Adaptive Query Processing for Internet Applications

Zachary G. Ives Alon Y. Levy Daniel S. Weld
University of Washington University of Washington University of Washington
zives@cs.washington.edu alon@cs.washington.edu weld@cs.washington.edu

Marc Friedman Daniela Florescu
Viathan Corp. INRIA Rocquencourt
marc@viathan.com Daniela.Florescu@inria.fr

June 5, 2000

Abstract

As the area of data management for the Internet has gained in popularity, recent work has focused on effectively dealing with unpredictable, dynamic data volumes and transfer rates using adaptive query processing techniques. Important requirements of the Internet domain include: (1) the ability to process XML data as it streams in from the network, in addition to working on locally stored data; (2) dynamic scheduling of operators to adjust to I/O delays and flow rates; (3) sharing and re-use of data across multiple queries, where possible; (4) the ability to output results and later update them. An equally important consideration is the high degree of variability in performance needs for different query processing domains: perhaps an ad-hoc query application should optimize for display of incomplete and partial incremental results, whereas a corporate data integration application may need the best time-to-completion and may have very strict data “freshness” guarantees. The goal of the Tukwila project at the University of Washington is to design a query processing system that supports a range of adaptive techniques that are configurable for different application domains.

1 Introduction

Over the past few years, a new set of requirements for query processing has emerged, as Internet and web-based query applications have become more prevalent. Modern query processors are very effective at producing well-optimized query plans for databases, by leveraging I/O cost information as well as histograms and other statistics to determine the best executable plans. However, data management systems for the Internet have demonstrated a pressing need for new techniques. Since data sources in this domain may be distributed, autonomous, and even heterogeneous, the query optimizer will often not have histograms or any other quality statistics. Moreover, since the data is only accessible via a wide area network, the cost of I/O operations is high, unpredictable, and variable.

These factors can be mitigated through adaptive query processing, where the query processor adapts its execution in response to data sizes and transfer rates as the query is being executed. Moreover, the high I/O costs suggest that data should be processed as it is streaming across the network (as is done in relational databases with pipelining), scheduling of work should be dynamic to accommodate I/O latencies and data flow rates, and re-use and sharing of intermediate query results should be done wherever possible — both across concurrent queries, and between successive queries that execute within some short time delta of each other.

An important issue in using adaptive techniques, but one that has seldom been considered, is the needs of the application domain: the performance goals, as well as the applicable adaptive techniques, may vary widely depending on the application. For an ad-hoc, interactive domain, the user may wish to see incomplete results quickly, but for a business-to-business environment, the emphasis may be on providing complete results as quickly as possible, with strict guarantees about data freshness.
The goal of the Tukwila project at the University of Washington is to support efficient query processing of streaming XML data using adaptive query processing techniques, including display of incremental results, the sharing of sub-results across queries, and updating of data sources. In conjunction with this, we believe there is need for a method of expressing query processing policies — providing different query performance behaviors for different contexts.

Tukwila is a data integration system, in which we attempt to answer queries posed across multiple, autonomous, heterogeneous sources. All of these data sources are mapped into a common mediated schema. The data integration system attempts to reformulate the query into a series of queries over the data sources, then combine the data into a common result. Tukwila’s ancestors, the Information Manifold [LR096] and Razor [FW97], focused on the problems of mapping, reformulation, and query planning; Tukwila attempts to address the challenges of generating and executing plans efficiently with little knowledge and variable network conditions.

Previously, data integration required wrappers to convert data from the various Web and database sources into a common format; this requirement is likely to be alleviated somewhat because of the advent of XML, the eXtensible Markup Language, as a standard protocol for describing information. XML provides two important capabilities for data integration: it provides a common data format, which had previously been a major function of wrappers; and it allows for representation of tabular, hierarchical, or even graph-structured data.

In this paper we discuss a number of important areas that must be addressed using adaptive techniques for an effective wide-area XML data integration system. The paper is organized as follows: we begin in Section 2 with an overview of the different dimensions of adaptive query processing, which underly our research agenda for the Tukwila system. Section 3 describes adaptive techniques currently used within the Tukwila data integration system, and explains how they address some of the problems in this domain; in Section 4, we discuss the current focus areas of the Tukwila project. Finally, we conclude in Section 5.

2 Needs for Adaptive Query Processing in Different Contexts

Adaptive query processing encompasses a variety of techniques dating back to the beginnings of relational database technology. The paper by Hellerstein et al in this issue relates these adaptive techniques by focusing on their granularities of adaptivity. An orthogonal set of issues are related to the specific domain and context in which a query processor is being applied. Below we begin by identifying a set of dimensions that vary by context, and which determine the applicability of different adaptive techniques. In Sections 3 and 4, we discuss how current and future work on Tukwila addresses the requirements of these dimensions.

Number of queries If the domain includes large numbers of similar queries being posed frequently, the query processor should cache partial results and make use of common subexpressions. Work in this area includes the NiagraCQ [CDTW00] system at Wisconsin and the OpenCQ and WebCQ projects at Georgia Tech. This problem is similar to that of multi-query optimization [RSSB00] but with a more “online” character — as optimization is done for potential future reuse of subquery results — and generally larger numbers of queries.

Approximate results In interactive domains, we may wish to see incremental display of the query results, with incomplete or approximate answers that evolve towards their final values. Operators supporting output of partial results have been a focus of recent work in [HHW97], which provided incremental display of approximate results for root-level aggregation, and [STD+00], which proposed a more general approach for providing partial results on demand. However, another important aspect of this area is a method of specifying when to provide partial answers, as the user may only want to see tentative results for certain data items. Moreover, a more formal definition is needed for the semantics of when a partial or approximate result is meaningful.

First vs. last tuple For batch-oriented domains, the query processor should optimize for overall query running time — the traditional focus of database query optimizers. Most of today’s database systems do
all of their optimization in a single step. However, the INGRES optimizer [SWKH76] and techniques for mid-query re-optimization [KD98] often facilitate better running times by re-optimizing later portions of the query plan as more knowledge is gained from executing the earlier stages. Similar re-optimization techniques can also be applied to interactive domains, as discussed in [IFF+99, AH00, UFA98], because they can often produce output faster by using a superior query plan.

Freshness Data may often be prefetched and cached by the query processor, but the system may also have to provide data freshness guarantees. Caching and prefetching are well-studied areas in the database community. Likewise, the work on rewriting queries over views [Lev00] can be used to express new queries over cached data.

Data model To this point, most adaptive query processing techniques have focused on a relational (or object-relational) data model. While there are clearly important research areas within this domain, other data models may require extensions to these techniques. In particular, XML, as a universal protocol for describing data, allows for hierarchical and graph-structured data. We believe an execution model similar to pipelining is important for the XML realm, as processing of streaming data is of growing impact.

Remote vs. local data Traditional database systems have focused on local data. Recent work has focused on techniques for increasing the performance of network-bound query applications, including [UFA98, UF99, IFF+99, AH00, HH99]. (See the Hellerstein et al paper in this volume for greater detail.)

Incremental updates In certain applications where data constantly changes, it is important to be able to start with an initial data set, and to process “deltas” describing updates to the original data values. Early work in this area includes the partial-results feature of the Niagara system [STD+00].

3 The Tukwila Data Integration System

In a domain where costs are unpredictable and dynamic, such as data integration for the wide area, a query processing system must react to changing conditions and acquired knowledge. This is the basic philosophy behind the Tukwila project, which focuses on providing a configurable platform for adaptive query processing of streaming data.

In this section, we present an overview of the basic techniques implemented in Tukwila. There are three primary aspects to the Tukwila adaptive framework: an event-condition-action-based rule system, a set of adaptive operators, and the ability to incrementally re-optimize a query plan as greater knowledge about the data is gained. Here we provide a brief overview of these capabilities; for more information, please see [IFF+99].

3.1 Controlling Adaptive Behavior

An important need in dealing with network-based query sources is the ability to respond to unexpected conditions: slow data sources, failed sources, amounts of data that are much larger than expected, etc. In order to handle conditions such as these, Tukwila incorporates event-condition-action rules that can respond to execution events such as operator start, timeout, insufficient memory, end of pipeline, and so forth. In response to these events, Tukwila can return to the query optimizer to re-optimize the remainder of a query plan; it can modify memory allocations to operators; it can switch to an alternate set of data sources. Note that these rules are at a lower granularity than triggers or active rules: they respond to events at the sub-operation level, and can also modify the behavior of query plan operators.

3.2 Intra-Operator Adaptivity

The Tukwila system provides two operators that can respond to varying network conditions and produce optimal behavior. The first is an implementation of the pipelined hash join [WA91] with extensions to
support overflow of large hash tables to disk; in many ways it resembles the hash ripple join [HH99] and the XJoin [UF99].

A pipelined hash join operates with two hash tables, rather than the single hash table of a typical hybrid hash join. A tuple read from one of the operator’s inputs is stored in that input’s hash table and probed against the opposite table. Each input executes in a separate thread, and this provides two highly desirable characteristics: it allows overlap of I/O and computation, which is important in an I/O-bound environment, and it produces output tuples as early as possible. The pipelined hash join also adjusts its behavior to the data transfer rates of the sources. The trade-off is that it uses more memory than a standard hybrid hash join; however, this problem can be mitigated with the overflow strategies implemented in Tukwila or in the XJoin operator.

In many web applications, there may be multiple sites or sets of sites from which the same input data can be obtained; some of these data sources may be preferable to others, perhaps because of connection speed or cost. Tukwila’s collector operator provides a robust method for reading data from sources with identical schemas: according to a policy specified in Tukwila’s rule language, the collector attempts to read from a subset of its sources; if a given source is slow or unavailable, the collector can switch to one or more alternate data sources. This operator allows a query plan to adaptively choose its data sources based on criteria such as availability or speed.

3.3 Incremental Re-Optimization

Adaptive behavior during query execution is key in situations where I/O costs are variable and unpredictable. When data sizes are also unpredictable, it is unlikely that the query optimizer will produce a good query plan, so it is important to be able to modify the query plan being executed. As a result, Tukwila supports incremental re-optimization of queries during particular plan execution points.

The Tukwila re-optimization model is based on fragments, or pipelined units of execution. Fragment boundaries, at which a pipeline is broken and the results are materialized, are chosen by the optimizer according to their cost and potential benefits. In general, a large query plan must already be broken into smaller pipelines so operators will fit into memory; this is particularly true if memory intensive operators such as the pipelined hash join are used. At each materialization point, Tukwila’s execution system can check whether the result cardinality was close to that expected by the optimizer; if the cardinality is sufficiently divergent, Tukwila will keep the current query subresults and re-optimize the remainder of the query plan, using the subresults as inputs for a new and better plan.

The Tukwila model for re-optimization is similar to that proposed in [KD98], but it allows the optimizer to choose fragmentation points in an integrated, cost-based approach, rather than adding the capabilities in a separate postprocessing step.

4 Current Areas of Focus in Tukwila

The Tukwila system already supports a number of adaptive techniques, but the system is being extended in a number of ways. Our current work focuses on many of the areas discussed in Section 2.

4.1 XML: a Foundation for Data Integration

Tukwila was initially developed for a relational data model, and required wrappers to translate data from source formats into the standard Tukwila data format. XML has largely eliminated the need for full-fledged wrappers, as most data sources have begun to include XML export capabilities, and as various HTML-to-XML wrapper toolkits (e.g. [SA99, LPH00]) have emerged. However, the use of XML, which supports flat, hierarchical, and graph-structured data, has led to a natural extension of the Tukwila data model to fully support semistructured data.

Our data model is based on an ordered, directed-graph approach like that of XML-QL [DFF+99]. This model is powerful enough to support any of the proposed XML query languages, including XML-QL,
XQL [RLS98]/XPath [CD99], and Quilt [CRF00]. We are developing extensions to this model to include a stronger definition of order in XML.

To this point, XML query processors have worked by mapping XML data into an underlying local store — relational, object-oriented, or semistructured — and have done their processing within this store. For a network-bound domain where data needs to be refreshed on each query to guarantee “freshness,” this approach does not produce good performance. Thus it is imperative that an XML data integration system support direct querying of data as it streams in, much as a relational engine can pipeline tuples as they stream in.

4.2 Processing Streaming XML Data

The primary difference between XML queries and those for object-oriented or object-relational systems is a reliance on regular path expressions, which describe traversals of the data graph using edge labels and optional regular-expression symbols such as the Kleene-star (for repetition) and the choice operator (for alternate subpaths). Regular path expressions bear many similarities to object-oriented path expressions, and can be computed similarly; however, if regular expression operators are used, they may require expensive operations such as joins with transitive closure.

In order to provide pipeline-like processing of network data as it streams in, we must be able to support efficient evaluation of regular path expressions over the incoming data, and incremental output of the bound values. This capability is provided by Tukwila’s x-scans operator, which evaluates regular path expressions across XML data as it is read, and which binds query variables to nodes and subgraphs within the XML document. X-scans is discussed in greater detail in [ILW00], and includes support for both tree- and graph-structured documents, while preserving document order.

There are two other operators that are important in producing an XML engine: a nest operator, which nests subelements under parents, in a join-like fashion; and a fuse operator, which can be used to support graph-model features in an XML output document by consolidating multiple output nodes.

Another important area we are addressing within the Tukwila project is how to express incremental XML updates — a way of describing changes to the current ordered XML document. This is important for producing incremental results, for processing continuous streams of XML data, and for reducing data transfer amounts in network applications.

4.3 Specifying Adaptive Behavior

In Section 2, we discussed a number of dimensions of adaptive query processing. Different data management applications have very different needs within these dimensions. Factors may include whether to optimize for first or last tuple, how fresh the data from each query must be (and thus how long data can be cached), and whether (and when) the user should see approximate or incomplete data.

Additionally, the query optimizer should behave quite differently if the domain is one in which many similar queries are being posed, rather than one in which a few simple queries are given. For the multi-query case, the query processor should evaluate the potential benefits of materializing subresults for reuse in future queries.

Although optimizing for each of these various needs has been fairly well-studied, much less work has been done on actually expressing the query processing requirements, and on being able to support all of these cases within a single unified framework. This is an area we plan to address within Tukwila: developing a system to support a wide range of applications, and, equally important, providing a configuration language for specifying the requirements of a given domain.

4.4 Increasing Pipelined Behavior

In terms of query execution, an important need for interactive applications is to facilitate output of first tuples — the user should receive results as soon as possible. Tukwila includes adaptive operators whose intent is to address this requirement.
However, these needs must be balanced by the fact that the query optimizer, which does not have good knowledge of the data sources, may have produced a suboptimal plan. The optimizer initially divides the plan into fragments (pipelines with materialization points) based on expected memory usage and other factors such as confidence in its statistics. Each of these materialization points breaks the pipeline, generally slowing time to first tuple — however, if the plan gets re-optimized into a more efficient form, the net result should be a faster time to completion, and potentially even a better time to first tuples.

4.4.1 Dynamically Materializing Data

Clearly, there is a trade-off between the number of materialization points and the query processing time. Unfortunately, with few statistics available, the optimizer is unlikely to be able to choose good materialization points; it is likely to have too many, too few, or poorly placed breaks in the pipeline. (This problem is also present in traditional systems with quality statistics, appearing for complex queries with many join operations.) We are investigating the performance implications of choosing the materialization points adaptively, during plan execution. In our approach, the query optimizer creates long pipelines; when these pipelines run out of memory, the execution engine will, using “hints” provided by the optimizer, insert a new materialization point into the middle of the pipeline. All operators “upstream” of this new materialization point will flush their results to disk; execution of the operators below the materialization point will continue. Once they complete, the upstream operators will reload their intermediate results, begin reading from the materialized file, and resume normal operation.

We expect that there will be several benefits to this approach. First, early results will likely be able to percolate through the entire long pipeline before the system runs out of memory — this speeds time to initial tuples. Second, the system will only insert materialization points where necessary, something that is extremely difficult to do statically. Third, the cost of breaking a pipeline should generally be less than that of having multiple join algorithms simultaneously overflowing, as it allows the query processor to “stage” portions of the data that exceeds memory.

4.4.2 Returning Incremental Results

Another important feature that is important for interactive applications is the ability to display approximate results incrementally. Initial work in this area has been done in the context of the Niagara system [STD+00], which allows the user to request partial results at any time, and also within the CONTROL project [HHW97] for top-level aggregate operators.

Our focus in this area is on two important problems. First, an interactive query system would ideally provide incremental results for all query types in an interactive, browsable window, where the query processor “focuses” on finalizing the results currently in the user’s view. Second, it will often be the case that for a given domain or query, approximate or partial results are only useful for certain items within the data set. A system that supports partial results should also support a mechanism for expressing which data items should be approximated. We believe this should be one aspect of the configuration language discussed in Section 4.3.

5 Conclusions

Adaptive query processing is a rapidly growing field, as evidenced by this special issue. Certain aspects of this work go back to the early days of relational databases, but the evolution of data integration and data management systems for the Internet has led to a number of recent developments.

We believe that one of the most important areas of future exploration should be in developing a system flexible enough to meet the wide range of domain-specific needs, and providing a means of specifying the relevant parameters to the system. The Tukila project is attempting to address aspects of both of these problems, using XML as the standard data format and data model. We believe that the current system has taken a number of steps in this direction, and that our current and future work will take us much closer to a comprehensive data management solution for Internet-based data.
References

