomial
in the size of the input database d and the output Q(d)
[16]. If we only want to check whether Q(d) is empty

or whether a specific given tuple t is in Q(d), we can
do it in time polynomial in the size of d (substitute the

constants oft in the body of the rule and evaluate the
resulting query which will be either empty or contain
one tuple, t).

Suppose now that in the body of the conjunctive
query we have, in addition to the relational atoms, in-

equality atoms xi # xj or xi # c between the variables
or variables and constants. In this case we would nor-
mally include in the hypergraph also edges (xi, Zj) cor-
responding to the inequalities between the variables (see
[13]). However, inclusion of these edges destroys acyclic-
ity even in very simple cases. Some examples: find the
employees t,hat work on more than one projects (G(e) +

EP(e, P), -We, $1, p # P’, where EP is the employee-

project relation); Find the students that take courses
outside their department (G(s) t D(s, d), SC(s, c),
CD(c, d’), d # d’). Of course, in general we may have

more complicated queries with multiple relations and
which may not be binary (i.e., a genuine hypergraph).

Suppose that we have a conjunctive query with in-

equalities and that the hypergraph defined by consider-
ing only the relational atoms is acyclic. We call this an
acyclic query with inequalities. Is the combined com-
plexity still polynomial? Unfortunately, not: the prob-
lem becomes NP-complete. For example, the Hamilto-
nian path problem can be easily reduced to it. Given a
graph (V, E), let Q be the query

G + E(xl,x2),E(x2,~3), . . .,E(xn-I+,),

~1#~2,~1#~3,...,~,-1#~~

The goal proposition (0-ary relation) G is true iff the
graph is Hamiltonian. Here the query is as big as the
database. However, in the more interesting case where
the query is ‘small’, the problem remains tractable, but
now in the fixed parameter (f.p.) sense.

Theorem 2 The class of acyclic conjunctive queries
with inequalities is f.p. tractable, both with respect to
the query size and the number of variables as the pa-
rameter. Furthermore, we can evaluate such a query in
f.p. polynomial time in the input and the output.

A special case is the problem of finding simple paths
of a specified length II- in a graph. This problem was
proved f.p. tractable by Monien [lo], and an improved
algorithm was given in [2] using an elegant “color-coding”
(hashing) technique. Our algorithm combines this tech-
nique with acyclic query processing techniques.

The basic idea is to hash the domain D into a smaller
domain (with size bounded by the number of variables),
and use the hash values to check inequalities, while us-
ing the original values to check equality on the join at-
tributes. Let Q be an acyclic query with inequalities,
and let H = (V, E) be its hypergraph. Partition the

inequality atoms of Q into the set 11 of atoms xi # xj
such that the variables xi, xi do not occur together in
any hyperedge (relational atom), and the set Iz of the
remaining atoms (xi # c and xi # xj such that xi, zj
are in a common hyperedge). Let VI be the set of vari-
ables that occur in 11 and let L = IVll. Let h be a
function that maps D to the set (1,. . . , II-). Consider
an instantiation r of the variables. We say that r is
consistent with h if for every inequality xi # ij of I1
we have h(T(xi)) # h(T(y)); clearly this implies also

that r(xi) # r(xj), b t u no necessarily vice-versa. The t
instantiation T is satisfying if it satisfies all the (rela-
tional and inequality) atoms in the body of Q. Let Oh
be the set of all consistent satisfying instantiations, and

let &h(d) = {r(tO)]T E Oh).

Fix a function h : D ---f (1,. . . , k}. We describe an
f.p. polynomial time algorithm that decides whether
there is a consistent satisfying instantiation r and com-

putes &h(d). F irs t, compute as above for each relational
atom fij(tj) of Q a corresponding relation, apply to it

selections that incorporate the inequality atoms xi # c
such that xi OCCUPS in tj and xi # ~1 such that both
xi, xl occur in tj, and let S’ be the resulting relation on
set of attributes (variables) Uj. Let Vi be a set of new
attributes corresponding to VI. If X s V is a set of
(original) variables, we use X’ to denote the set of new
attributes {x:]xi E XnVl}. If t is a tuple over X, we can
extend it to a tuple over XX’ by letting t[xi] = h(t[xi])
for each xi E X’. Extend in this manner each relation
Sj to a relation Sj over the set of attributes UjVi; note
that 5’; has the same number of tuples as Sj and the
new attributes take values in {I,. . . , k}. For the empti-
ness problem, in essence what we will compute is the
selection on inequalities of the projection on Vi of the
join of the relations S’. The selections and projections
can be pushed inside the join for efficiency. In more
detail we proceed as follows.

Let T be a join forest for H. Recall that this is a
forest which has the hyperedges as its nodes, and with
the property that for every attribute xi, the set of nodes
of 7’ (i.e. hyperedges of H) that contain xi form a con-
nected subgraph (i.e. a subtree) Ti. We assume without
loss of generality in the following that T is a tree (oth-
erwise, for example, we can add a new dummy node
corresponding to the empty hyperedge and connect it
to a node in each component).

Root the tree at some node. For each node j of T,
let TVj be the set of variables xi E VI - Uj such that xi
appears in the subtree rooted at j - hence in a unique
proper subtree rooted at a child of node j - and there
is an inequality xi # xl of I; such that xr does not
occur in the same proper subtree; in other words, node
j separates the subtree Ti corresponding to xi from the
subtree z corresponding to xl. Let yj = UjUi Wi. It
is easy to see that the attribute sets Yj form an acyclic

17

hypergraph with the same tree T as its join tree.
To test if &n(d) = 0, we perform a bottom-up pass

of the tree as follows.

1. Initialize for each node j E T a relation Pj := S’j.

2. Process all the nodes except the root in bottom-up
order of T as follows. To process node j of T with
parent u, compute PU := flF(P, W nYjnY,(Pj)),

where F is the conjunction of the inequalities xi #
xf such that xi E Yj - UL and xf belongs to the
attribute set of P,, at this point but not to Yj. If
P,, = 0 then quit and report &h(d) = 0.

3. If all nodes are processed successfully, then report

&h(d) # 0.

To compute &h(d) (if it is not empty), we proceed as
follows. At the end of the first pass we have a set of rela-
tions Pj over the attribute sets Yj. It is not hard to see
that the join of the Pi’s is a relation over the attribute
set VV,l that consists of all tuples r~i such that r is a
satisfying instantiation that is consistent with h and ri
is the extension of r to Vi. We do not actually want to
compute the join (it is too large). We can reduce the
relations Pj (and Sj, Sj) by removing dangling tuples,
i.e. tuples that do not participate in the join, using a
downward pass. We process all the nodes except the
root top-down. To process node j with parent u, set
PjZ=PjD<Pu.

We then perform a second bottom-up pass to com-
pute &h(d) = TZ(PI W . . . P,), where 2 is the set of
variables that appear in the tuple to of the head. In
bottom-up order we process each nonroot node j, say
with parent u, by setting P,, := P, cu rzj(Pj), where Zj
consists of Yj nY, and the attributes of 8’ that appear in
the subtree rooted at node j. At the root r we compute
rz(Pp) which is Qh(d).

Consider a consistent instantiation r and let I be
the number of distinct values assumed by the variables.
Then r is consistent with at least a fraction I!/lk > eBk
of the functions h from D to (1,. . ., k}. Thus, trying
out a set of O(e”) random functions h will determine
with high probability whether Q(d) = 0. For a deter-
ministic algorithm, we can use a k-perfect family F of
hash functions, i.e., a family F which has the property
that for every subset S of k (or less) elements of D, there
is a h E F that hashes S into distinct values. One can
construct such a family F with 20tk) log IDI hash func-
tions that can be evaluated in constant time (see [2]
and the references therein). Then Q(d) = lJh,+&(d).
The time complexity of the algorithm for determining
whether Q(d) = 0 or whether a specific given tuple t is
in Q(d), is certainly bounded by O(g(k)nlog2 n), where
g(k) = 2O(kW) and n is the size of the database; one
logn factor is from sorting to perform the joins and
the second from the perfect hash family. The time to

18

compute Q(d) is bounded by O(g(k)nm log2 n) where
m = IQ(d)] is the size of the output.

If the parameter is q, the query size, the same theo-
rem holds in the case where instead of a conjunction of
inequalities in the body, we have an arbitrary Boolean
formula 4 built from inequality atoms using V and A.
If the parameter is V, the number of variables, then the
problem becomes W[l]-hard if there are constants in 4,
i.e., atoms xi # c combined arbitrarily, although it re-
mains f.p. tractable if the atoms 2; # c appear only
conjunctively.

Can we extend the result to acyclic conjunctive queries
with comparisons (< or 5) between variables or vari-
ables and constants? Example: Find the employees
that have higher salary than their manager (G(e) t-
EM(e, 4, ES(e, 4, ES(m, s’), s’ < s). First, note that
trivially any equality x = y can be expressed as the
conjunction of the two inequalities x < y and y < x, so
the question makes sense only if we first identify equal
variables (otherwise, we can express trivially any con-
junctive query by a set of atoms with disjoint variables
and equalities). Given a conjunctive query Q with a
set C of comparison atoms, we must first determine if
C is consistent and find the implied equalities between
variables and constants, which we then collapse. This is
done (for dense orders) by forming a graph whose nodes
are the variables and constants in C, with a directed arc
u + w between two nodes u, w labeled < or _< if C con-
tains the corresponding constraint u < w or u 5 UJ or
u, w are constants with u < w. The system is consis-
tent iff there is no strongly connected component that
contains a < arc, and the implied equalities are that
all nodes of the same strong component are equal (see
eg. [8]). Let Q’ be the resulting query after collapsing
equal variables and constants of Q, and C’ its set of
comparison constraints (which is now acyclic). We say
that the query is acyclic if the hypergraph correspond-
ing to the relational atoms in the body of Q’ is acyclic.
Can we evaluate such a query in f.p. polynomial time?
Unfortunately, not.

Theorem 3 The class of acyclic conjunctive queries
with comparisons is W[l]-hard with respect to both pa-
rameters q and v.

Sketch of proof. We reduce from the clique problem.
Let (G, k) be an instance of the clique problem where
G has n nodes numbered 0, n - 1, and assume for
notational convenience that every node has a self-loop.
For all edges (i, j) of G and for b = 0, 1, let [i, j, b]
denote the integer (i + j)n” + Ii - jln2 + bn + i. We
construct a database with two binary relations P, R,
The relation P consists of the tuples ([i, j, 01, [i,j, 11)
for all edges (i, j) of G. The relation R consists of the
tuples ([i, j, 11, [i, j’, 01) for all i, j, j’. The query Q is as

follows.

The hypergraph of the query is a graph that consists of
paths with alternating P and R edges. It can be shown
that the goal proposition is true iff G has a clique of size
k. Cl

Note that the theorem holds even in restricted cases
(for binary relations, path queries, only < constraints
etc.)

Acknowledgment. We appreciate the feedback
from the program committee and Moshe Vardi.

References

[l] S. Abiteboul, R. Hull, V. Vianu, Foundations of
Databases, Addison-Wesley, 1995.

[2] N. Alon, R. Yuster, U. Zwick, “Color-Coding,,, J.

ACM, pp. 844856,1995.

[3] J. F. Buss, J. Goldsmith, “Nondeterminism within
P”, SIAM J. Comput., pp. 560-572, 1993.

[4] A. K. Chandra, P. M. Merlin, “Optimal Imple-
mentation of Conjunctive Queries in Relational
Databases”, Proc. 9th ACM Symp. Theory of
Comp., pp. 77-90, 1977.

[53 R. G. Downey, M. R. Fellows, “Fixed-parameter
Tractability and Completeness I: Basic Results”,
SIAM J. Comp., pp. 873-921,1995.

[6] P. C. K ane a 11 k is, “Elements of Relational Database
Theory”, in Handbook of Theoretical Computer Sci-
ence, J. Van Leeuwen ed., pp. 1074-1156, Elsevier,
1991.

[7] P. C. Kanellakis, “Constraint Programming and
Database Languages: A Tutorial”, Proc. 14th ACM
Symp. Principles of Database Sys., pp. 46-53,1995.

[8] A. Klug, “On Conjunctive Queries Containing In-
equalities”, J-ACM, pp. 146-160, 1988.

[9] 0. Lichtenstein, A. Pnueli, “Checking that Finite
State Concurrent Programs Satisfy their Specifica-
tions”, PTOC. 12th Annual ACM Symp. on Princi-
ples of Prog. Lang., pp. 97-107, 1985.

[lo] B. Monien, “How to Find Long Paths Efficiently,,,
Ann. Disc. Math., pp. 239-254, 1985.

19

! .
,

[ll] C. H. Papadimitriou, M. Yannakakis, “On Limited
Nondeterminism and the Complexity of the VC di-
mension”, J. Comp. Sys. SC., pp.‘161-170, 1996.

; .

j
I
I
I

[12] N. Robertson, P. D. Seymour, “Graph Minors XIII:
The Disjoint Paths Problem,,.

[13] J. D. Ullman, Principles of Database and Knowl-
edge Base Systems, Computer Science Press, 1988.

[14] M. Y. Vardi, ‘<The Complexity of Relational Query
Languages”, PTOC. ACM Symp. Theo y of Comput-
ing, pp. 137-146, 1982.

[15] M. Y. Vardi, “On the Complexity of Bounded-
Variable Queries”, PTOC. 14th ACM Symp. Prin-
ciples of Database Sys., pp. 266-276, 1995.

[16] M. Yannakakis, “‘Algorithms for Acyclic Database
Schemes”, PTOC. 7th Intl. Con. Very Large Data
Bases, pp. 82-94, 1981.

[17] M. Yannakakis, “Perspectives on Database The-
ory,,, PTOC. 36th IEEE Symp. Foundations of
Camp. SC., pp. 224246,1995.

.

