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Abstract 

A new and conceptually simple data structure, called a 
sufsuc array, for on-line string searches is introduced in 
this paper. Constructing and querying suffix arrays is 
reduced to a sort and search paradigm that employs novel 
aIgorithms. The main advantage of suffix arrays over 
suffix trees is that they are three to five times more space 
efficient. Suffix arrays permit on-line string searches of 
the type, “Is W a substring of A?” to be answered in 
time 0 (Z’ +- IogN), where P is the length of W and N is 
the length of A, which is competitive with (and in some 
cases slightly better than) suffix trees. The only drawback 
is that in those instances where the underlying alphabet is 
finite and small, suffix trees can be constructed in 0 (N) 
time in the worst-case versus 0 (NlogN) time for suffix 
arrays. We show, however, that suffix arrays can be con- 
structed in 0 (N) expected time, regardless of the alphabet 
size. We believe that suffix arrays will prove to be better 
in practice than suffix trees for many applications. 

1. Introduction 

Finding all instances of a string W in a large text A is an 
important pattern matching probIem. There are many 
appIications in which a fixed text is queried many times. 

In these cases, it is worthwhile to construct a data struc- 
ture to allow fast queries. Suffur trees are data structures 
that admit efficient on-line siring searches. A suffix tree 
for a text A of length N over an alphabet C can be built in 
0 (N log 1 C I) time and 0 (N) space cWei73, McC761. 
Suffix trees permit on-line string searches of the type, “Is 
W a substring of A?” to be answered in O(Plog 1x1) 
time, where P is the length of W. We explicitly consider 
the dependence of the complexity of the algorithms on 
I Z I, rather than assume that it is a fixed constant, because 
C can be quite large for many applications. Suffix trees 
can also be constructed in time 0 (N) with 0 (P) time for 
a query, but this requires 0 (N I I: I ) space, which renders 
this method impractical in many applications. 

Suffix trees have been studied and used extensively. 
A survey paper by Apostolic0 [Apo85] cites over forty 
references. Suffix trt~s have been refined from tries to 
minimum state finite automaton [BBE85], generalized to 
on-line construction [MR80, BB8q, and real-time con- 
struction [SliSO], and parallelized [AI86]. Suffix trees 
have been applied to fimdamental string problems such as 
finding the longest repeated substring lJVei731, finding all 
squares or repetitions in a string [AP83], computing sub- 
string statistics [AP85], approximate string matching 
LV86, Mye881, and string comparison CEH86]. They 
have also been used to address other types of problems 
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such as text compression @PE8 11, compressing assembly 
code LFWM84], inverted indices [Car75], and analyzing 
genetic sequences [CHM86]. Galil [Ga85] lists a number 
of open problems concerning suffix trees and on-line 
string searching. 

In this paper, we present a new data structure, 
called a suffuc array, that is basically a sorted list of all the 
suffixes of A. When coupled with information about the 
longest common prefixes (lcps) of adjacent elements in 
the suffix array, string searches can be answered in 
0 (P + IogN) time with a simple augmentation to a classic 
binary search. The suffix array and associated Zcp infor- 
mation occupy a mere 2N integers, and searches are 
shown to require at most P + [log, (N-l)] single-symbol 
comparisons. The construction of the suffix array and Zcp 
information require 0 (NlogN) time in the worst ease. 
Under the assumption that all strings of N symbols are 
equally likely, the expected length of the longest repeated 
substring is 0 (1ogNl log ] C I) cKGO831. By further 
refining our algorithms to take advantage of this fact, we 
can construct a suffix array and its Icp information in 
0 (N) expected time. 

Our approach distills the nature of a suffix tree to 
its barest essence: A sorted array coupled with another to 
accelerate the search. Suffix arrays may be used in lieu of 
suffix trees in the many applications of this ubiquitous 
structure. Our search and sort approach is distinctly dif- 
ferent and, in theory, provides superior querying time at 
the expense of somewhat slower construction. Galil 
[Ga85, Problem 91 poses the problem of designing algo- 
rithms that are not dependent on 1x1 and our algorithms 
meet this criterion, i.e., 0 (P +logN) search time with an 
0 (N) space structure, independent of X. In practice, an 
implementation based on a blend of the ideas in this paper 
compares favorably with an implementation based on 
suffix trees. Our suffix array structure requires only 5N 
bytes on a VAX, which is three to five times more space 
efficient than any reasonable suffix tree encoding. Search 
times are competitive, but suffix arrays do require three to 
ten times longer to build. For these reasons, we believe 
that suffix arrays will become the data structure of choice 
for the many applications where the text is very large. In 
fact, we recently found that the basic concept of suffix 
arrays (sans the lcp and a provable efficient algorithm) 
has been used in the Oxford English Dictionary (OED) 
project at the university of Waterloo [Go89]. Suffix 
arrays have also been used as a basis for a sublinear 

approximate matching algorithm [ME89]. 

The paper is organized as follows. In Section 2, we 
present the search algorithm under the assumption that the 
suffix array and the lcp information have been computed. 
In Section 3, we show how to construct the sorted suffix 
array. In Section 4, we give the algorithm for computing 
the Icp information. In Section 5, we modify the algo- 
rithms to achieve better expected running times. We end 
with empirical results and comments about practice in 
Section 6. 

2. Searching 

Let A = aoal - * * aNml be a large text of length N. 
Denote by Ai = aiai+l * . ’ UN-1 the suffix of A that starts 
at position i. The basis of our data structure is a lexico- 
graphically sorted array, Pos, of the suffixes of A; namely, 
Pos [k] is the start position of the kth smallest suffix in the 
set tAosA , . ..ANvl ) . The sort that produces the array 
Pos is described in the next Section. For now we assume 
that Pos is given; namely, APos [ol < Apos[l~ < . . . c 
AP,, IN-~,, where “<” denotes the lexicographical order. 

For a string u, let ZP be the prefix consisting of the 
first p symbols of u if u contains more than p symbols, 
and u otherwise. We define the relation <,, to be the lexi- 
cographical order of p-symbol prefixes; that is, u cP v iff 
up < vp. We define the relations $, , =P, P, >P, and &, in a 
similar way. Note that, for any choice of p, the Pos array 
is also ordered according to $, because u c v implies 
u $ v. All suffixes that have equal p-prefixes, for some 
p <N, must appear in consecutive positions in the Pos 
array, because the Pas array is sorted lexicographically. 
These facts are central to our search algorithm. 

Suppose that we wish to find all instances of a 
string W=wOwl •.‘w+~ of lengthPIN inA. Let&= 
min(k: W$Ap,[kl or k=N) and Rw = 
max(k:ApO,~~l~p Work=-I). Since Pm is in $- 
order, it follows that W matches aiUi+l * * * ai+p-r if and 
onlyifi=Pos[k] forsomekc [&,R,]. Thus,if&and 
Rw can be found quickly, then the number of matches is 
Rw-Lr++l and their left endpoints are given by 
Pas [Lw], Pas r&+1], ..Pos [Rw]. But Pas is in $-order, 
hence a simple binary search can find Lw and Rw using 
0 (1ogN) comparisons of strings of size at most P; each 
such comparison requires 0 (P) single-symbol comparis- 
ons. Thus, the Pos array allows us to find all instances of 
a string in A in time 0 (P 1ogN). The algorithm is given 
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in Fig. 1. 

1. if W SP ApoS~oI then 
2. L,tO 
3. else if W >p ApoSINmlI then 
4. r,tN 
5. else 
6. I 6% RI t NAN--l) 
7. while R -L > 1 do 
8. [ M t (L+R)/2 
9. 
10. 

if W Ip ApoSIMI then 
RtM 

11. else 
12. LtM 

1 
13. Lw+-R 

I 
Figure 1: An 0 (PlogN) search for Lw. 

The algorithm in Fig. 1 is very simple, but its run- 
ning time can be improved. We show next that the IP- 
comparisons involved in the binary search need not be 
started from scratch in each iteration of the while loop. 
We can use information obtained from one comparison to 
speedup the ensuing comparisons. When this strategy is 
coupled with some additional precomputed information, 
the search is improved to P +rlogZ(N-l)l single-symbol 
comparisons in the worst case, which is a substantial 
improvement. 

Let lcp (v, w) be the length of the longest common 
prefix of v and w. When we lexicographically compare Y 
and w in a left-to-right scan that ends at the first unequal 
symbol we obtain lcp(v, w) as a byproduct. We can 
modify the binary search in Fig. 1 by maintaining two 
variables, 1 and r, such that I = Icp (ApoJftI, W), and 
‘=b6%‘bos[~]). Initially, 1 is set by the comparison of 
W and ApoS loI iu line 1, and r is set in the comparison 
against ApoS[~-l] in line 3. Thereafter, each comparison 
of W against ApostMl in line 9, permits I or r to be 
appropriateIy updated in line 10 or 12, respectively. By 
so maintaining I and r, h =min (I, r) single-symbo1 

(a) 

comparisons can be saved when comparing ~~~~~~~ to W, 

bea.se AP,, [L ] =I W =r Amos [R 1 implies Apos[kl =h W for 
all k in [L, R 1 including M. While this reduces the 
number of single-symbol comparisons needed to deter- 
mine the $-order of a midpoint with respect to W, it 
turns out that the worst case running time is still 
0 (P log N). 

To reduce the number of single-symbol comparis- 
ons to P +rlogz (N-l)1 in the worst case, we use precom- 
puted information about the Zcps of A~,,IMI with each of 
A PCS [L] and Apdj[R]. Consider the set of all triples 
(L, M, R) that can arise in the inner loop of the binary 
search of Fig. 1. There are exactly N -2 such triples, 
each with a unique midpoint ME 11, N-21, and for each 
triple OIL CM CR IN-l. Suppose that (LM, M, Rnr) is 
the unique triple containing midpoint M. Let Llcp be an 
array of size N - 2 such that LZcp [M ] = 
Zcp (ApoSILH1, Ap,,SIMI), and Let Rlcp be another array of 
size N - 2 such that RZcp[M ] = Zcp (Apas[MI, ApoSIR,l). 
The construction of the two (N-2)-element arrays, Llcp 
and Rlcp, can be interwoven with the sort producing Pos 
and will be shown in Section 4. For now, we assume that 
the Llcp and Rlcp arrays have been precomputed. 

Consider an iteration of the search loop for triple 
(L, M, R), and, without loss of generality, assume that 
I2 r. Let h = mux(Z, r) and let Ah he the difference 
between the value of h at the beginning and at the end of 
the iteration. There are three cases to consider’, based on 
whether LZcp[M ] is greater than, equal to, or less than 1. 
The cases are illustrated in Fig. 2(a), 2(b), and 2(c), 
respectively. The vertical bars denote the lcps between W 
and the suffixes in tire Pos array (except for 1 and r, these 
Zcps are not known at the time we consider M). The 
shaded areas illustrate LZcp[M]. For each case, we must 
determine whether Lw is in the right half or the left half 
(the binary search step) and we must update the value of 

’ The first two cases can be combined in the program. We use three 
cases only for description puposes. 

1111 r 

R 

Figure 2: The three cases of the 0 (P + log N) search. 
321 



Hence, the use of the arrays Lkp and Rlcp (the Rlcp 
array is used when I < r) reduces the number of single- 
symbol comparisons to no more than Ah+1 for each itera- 
tion. Summing over all iterations and observing that 
C Ah 5 P, the total number of single-symbol comparisons 
made in an on-line string search is at most 
P +[logz (N-1)1, and 0 (P + 1ogN) time is taken in the 
worst-case. The precise search algorithm is given in Fig. 
3. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 

1 f- ~CP(AP,[OI 9 w) 
T + ICP CAP,, [N-II. W) 
if I = P or w[ I ap,, [ol+l then 

L,tO 
else if T < P or w, I apos[+l]+r then 

Lw+-N 
else 

( 6% R) c (0, N-l) 
whileR-L > 1 do 

( M t (L+R)/2 
iflrrthen 

if Lcp [M ] 2 2 then 
m + i + ~CP (Apes [M 1+1 P WI 

else m t Lcp [M] 
else 

22. 

if Rep [M ] L r then 
m +-- r + ICP @P~~[MI+,, W,) 

else m tRcp[M] 
ifrn=Por~,Ia~,[~~+~then 

(RR, r)+-- W, m) 
else (L, I) t (M, m) 

I 
LwtR 

1 

either I or r. It turns out that both these steps are easy to 
make: 

Case 1: LZcp[M] > I (Fig. 2(a)): in this case, 
A pOs[MI =!+I A,,[Lj fl+l W, and so W must be in the right 
half and I is unchanged, 

Case 2: LZcp[Ml = 2 (Fig. 2(b)): in this case, we 
know that the first I symbols of Pos [M] and Ware equal; 
thus, we need to compare only the I + lth symbol, I + 2t.h 
symbol, and so on, until we find one, say r+j, such that 
W I+i Pos [Ml. The I + jth symbol determines whether Lw 
is in the right or left side. In either case, we also know 
the new value of I or 1 - it is I + j. Since 1 = h at the 
beginning of the loop, this step takes Ah+1 single-symbol 
comparisons. 

Case 3: Llcp[M ] < I (Fig. 2(c)): in this case, since 
W matched 1 symbols of L and c I symbols of A4, it is 
clear that Lw is in the left side and than the new value of T 
is Llcp [Ml. 

Figure 3: An 0 (P +logN) search for Lw. 

3. Sorting 

The sorting is done in rlog2(N+1)1 stages. In the first 
stage, the suffixes are put in buckets according to their 
fust symbol. Then, inductively, each stage further parti- 
tions the buckets by sorting according to twice the 
number of symbols. For simplicity of notation, we 
number the stages 1, 2,4, 8, etc., to indicate the number 
of affected symbols. Thus, in the H” stage, the suffixes 
are sorted according to the &-order. For simplicity, we 
pad the suffixes by adding blank symbols, such that the 
lengths of all of them become N + 1. (This padding is not 
necessary, but it simplifies the discussion.) The first stage 
consists of a bucket sort according to the lirst symbol of 
each suffix. The suffixes ate divided into ml buckets 
(ml I I C I), each holding the suffixes with the same first 
symbol. Assume that after the P stage the suffixes are 
partitioned into mH buckets, each holding suffixes with 
the same H first symbols, and that these buckets are sorted 
according to the &-relation. We will show how to sort 
the elements in each N-bucket to produce the h-order in 
0 (N) time. Our sorting algorithm uses similar ideas to 
those in [KMR72]. 

Let Ai and Aj be two suffixes belonging to the same 
bucket after the H” step; that is, Ai=H Aj- We need to 
compare Ai and Aj according to the next H symbols. But, 
the next H symbols of Ai (Ai) are exactly the first H sym- 
b01~ Of Ai+H (Ajm). By the assumption, we already knOW 

the relative order, according to the <H-relation, of Ai+H 
and Aj+H- It remains to see how we can use that 
knowledge to complete the stage efficiently. We first 
describe the main idea, and then show how to implement 
it efficiently. 

We start with the first bucket, which must contain 
the smallest suffixes according to the &-relation. Let Ai 
be the tirst suffix in the first bucket (i.e., Pos [l] = i), and 
consider Ai-H (if i -H c 0, then we ignore Ai and take the 
suffix of Pas [2], and so on). Since Ai starts with the 
smallest H-Symbol string, AI-H should be the first in its 
W-bucket. Thus, we move Ai+ to the beginning of its 
bucket and mark this fact. For every bucket, we need to 
know the number of suffixes in that bucket that have 
already been moved and thus placed in G-order. The 
algorithm basically scans the suffixes as they appear in 
the &-order, and for each Ai it moves AI-H (if it exists) to 
the next available place in its H-bucket. While this basic 
idea is simple, its efficient implementation (in terms of 
both space and time) is not trivial. We describe it below. 

We maintain three integers arrays, Pos, Prm, and 
Count, and two boolean arrays, BH and B2H, all with N 
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elements2. At the start of stage H, Pos [i] contains the 
start position of the irh smallest suffix, Prm[i] is the 
inverse of Pos, namely, Prm [Pos [i ]] = i, and BH [i] is 1 
iff Pos [i] contains the leftmost suffix of an H-bucket 
(i.e.. AP,,[~I ~HAP~~[~-II). Count and B2H ae temporary 
arrays; their use will become apparent in the description 
of a stage of the sort. A radix sort on the Erst symbol of 
each suffix is easily tailored to produce Pos, Prm, and BH 
for stage 1 in 0 (N) time. Assume that Pos, Prm, and BH 
have the correct values after stage H, and consider stage 
2H. 

We Erst reset Prm [i ] to point to the leftmost cell of 
the H-bucket containing the irh suffix rather than to 
suffix’s precise place in the bucket. We also initialize 
Count [i] to 0 for all i. AI1 operations above can be done 
in 0 (N) time. We then scan the Pos array in increasing 
order, one bucket at a time. Let I and r (I Ir) mark the 
left and right boundary of the H-bucket currently being 
scanned. Let 7’i (the H-tail of ZJ denote Pos [i]-H. For 
every i, 1 li Ir, we increment Count [Prm [Tj]], set 
Prm [Ti] = Prm [Ti] + Count [Prm [Ti]] - 1, and set 
B2H[Prm [Ti]] to 1. In effect, all the suffixes whose 
H +l” through 2Hfh symbols equal the unique H-prefix of 
the current H-bucket are moved to the top of their H- 
buckets. The B2H field is used to mark those prefixes that 
were moved. Before the next H-bucket is considered, we 
make another pass, find all the moved suffixes, and reset 
the B2H fields such that only the leftmost of them in each 
2H-bucket is set to 1, and the rest are reset to 0. This way, 
the B2H fields correctly mark the beginning of the 2H- 
buckets. Thus the scan updates Prm and sets B2H so that 
they are consistent with the SW-order of the suffixes. In 
the final step, we update the Pos array (which is the 
inverse of Prm), and set BH to B2H. All the steps above 
can clearIy be done in 0 (N) time, and, since there are at 
most rlog2(N+l)l stages, the sorting requires 0 (NlogN) 
time in the worst case. Average-case analysis is 
presented in Section 5. 

4. Finding Longest Common Prefixes 

The 0 (P + 1ogN) search algorithm requires precomputed 
information about the lcps between the suffixes starting at 
each midpoint A4 and its left and right boundaries LM and 
RM. We Erst show how to compute the lcps between 
suffixes that are consecutive in the sorted Pos array. We 
wilI see later how to compute all the necessary Zcps. The 
key idea is the following. Assume that after stage H we 

’ In fact, two integers am sufficient, and since these integers am always 
positive we can use their sign bit for the boolean values. ‘bus, the space 
requirement is only two integers per symbol. We present a slightly 
simplified version in this paper. 

know the lcps between suffixes in adjacent buckets (after 
the Erst stage, the Zcps between suffixes in adjacent buck- 
ets are 0). At stage 2H the buckets are partitioned accord- 
ing to 2H symbols. Thus, the lcps between suffixes in 
newly adjacent buckets must be at least H and at most 
W-l. Furthermore, if Ap and A, are in the same H- 
bucket but are in distinct W-buckets, then 

If we can maintain, after stage H, information about all 
lcps whose values are less than H, then computing lcps in 
stage 2H will be straightforward from (1). But, this is too 
much information. We are interested only in computing 
lcps between adjacent suffixes in the Enal order, not 
between every pair of prefixes. Instead of computing all 
lcps, we maintain an 0 @Q-space data structure that 
enables us to compute any lcp whose value is less than H 
in 0 (logN) time. We will describe this data structure, 
which we call an intend free, after we establish our basic 
approach. 

We define height(i) = lcp (Apes [i-l], APm(i])r 
1 <ilN-1, where Pos is the final sorted order of the 
sufExes. These N-l height values are computed in an 
array Hgt [il. The computation is performed inductively, 
together with the sort, such that Hgt [i] achieves its 
correct value at stage H iff height(i) <H, and it is 
undefined (specificaIly, N + 1) otherwise. Notice that, if 
height (i) < H, then Ap,,Ii-rl and APosril must be in dif- 
ferent H-buckets since H-buckets contain suffixes with 
the same H-symbol prefix. 

Let PosH, HgtH, and PrmH be the values of the 
given arrays at the end of stage H. In stage 2H of the sort, 
the &-ordered list Pos w is produced by sorting the 
suffixes in each H-bucket of the sH-ordered list PosH. 
The following lemma captures the essence of how we 
compute Hgr w from HgfH given Posw and Prmw. 

Lemma 1: If H S height (i) c 2H then height fi) = H + 
min ( HgtH[k] : k E [min (a, 6) + 1, max(a, b)] ), where 
a = Prm”[PosW[i-l]+H ], and 
b=PrmWIPosW[i]+H]. 

Proof: L&p= Posw[i-11 and q = Posw[i]. As we 
have observed, height(i) < 2H implies height(i) = 
H+~cP(&H,~$+H ). Next observe that Po~~fa]=p+H 
and PosZH[b]=q+H by the choice of CL and b. Without 
loss of generality, assume that u < b. We now know that 
height(i) = H + Icp (u, Y) where u =Apw=HIal, v =APos~~bl, 
kp (u, v) <H, and u <H v. Observe that x <H z and 
x IH y $f z hply kp (x, z) = mh (kp (x, y), kp @, Z))ini 

follows, by induction, that if xa<H& 
x0 +-,x1 $, ’ - ’ +fx,, then ICP (x0.&J = 
min(Icp(xk-I,xk):kE ll,n]). Thus, lcp(u, v) = 
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min ( b (A~osy~~r Apmyk]) : k E b+l, f~ I). Now 
lcp (u, v) <H implies that at least one term in the 
minimum is less than H. For those terms less than H, 
lcp (Apos~[~-l~ ,Apos=~~]) = height(k) = HgtH[k]. This, 
combined with the fact that HgtH[k]=N+l >H for all 
other terms, gives the result. n 

We are now ready to describe the algorithm. In the 
first stage, we set Hgt[iJ to 0 if ap~l[i-l] +~p,,l[i], and 
N+l otherwise. This correctly establishes Hgt’. At the 
end of stage 2H > 1, we have computed Posw, Prmw, 
and BHZH (marks the W-buckets). Thus, by Lemma 1, 
the following code correctly establishes HgtW from HgtH 
when placed at the end of a sorting stage. 

fori E [I,N-l]suchthatBH[i]andHgt[i] >Ndo 
[ a t Prm [Pus [i-l]+H] 

b t Prm [Pas [i l+H ] 
Set (i, H +Min_Height (min (a, b)-+l, max(a, b))) 
( these routines are defined below ) 

1 

The routine Set (i, h) sets Hgt [i I to h in our interval tree, 
and AC-Height (i, j) determines min (Hgt [k] : k E [i, j] ) 
using the interval tree. We now show how to implement 
each routine in time 0 (1ogN) in the worst case. Consider 
a balanced and full binary tree with N-l leaves which, in 
left-to-right order, correspond to the elements of the array 
Hgt. The tree has height 0 (logN) and N-2 interior ver- 
tices. Assume that a value Hgt [v] is also kept at each 
interior vertex v. We say that the tree is current if for 
every interior vertex v, Hgt[v] = 
min (Hgt [left(v)], Hgt [right (v)]), where Zeft (v) and 
right(v) are the left and right children of v. 

Let T be a current tree. We need to perform two 
operations on the tree, a query Min-Height (i, j), and a 
dynamic operation Set (i, h). The query operation 
Min-Height (i, j) computes min(Hgt [k] : k E [i, j]). It 
can be answered in O(logN) time as follows. Let 
Ica (i, j) be the lowest common ancestor of leaves i and j. 
Since the tree is fixed, Icu (i, j) can be found in constant 
time with simple arithmetics (see, for example, f$lT841). 
Let P be the set of vertices on the path from i to Zca (i, j) 
excluding Zca (i, j), and let Q be the similar path for leaf 
j. Min-Height (i, j) is the minimum of the following 
values: (1) Hgt [i], (2) Hgt [IV] such that right (v)=w and 
w $ P for some v E P, (3) Hgt [IV] such that left(v) =w 
and w $ Q for some v E Q, and (4) Hgt lj]. These 
0 (Iog N) vertices can be found and their minimum com- 
puted in 0 (1ogN) time. The operation Set (i, h) sets 
Hgt [i ] to h and then makes T current again by updating 
the Hgt values of the interior vertices on the path from i to 

the root. This takes 0 (1ogN) time. 

Overall, the time taken to compute the height 
va&s in stage H is 0 (N +SetH1ogN) where SetH is the 
number of indices i for which height(i) E [H, 2H-11. 
Since CSet H = N over all stages, the total additional time 
required to compute Hgt during the sort is 0 (NlogN). 

The Hgt array gives the lcps of suffixes that are 
consecutive in the Pus array. We now show that the 
arrays Llcp and Rlcp can be computed similarly. We are 
free to choose any full and balanced tree for this the 
scheme. Using the tree based on the binary search of Fig- 
ure 1 gives us the arrays Llcp and Rlcp needed for the 
search in a direct fashion. The tree consists of 2N-3 ver- 
tices each labeled with one of the 2N-3 pairs, (L, R), that 
can arise at entry and exit from the while loop of the 
binary search. The root of the tree is labeled (O,N-1) 
and the remaining vertices are labeled either (LM,M) or 
(M, RM) for some midpoint M E [l, N-21. Alternately, 
the tree’s N-2 interior vertices are (LM, REn) for each 
midpoint M, and its N-l leaves are (i-l, i) for 
i E [1, N-l] in left to right order. For each interior ver- 
tex, kB(&.t,Rd) = (LM,M) and right( (LM,RM)) = 
(M, RM). Since the tree is full and balanced, it is appropri- 
ate for realizing Set and Min-Height if we let leaf (i-l, i) 
hold the value of Hgt [il. Moreover, at the end of the 
sort, Hgt [ (L RI 1 = min(height(k):kE[L+l,R]) = 

WAP~~ [r, 1, Amos [R 1% Thus, Llcp[h4] = Hgt[(LM,M)] 
and RZcp[M] = Hgt [ (M, RM)]. So with this tree, the 
arrays Llcp and RZcp are directly available upon comple- 
tion of the SOX%.~ 

5. Linear Time Expected-case Variations 

We now consider the expected time complexity of con- 
structing and searching suffix arrays under the disttibu- 
tional model where all N-symbol strings are equally 
likely4. Under this input distribution, the expected length 
of the longest repeated substring has been shown to be 
210g 1 zl N + 0 (1) [KG083]. This fact provides the central 
leverage for all the results that follow. Note that it 
immediately imples that, in the expected case, Pas will be 
completely sorted after 0 (1oglogN) stages, and the sort- 
ing algorithm of Section 3 thus takes 0 (Nlog 1ogN) 
expected time. 

’ The interval me requks 2N-3 positive integers. However, the obser- 
vation that one child of each interior vertex has the same value as its fa- 
ther, permits interval trees (and thus the Ucp and Rlcp arrays) to be en- 
coded and manipulated as N-l signed integers. 

’ The ensuing results also hold under the mom general model where each 
text is assumed to be the result of N independent Bernoulli trials of a 
1 Z 1 -sided coin toss, which is not necessarily uniform. 
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The expected sorting time can be reduced to 0 (N) 
by modifying the radix sort of the first stage as follows. 
Let T = llog ,r, Nj and consider mapping each string of T 
symbols over C to the integer obtained when the string is 
viewed as a T-digit, radix- ] C ] number. This oft-used 
encoding is an isomorphism onto the range [0, ] C ] r-l] c 
[0, N-l], and the I-relation on the integers is identical 
with the <r-relation on the corresponding strings. Let 
Inrr(A,) be the integer encoding of the T-symbol prefix of 
suffix AP. It is easy to compute Int,(A,) for all p in a sin- 
gle 0 (N) sweep of the text by employing the observation 
that Int,(A,) = up I I; I’-’ +LlnrT(AP+l)/ ] X ]I. Instead of 
performing the initial radix sort on the first symbol of 
each suffix, perform it on the integer encoding of the first 
T symbols of each suffix. This radix sort still takes just 
0 (N) time and space because the choice of T guarantees 
that the integer encodings are all less than N. Moreover, 
it sorts the suffixes according to the <r-relation. Effec- 
tively, the base case of the sort has been extended from H 
= 1 to H = T with no loss of asymptotic efficiency. Since 
the expected length of the longest repeated substring is 
T(2+ 0 (T-l)), at most 2 subsequent stages are needed to 
complete the sort in the expected case. Thus this slight 
variation gives an 0 (N) expected time algorithm for sort- 
ing the suffixes. 

Corresponding expected-case improvements for 
computing the Zcp information, in addition to the sorted 
suffix array, are harder to come by. We can still achieve 
0 (N) expected-case time, but by employing an approach 
to computing height (i) that uses identity (4.1) recursively 
to obtain the desired Icps. Let the sort history of a partic- 
ular sort be the tree that models the successive refinement 
of buckets during the sort. There is a vertex for each H- 
bucket except those H-buckets that are identical to the 
(H/2)-buckets containing them. The sort history thus has 
0 (N) vertices, as each leaf corresponds to a suffix and 
each interior vertex has at least two children. Each vertex 
contains a pointer to its parent and each interior vertex 
also contains the stage number at which its bucket was 
split. The leaves of the tree are assumed to be arranged in 
an N element array, so that the singleton bucket for suffix 
AP can be indexed by p. It is a straightforward exercise to 
build the sort history in 0 (N) time overhead during the 
sort. Notice that we determine the values height(i) only 
after the sort is finished. 

Given the sort history produced by the sort, we 
determine the Icp of AP and A, as follows. First we find 
the nearest common ancestor (nca) of suffixes AP and A, 
in the sort history using an 0 (1) time nca algorithm 
[HT84, SV88]. The stage number H associated with this 
ancestor tells us that lcp (AP, Aq) = H + Icp (AP+H, Aq+H) E 

[H, m-11. We then recursively find the Zcp of AP+~ and 
A q+n by finding the nca of suffixes AP+n and Aq+~ in the 
history, and so on, until an nca is discovered to be the 
root of the history. At each successive level of the recur- 
sion, the number of the nca is at least halved, and so the 
number of levels performed is 0 (log L), where L is the 
lcp of AP and A,. Because the longest repeated substring 
has expected length O(Zog ,zl N), the N-l Icp values of 
adjacent sorted suffixes are found in 0 (NloglogN) ’ 
expected time. 

The scheme above can be improved to O(N) 
expected time by strengthening the induction basis as was 
done for the sort. Suppose that we stop the recursion 
above when the stage number of an nca becomes less than 
T’ = l’/ log tZI NJ. Our knowledge of the expected max- 
imum Zcp length implies that, on average, only three or 
four levels are performed before this condition is met. 
Each level takes CJ (1) time, and we are left having to 
determine the lcp of two suffixes, say AP and A,, that is 
known to be less than T’. To answer this final lcp query 
in constant time, we build a ] C ] “-by- ] C] r’ array 
Lookup, where Lookup [Int&x), Ir+(y)] = lcp (x, y> for 
all T’-symbol strings x and y. By the choice of T’ there 
are no more than N entries in the array and they can be 
computed incrementally in an 0 (N) preprocessing step 
along with the integer encodings Znt&A,) for all p. So 
for the final level of the recursion, lcp (A,,, A,J = 
Lookup [Int&A,), Int,#(AJ may be computed in 0 (1) 
time via table lookup. In summary, we can compute the 
lcp between any two suffixes in 0 (1) expected time, and 
so can produce the Zcp array in 0 (N) expected time. 

The technique of using integer encodings of 
0 (logN)-symbol strings to speedup the expected prepro- 
cessing times, also provides a pragmatic speedup for 
searching. For any KST, let Buck [k] = 
minji :IntK(A,[k])=ij. This bucket array contains 
] C ] K non-decreasing entries and can be computed from 
the ordered suffix array in 0 (N) additional time. Given a 
word W, we know immediately that Lw and Rw are 
between Buck [k] and Buck[k+l]-1 for k = Inr,(W). 
Thus in 0 (K) time we can limit the interval to which we 
apply the search algorithm proper, to one whose average 
size is Nl ] C ] K. Choosing K to be T or very close to T, 
implies that the search proper is applied to an 0 (1) 
expected-size interval and thus consumes 0 (P) time in 
expectation regardless of whether the algorithm of Figure 
1 or 2 is used. While the use of bucketing does not 
asymptotically improve either worst-case or expected- 
case times, we found this speedup very important in prac- 
tice. 
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6. Practice 

A primary motivation for this paper was to be able to 
efficiently answer on-line string queries for very long 
genetic sequences (on the order of one million or more 
symbols Iong). In practice, it is the space overhead of the 
query data structure that limits the largest text that may be 
handled. Suffix trees are quite space expensive, requiring 
roughly 16 bytes of overhead per text character. Utilizing 
an appropriate blend of the suffix array algorithms given 
in this paper, we developed an implementation requiring 5 
bytes of overhead per text character whose construction 
and search speeds are competitive with suffix trees. 

There are three distinct ways to implement a data 
structure for suffix trees, depending on how the outedges 
of an interior vertex are encoded. Using a I XI -element 
vector gives a structure requiring 8N +4( I z I +2) -I bytes 
where Z is the number of interior nodes in the suffix tree. 
Encoding each set of outedges with a binary search tree 
requires 8N + 201 bytes. Finally, encoding each outedge 
set as a linked list requires 8N + 161 bytes. The parameter 
Z < N varies as a function of the text. The fust four 
columns of Table 1 illustrates the value of Z/N and the 
per-text-symbol space consumption of each of the three 
coding schemes. These results suggest that the linked 
scheme is the most space parsimonious. We developed a 
tightly coded implementation of this scheme for the tim- 
ing comparisons with our suffix array software. 

For our practical implementation, we chose to build 
just a suffix array and use the radix-ZV initial bucket sort 
described in Section 5 to build it in 0 (N) expected time. 
Without the lcp array the search must take O(PlogN) 
worst-case time. However, keeping variables 1 and r as 
suggested in arriving at the 0 (Z’ + IogN) search, 
significantly improves search speed in practice. We 
further accelerate the search to 0 (P) expected time by 
using a bucket table with K = loglxl N/4 as described in 

Random (1 X(=2) 
Random (lE1-t) 
Random (ICl=8) 
Random (I X)=16) 
Random (1X1=32) 
Text (1X1=96) 
Code(lCI=%) 
DNA(lZ+l) 

II Space (Bytes/text symbol) 
S.Trees 

I/N Link Tree Vector 

.99 23.8 27.8 19.8 

.62 17.9 20.4 18.9 

.45 15.2 17.0 20.8 

.37 13.9 15.4 30.6 

.31 13.0 14.2 46.2 

.54 16.6 18.8 220.0 

.63 18.1 20.6 255.0 

.72 19.5 22.4 25.2 

Section 5. Our search structure thus consists of an N 
integer suffix array and a N/4 integer bucket array, and so 
consumes only 5 bytes per text symbol (assuming an 
integer is 4 bytes). 

Table 1 summarizes a number of timing experi- 
ments on texts of length 100,000. All times are in 
seconds and were obtained on a VAX 8650 running 
UNIX. Columns 6 and 7 give the times for constructing 
the suffix tree and suffix array, respectively. Columns 8 
and 9 give the time to perform 100,000 successful queries 
of length 20 for the suffix tree and array, respectively. In 
synopsis, suffix arrays are 3-10 times more expensive to 
build, 2-5 times more space efficient, and can be queried 
at speeds comparable to suffix trees. 
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