Interaction Testing of Highly-Configurable Systems in the
Presence of Constraints

Myra B. Cohen, Matthew B. Dwyer, Jiangfan Shi
Department of Computer Science and Engineering
University of Nebraska - Lincoln
Lincoln, Nebraska
{myra, dwyer, jfshij@cse.unl.edu

ABSTRACT

Combinatorial interaction testing (CIT) is a method to sample con-
figurations of a software system systematically for testing. Many
algorithms have been developed that create CIT samples, however
few have considered the practical concerns that arise when adding
constraints between combinations of options. In this paper, we
survey constraint handling techniques in existing algorithms and
discuss the challenges that they present. We examine two highly-
configurable software systems to quantify the nature of constraints
in real systems. We then present a general constraint representa-
tion and solving technique that can be integrated with existing CIT
algorithms and compare two constraint-enhanced algorithm imple-
mentations with existing CIT tools to demonstrate feasibility.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms

Algorithms, Verification

Keywords

Combinatorial interaction testing,constraints,covering arrays,SAT

1. INTRODUCTION

Software development is, increasingly, shifting from the produc-
tion of individual programs to the production of families of re-
lated programs [26]. This eases the design and implementation of
multiple software systems that share a common core set of capa-
bilities, but have key differences, such as the hardware platform
they require, the interfaces they expose, or the optional capabil-
ities they provide to users. Often times significant reuse can be
achieved by implementing a set of these systems as one integrated
highly-configurable software system. Configuration is the process
of binding the optional features of a system to realizations in order
to produce a specific software system, i.e., a member of the family.

The concept of a highly-configurable software system arises in
many different settings differentiated by the point in the develop-
ment process when feature binding occurs, i.e., the binding time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISSTA’07, July 9-12, 2007, London, England, United Kingdom.

Copyright 2007 ACM 978-1-59593-734-6/07/0007 ...$5.00.

129

An example of very early feature binding is seen in software prod-
uct lines. A software product line (SPL) uses an architectural model
to define a family of products built from a core set of platforms and
customized through the identification of points of variability and
commonality. Variability points allow the developer to plug in dif-
ferent variations of a feature (variant) while still maintaining the
overall system architecture. At the other end of the spectrum are
dynamically reconfigurable systems, where feature binding hap-
pens at run-time and may, in fact, happen repeatedly. NASA’s Deep
Space 1 software is an example of such a system that uses online
planning to activate and deactivate modules in the system based on
spacecraft and mission status [11]. In between are the common
class of user configurable systems. These are programs such as
desktop applications, web servers, or databases, that allow users to
modify a set of pre-defined options, e.g., command-line parame-
ters or configuration file settings, as they see fit and then run the
program with those options.

Highly-configurable systems present significant challenges for
validation. The problem of testing a single software system has
been replaced with the much harder problem of testing the set of
software systems that can be produced by all of the different possi-
ble bindings of optional features. A single test case may run with-
out failing under one configuration, however the same test case may
fail under a different one [19, 32]. One cause for this is the unin-
tended interaction of two more bindings for features.

Figure 1 presents a simplified mobile phone product line that
we use to illustrate the challenges of testing highly-configurable
software; the challenges are present in systems with later binding
times as well. This product line is hypothetical, but its structure
is reflective of portions of the Nokia 6000 series phones [24]. The
product line supports three display options (16MC, 8MC, BW) and
can have either a text email viewer (TV), graphical email viewer
(GV) or no viewer (NOV). A phone may be built with two types
of camera (2MP or 1MP) or without a camera (NOC), with a video
camera (VC) or without a video camera, and with support for video
ringtones (VR) or without that support. There are a total of 108,
(3 x 3 x 3 x 2 x 2), different phones that can be produced by
instantiating this software product line. For each one, we will need
to run a test suite if we wish to fully test the family of products.

When we run test suites, they may behave differently when dif-
ferent features are present. For instance a problem with the email
viewer may not appear under the 8MC display, but may only appear
with 16MC. Similarly a problem in the 16MC display may only
appear with a VC. Since testing the complete set of product line in-
stances is most likely infeasible, testing techniques that sample that
set can be used to find interaction faults. This is commonly called
combinatorial interaction testing (CIT) [4] and a primary approach
to such testing is to systematically sample the set of instances in

Product Line Options (factors)
Display Email Camera Video Video
Possible Viewer Camera Ringtones
Values
16 Million Colors Graphical | 2 Megapixels Yes Yes
16MC GV 2MP vc VR
8 Million Colors Text 1 Megapixel No No
sMc TV mpP wvc VR
Black and White None None
BW Nov NOC

Constraints on Valid Configurations:

(1) Graphical email viewer requires color display
(2) 2 Megapixel camera requires a color display
(3) Graphical email viewer not supported with the 2 Megapixel camera
(4) 8 Million color display does not support a 2 Megapixel camera
(5) Video camera requires a camera and a color display
(6) Video ringtones cannot occur with No video camera
(7) The combination of 16 Million colors, Text and
2 Megapixel camera will not be supported

Figure 1: Mobile phone product line

such a way that all {-way combinations of features are included;
pairwise or 2-way combinations are the most commonly studied.
A significant literature exists that describes foundational concepts,
algorithms, tools, and experience applying interaction testing tools
to real systems. One prime objective of this body of work is to pro-
duce the smallest subset of configurations for a system that achieves
the desired ¢-way coverage.

At the bottom of Figure 1, we list seven constraints that have
been placed on the valid product instances which can be created.
Constraints like these were common in the Nokia 6000 series. They
may be due to any number of reasons, for example, inconsistencies
between certain hardware components, limitations due to avail-
able memory and software size, or simply marketing decisions.
We present natural language representations of constraints since
that is how they are typically described in software documentation.
Taken together these constraints reduce the number of product in-
stances to 31, but rather than simplifying the interaction testing
problem they actually make it much more challenging.

As explained in Section 2, existing algorithms and tools for com-
binatorial interaction testing either:

1. ignore constraints all together;

2. require the user to explicitly define all illegal configurations;

3. attempt to bias test generation to avoid constraints “if possi-
ble”, but don’t guarantee the avoidance of illegal configura-
tions;

4. mention constraints as a straightforward engineering exten-

sion to be solved later; or

5. use a proprietary (unpublished) method that cannot be lever-

aged by the research community.

This is problematic for multiple reasons. Ignoring constraints
may lead to the generation of test configurations that are illegal and
this can lead to inaccurate test planning and wasted effort. Even
a small number of constraints can give rise to enormous numbers
of illegal configurations, as we illustrate in Section 4, and asking
a user to produce those is both excessively time consuming and
highly error-prone. As we explain in Section 3.2, biasing strategies
will not work in the relatively common situation where multiple
constraints interact to produce additional implicit constraints.

In this paper, we make several contributions: (i) we explain the
variety and type of constraints that can arise in highly-configurable
systems and report on the constraints found in two non-trivial soft-
ware systems — SPIN [17] and GCC [12], (ii) we present a tech-
nique for compiling constraints into a boolean satisfiability (SAT)

130

problem and integrating constraint checking into existing algorithms,
and (iii) we report our experiences integrating this technique into
both greedy and simulated annealing algorithms for interaction test
generation and on the cost and effectiveness of the resulting CIT
techniques. Our primary goals are to expose the magnitude and
subtlety of constraints found in realistic configurable systems and
to provide an open and comprehensive description of techniques
for handling these; we believe it is the first in the interaction test-
ing literature. Although we prototype our technique on two spe-
cific algorithms, we expect that it can be generalized to work with
others. This work is just the first step towards widely applicable
cost-effective interaction testing for large-scale highly-configurable
systems, but it is an essential step.

The rest of this paper is organized as follows. In the next section,
we provide some background on interaction testing and existing al-
gorithmic techniques. We then discuss various types of constraints
and show the implications for various algorithms that are used to-
day. Section 4 presents a case study of two real configurable soft-
ware systems to show the extent to which constraints exist. Section
5 presents our solution for incorporating constraints into two types
of algorithms for constructing constrained covering arrays. Section
6 validates our techniques on a set of examples and compares them
with some known algorithms. Finally in section 7 we conclude and
present our future work.

2. BACKGROUND

In the example in Figure 1, the mobile phone software product
line contains a total of 108 possible product line instances before
incorporating system constraints. The number of possible instances
of a product line grows exponentially in relation to the number of
factors. If there are 4 factors each with 5 possible values, there are
5% possible product instantiations. Developers may wish to gener-
ate a set of configurations to perform testing of the whole product
line. Testing all possible instances of the product line, however, is
usually intractable; therefore as a validation method this will not
scale. One sampling method that has been used to systematically
sample and test instances of software for other types of configurable
systems is to sample all pairs or ¢-way combinations of options [4].
We will call this CIT sampling. Figure 2 is an example of a pair-
wise or 2-way CIT sample for the phone SPL. We are ignoring the
constraints that are listed, but will return to them in the following
sections. In this example we have a set of configurations (a product
instance that has one value selected for each factor) that combine
all pairs of values between any two of the factors. For instance all
displays are combined with both of the email viewers as well as
without any email viewer. Likewise, all email viewers have been
tested with all camera options, as well as with all video camera
options and with and without video ringtones.

Many studies have shown that CIT is a powerful sampling tech-
nique for functional input testing, that may increase the ability to
find certain types of faults efficiently [1, 4, 22] and that it provides
good code coverage [4, 10]. Recent work on CIT has studied its
use on both user configurable systems [19, 32], and on software
product lines [7, 23].

One of the main focuses in the literature on interaction testing
has been on developing new algorithms to find smaller ¢-way sam-
ples [5, 13, 14, 15, 29, 31]. However, much of this literature largely
ignores the practical aspects of applying CIT to real systems, which
limits the effectiveness of this work. In this paper we focus on one
difficult, yet prevalent issue which may confound existing algo-
rithms; that of handling constraints.

Display Email Camera Video Video
Viewer Camera | Ringtones
1 16 Million Colors None 1 Megapixel Yes Yes
2 8 Million Colors Text None No No
3 16 Million Colors Text 2 Megapixels No Yes
4 Black and White None None No Yes
5 8 Million Colors None 2 Megapixels Yes No
6 16 Million Colors Graphical None Yes No
7 Black and White Text 1 Megapixel Yes No
8 8 Million Colors Graphical 1 Megapixel No Yes
9 Black and White Graphical 2 Megapixels Yes Yes

Figure 2: Pairwise CIT sample ignoring constraints
2.1 CIT Samples: Covering Arrays

Before we discuss the various techniques for constructing CIT
samples we begin with some definitions. A ¢-way CIT sample is a
mathematical structure, called a covering array.

DEFINITION 2.1. A covering array, CA(N;t, k,v), isan N x
k array on v symbols with the property that every N X t sub-array
contains all ordered subsets of size t from the v symbols at least
once.

DEFINITION 2.2. A special instance of this problem is an or-
thogonal array, OA(t, k, v) where every ordered subset occurs ex-
actly once. In this case N is not used because the exact size of the
array is always v'.

The strength of a covering array is ¢, i.e. this defines 2-way, 3-way
sampling. The k columns of this array are called factors, where
each factor has v values. Although the trivial mathematical lowest
bound for a covering array is v, this is often not achievable and
sometimes the real bound is unknown [14].

As can be seen in our phone example, most software systems do
not have the same number of values for each factor, i.e. we don’t
have a single v. A more general structure can be defined called a
mixed level covering array.

DEFINITION 2.3. A mixed level covering array,

MCA(N7t,k7 (U17U27 ~"7U’€))7

is an N X k array on v symbols, where v Zf:l v;, with the
following properties: (1) Each column i (1 < i < k) contains
only elements from a set S; of size v;. (2) The rows of each N X t
sub-array cover all t-tuples of values from the t columns at least
one time.

‘We use a shorthand notation to describe mixed level covering arrays
by combining equal entries in (v; : ¢ < 1 < k). For example three
entries each equal to 2 can be written as 2. Figure 2 illustrates a
2-way CIT sample, MC A(9;2,3%2?), for the phone example. In
this paper when we use the term covering array we will use it to
mean both types of arrays.

2.2 Finding CIT Samples

Finding a covering array for a configurable system is an opti-
mization problem where the goal is to find a minimal set of con-
figurations that satisfy the coverage criteria of all t-sets. Many al-
gorithms and tools exist that construct covering arrays. We discuss
three general classes next.

Mathematical (or algebraic) constructions: When certain pa-
rameter combinations of ¢, k,v for are met, mathematical tech-

131

niques (both direct and recursive) can be used to construct cover-
ing arrays [13, 14]. Although constructions are fast and produce
small covering arrays efficiently, they are not general. TConfig
[31], Combinatorial Test Services (CTS) [13] and TestCover [27]
all use constructions to generate covering arrays.

Greedy algorithms: There are two classes of greedy algorithms
that have been used to construct covering arrays. The majority are
the one-row-at-a-time variation of the automatic efficient test case
generator (AETG)[4].We call these AETG-like. We summarize the
generic framework for these types of algorithms (for more detail
see [3]). A single row for the array is constructed at each step until
all t-sets have been covered. For each row, a set of M candidates
are built in parallel. The choice in the size of M is one of the
differentiators of these algorithms. The best candidate row is then
selected. To build a single row, the factors are ordered based on the
algorithm’s heuristics. Then each value of that factor is compared
with all of the values already selected and fixed. The one that pro-
duces the most new t-sets is chosen. Some existing algorithms that
fit into this category are the Test Case Generator [30], the Deter-
ministic Density Algorithm (DDA) [8] and PICT [9]. The second
type of greedy algorithm is the In Parameter Order (IPO) algorithm
[29]. It begins by generating all ¢-sets for the first ¢ factors and then
incrementally expands the solution, both horizontally and vertically
using heuristics until the array is complete.

Meta-heuristic Search: Several examples of meta-heuristic search
have appeared in the literature such as simulated annealing, genetic
algorithms and tabu search [5, 25]. We will use simulated anneal-
ing as is described in [5] as an example. In simulated annealing an
N X k array is randomly filled with legal values. Then a series of
transformations take place that bring the solution closer and closer
to a covering array. The transformation is a move method. In this
method, a single location in the array is chosen and a new value
replaces the old. If the solution covers the same number or more
t-sets (is fitter), then the new solution is kept and a move is made.
Worse moves are allowed with a small probability determined by
the annealing parameters (the cooling schedule). Since N is not
known at the start, a binary search is used. Multiple runs of anneal-
ing occurs, after which a smaller or larger N is tried based on the
success of the current run. Termination criteria allow the algorithm
to stop and fail after a period of time.

2.3 Existing Constraint Support

Many of the algorithmic techniques provide extensions to han-
dle certain practical aspects of real software, such as seeded sets of
configurations, but solutions for handling constraints are less than
satisfactory. There has been relatively little discussion in the liter-
ature of how to construct a covering array in the presence of con-
straints such as those seen in the bottom of Figure 1. There are
seven constraints that will cause invalid configurations in the cov-
ering array. In Figure 2 these are highlighted. To satisfy the con-
straints, the highlighted configurations must be removed and others
added back to fulfill ¢-way criteria. Bryce and Colbourn state that
asking if a configuration exists satisfying a set of given constraints
is an NP hard problem [2]. They also argue that there is a strong
need for a workable solution. Although some existing tools will
handle constraints, we have found that most solutions are lacking
in one of several aspects. We believe there should be an open, gen-
eral solution, that can be applied to existing algorithms. Given the
extent and variety of research on CIT algorithms, it seems unsatis-
factory to create an orthogonal algorithm just to handle constraints.
Instead we see constraints as an extension that is cross-cutting.

We have categorized the constraint handling in a variety of the
algorithms/tools for constructing covering arrays and summarized

Algorithm/Tool Citation Tool Category Constraint Handling | Re-Implementable

AETG [4] AETG-Like Greedy REMODEL PARTIAL
DDA [2, 8] AETG-Like Greedy SOFT ONLY YES
Whitch:CTS [13] Construction;AETG-Like Greedy SIMPLE;EXPAND NO
Whitch:TOFU [18] Unknown EXPAND NO
IPO [29] Other Greedy NONE ——
TestCover [27] Construction REMODEL NO
Simulated Annealing [6] Meta-Heuristic Search SOFT ONLY YES

PICT [9] AETG-Like Greedy FULL PARTIAL
Constraint Solver [15] Constraint solving NONE ——

Table 1: Summary of constraint handling in existing algorithms/tools

these in Table 1. We restrict our discussion to constraints that in-
volve illegal combinations of two or more factor-values, since this
is the most common scenario discussed. We classify the constraint
handling technique, as REMODEL, EXPAND, SOFT , SIMPLE, NONE
or FULL.We will discuss each of these in turn. For each tool, we
state whether we believe it is re-implementable or not. We attempt
to capture the amount of information that is available to researchers
who may want to implement these algorithms on their own. In this
category NO means that the method is a proprietary commercial
product, no research papers have been published to our knowledge
on this topic, or a paper exists but it does not provide enough in-
formation for us to determine how constraints are actually imple-
mented. PARTIAL means that some information about constraint
handling has been provided, but we do not believe it is enough
to re-implement the technique fully. Finally, YES means that we
believe the technique can be re-implemented by someone with a
technical background in CIT algorithms.

REMODEL: Some algorithms require the user to re-model their
input into separate unconstrained inputs to be combined at the end
of processing. This is the main approach that AETG takes [4].
Small examples have been provided and in [4, 20] some insight into
the idea of implicit constraints (see Section 3.2) is given. The au-
thors suggest that AETG handles more than re-modeling but there
is no direct explanation of how this is done. We place AETG into
the PARTIAL category. The TestCover service [27] uses direct prod-
uct block notation to identify a set of allowed test cases computed
as a direct product of compatible factor values. It takes a collec-
tion of these products as input data to define the set of all allowed
test cases, implicitly defining the constraints [28]. This requires the
user, in essence, to re-model their input. Since it is a commercial
product we do not know how constraints are incorporated.

EXPAND: Some tools expose implicit constraints (see Section 3.2)
by requiring the user to expand the input. One such tool is the In-
telligent Test Case Generator (Whitch) by IBM [18] that includes
two algorithms for finding covering arrays, TOFU, and Combina-
torial Test Services(CTS) [13]. The interface for both algorithms
requires that forbidden combinations are expressed as all possible
forbidden configurations. In the phone example, the first constraint
states that GV cannot occur with BW. In Whitch an enumeration
of all configurations containing GV and BW would be required.
There are twelve such configurations in this example. As the num-
ber of factors and values grows, this may explode. If we have 20
factors with 5 values each, then this single constraint would require
that 5'® configurations be listed. In the literature, CTS proposes
to support simple constraints so we include it in this category as
well. Neither TOFU or CTS provides details of about how they
implement constraint handling.

SOFT ONLY: The deterministic density algorithm, (DDA) [8] is
an AETG-like algorithm. In [2] the authors extend DDA to in-

132

clude constraint handling by weighting tuples as desirable or not.
They use this method to avoid tuples if possible. They term these
SOFT CONSTRAINTS. Although they provide a discussion of HARD
CONSTRAINTS their algorithm does not handle these. Instead, they
state that this is “a constraint satisfaction problem” and out of the
domain of their algorithm. As we highlight in in the next section,
their algorithm will always contain forbidden ¢-sets under certain
circumstances. In their experimentation with random constraints
these occurred around 3% of the time. In [6], simulated annealing
was augmented with an initialization phase that allowed the spec-
ification of t-sets that do not need to be covered. Although the
purpose of this was not constraint handling, this mechanism can be
used for soft constraints as in Bryce and Colbourn. No weighting
scheme is used, so the avoidance mechanism is not as strong. Both
algorithms only consider constraints of size ¢ although there may be
ones of higher or lower arity. Both algorithms are re-implementable
given some algorithmic background in CIT.

FULL: We use the term FULL when the tool appears to handle
constraints of any arity and does not require the user to expand or
remodel the input. PICT is a Microsoft internal tool, developed
by Czerwonka [9]. It uses an AETG-like algorithm optimized for
speed. Specifically, it uses M = 1 and skips the parallel aspect of
AETG. In [9] a discussion of the algorithm and constraint handling
says that as they build their solutions they check to see if the solu-
tion is legal, but this gives us little detail about how this check is
actually implemented. They provide some insight into the transi-
tive nature of some constraints but do not expose enough details for
re-implementation. We classify this as PARTIAL.

NONE: The last two algorithms, IPO [29] and Hnich et al. [15]
contain no support for constraint handling. Hnich et al. use con-
straint solving to build covering arrays by translating the definition
into a Boolean satisfiability problem. They use a SAT solver to gen-
erate their solution. In their paper, they term our type of constraint
as side constraints and leave this as future work. We highlight their
algorithm because we use some of their ideas to implement our al-
gorithmic extensions.

Given this brief survey of constraint handling in the literature,
it seems that there is no general solution that will scale to a large
number of factors and values, while keeping the burden of manip-
ulating constraints off of the software tester. It is a topic that is
mentioned often, but one that has been largely ignored. Due to the
complexity that even simple constraints add to the CIT sampling
technique, this is not surprising. The next section discusses some
of reasons this problem is hard, and provides insight into why no
solution has yet been proposed.

3. IMPACT OF CONSTRAINTS ON CIT

We illustrate concepts related to constraints and their impact on
interaction testing through the example in Figure 1. For this prod-

(1) Graphical email viewer requires color display

Figure 3: A single constraint can increase sample size

4
o

Forbidden Tuples Derived from

(Black and white display, Graphical email viewer) 1

(Black and white display, 2 Megapixel camera)

(Graphical email viewer, 2 Megapixel camera)

(8 Million color display, 2 Megapixel camera)

(Video camera=Yes, Camera=No)

(Video camera=Yes, Black and white display)

(Video ringtones= Yes, Video camera=No)

OIN| O Ol A|WIN| =
N[al ol AW N

(16 Million colors, Plain text, 2 Megapixel camera)

Figure 4: Mapping constraints to forbidden tuples

uct line there are seven constraints on the feasible configurations.
These constraints could be expressed in a number of different forms
and styles; we show constraints using several different phrasings in-
cluding: requires, not supported and cannot occur. Constraints
may relate differing numbers of configuration choices; we show
constraints between pairs and triples of option choices. It is impor-
tant to emphasize that constraints that are expressed explicitly in the
description of a configurable system can give rise to implicit rela-
tionships among option choices. In fact, treatment of these implicit
relationships is the key complicating factor in solving constrained
CIT problems.

In this paper, we encode all constraints in the canonical form of
forbidden tuples which define combinations of factor-value pairs
that cannot occur in a feasible system configuration; tuples can vary
in their arity. Figure 4 illustrates the forbidden tuples for the con-
straints in the example; note that a single constraint may give rise to
multiple forbidden tuples depending on the nature of the constraint
and the size of factor-value domains. It is important to note that
other choices are possible for encoding constraints, e.g., we could
express that when factor f has value v in a configuration then factor
g must have value w as f = v = g = w. The question of what
representation is most succinct or computationally tractable for a
given constrained MCA is open.

Other researchers have discussed similar concepts to forbidden
tuples. Forbidden configurations [13] are configurations of features
that are not allowed either because they cannot be combined for

133

Display Email Camera Video Video Display Email Camera Video Video
Viewer Camera | Ringtones Viewer Camera | Ringtones
1 16 Million Colors | None 2 Megapixels No No 1 16 Million Colors | None 1 Megapixel Yes Yes
2 16 Million Colors Graphical 1 Megapixel No No 2 8 Million Colors Text None No No
3 8 Million Colors None 1 Megapixel Yes Yes 3 16 Million Colors | Text 2 Megapixels No Yes
4 16 Million Colors | Graphical None Yes Yes 4 Black and White None None No Yes
5 16 Million Colors | Text 1 Megapixel Yes No 5 8 Million Colors None 2 Megapixels Yes No
6 Black and White None 1 Megapixel Yes Yes 6 16 Million Colors Graphical None Yes No
7 8 Million Colors Graphical 2 Megapixels Yes Yes 7 Black and White Text 1 Megapixel Yes No
8 Black and White Text 2 Megapixels No Yes 8 8 Million Colors Graphical 1 Megapixel No Yes
9 8 Million Colors Text None No No 9 Biack and White Graphical 2-Megapixets Yes Yes
10 | Black and White None None No No
Constraints:
Constraints: (1) Graphical email viewer requires color display

(2) 2 Megapixel Camera requires color display
(3) Graphical email viewer not supported with the 2 Megapixel
camera

Figure 5: Constraints can remove configurations
some structural reason, or because the designers of the system have
decided these will never be instantiated; forbidden tuples can be
thought of as partial forbidden configurations. Bryce and Colbourn
[3] differentiate between forbidden combinations and combinations
that should be avoided but may legally be present in a system con-
figuration.

Figure 4 shows seven 2-way and one 3-way forbidden tuples for
this product line. It is clear that constraints will reduce the number
of feasible configurations for a system; in the example, the num-
ber is reduced from 108 to 31. The impact on interaction testing is
more subtle since its goal is to cover all ¢-way combinations and not
the set of feasible configurations. In the example, the 8 forbidden
tuples reduce the number of pairs needed to satisfy a 2-way cover
from 67 pairs to 57 pairs. Due to the nature of the constraints, how-
ever, those 57 cannot be packed into a smaller set of configurations
than could the original 67. The result is that the size of the CIT
sample for this problem is the same, regardless of constraints.

The impact of constraints will, of course, vary with the problem,
but their presence causes problems for many existing CIT tools.
This is due to the fact that many of the existing algorithms and
construction techniques used in these tools are based on the math-
ematical theory of covering arrays. In the presence of constraints
that theory does not apply, in general. More specifically, in the
presence of constraints:

1. the number of required ¢-sets to produce a solution cannot be
calculated from the MCA parameters,

2. lower (upper) bounds on the size of a solution cannot be cal-
culated, and

3. mathematical constructions cannot be directly applied with-
out non-trivial post-processing to remove infeasible configu-
rations, and add back new configurations to satisfy required
coverage.

In general, calculating properties of CIT solutions becomes ex-
tremely difficult due to the irregularity introduced by constraints.
In fact, it is even difficult to tell whether a set of constraints is in-
ternally consistent in the context of a configurability model; if it is
not then there may be no feasible configurations.

3.1 Impact on Sample Size

Adding constraints always reduces the number of feasible system
configurations, but it is not guaranteed to reduce the size of the CIT
sample needed to achieve a desired ¢-way coverage. The impact on
sample size results from the interaction of the number and type of
constraints and the model itself. We illustrate both increased and
decreased sample sizes relative to the 2-way covering array sample
for the example SPL shown in Figure 2, which has 9 configurations.

Increasing the Sample Size: The first three columns of Figure 2
constitute a special type of a covering array, an orthogonal array.
Orthogonal arrays only exist for certain combinations of parameters
of t, k,v [14]. In this structure each pair occurs exactly one time,
instead of at least one time. Many tools, such as the commercial
AETG, CTS and TestCover, will use mathematical constructions
to build orthogonal arrays when the covering array parameters in-
dicate that this is possible. These constructions do not take into
account constraints.

Adding a single constraint may increase the sample size required
for satisfying 2-way coverage. Consider the first forbidden tuple
from table 4, (BW,GV). Configuration 9 in Figure 2 includes this
tuple and must be eliminated. That configuration also includes
pairs that are not forbidden and not included in any other con-
figuration, e.g., (GV, 2MP). To produce a CIT sample, we must
add additional configurations to include those pairs. Adding such
a configuration will, however, force us to repeat pairs in previous
configurations. For instance, we must combine GV with either of
the color displays thereby repeating a pair from either configuration
6 or 8. Because of the interaction between choices made in other
configurations and the constraints for this problem at least 10 con-
figurations are now needed for 2-way coverage; a solution is shown
in Figure 3.

The lower bound for the original unconstrained covering array
is no longer valid, and furthermore the orthogonal nature of this
solution structure has been broken, i.e., there are now repeated pairs
(see shading in Figure 3).

Implications: Tools that rely on upper bounds on achievable solu-
tion sizes may not work. Tools that use mathematical constructions
must post-process their results to remove infeasible configurations
and add configurations to recover lost coverage.

Reducing the Sample Size: Adding certain sets of constraints may
reduce the size of a covering array solution. If, for instance, we add
constraints (1-3) from Figure 4 to the SPL model, we can remove
an entire 3-tuple from the first three columns of our table (BW,
GVYV, 2MP). Figure 5 shows a solution with only 8 configurations.

Implications: Tools that rely on the existence of lower bounds
on achievable sample sizes may not work in the presence of con-
straints. Tools that use mathematical constructions will need to
post-process their results to remove rows to achieve optimal results.

3.2 Implied Forbidden ¢-sets

Consider a CIT problem that is targeting ¢-way coverage. Each
forbidden tuple of arity ¢ trivially implies a t-way combination that
cannot be present anywhere in the CIT sample. More generally,
the conjunction of a set of forbidden tuples of varying arity imply a
number of ¢-sets none of which can be present in the CIT sample.

These forbidden t-sets may not be obvious to the person model-
ing a highly-configurable system [20]. Consider constraints (4-5)
from Figure 1. These constraints are encoded as forbidden pairs (4-
6) in Figure 4. We write forbidden tuples as logical formula of the
form: =(PAQ), where P and @) are atomic propositions indicating
the presence of the configuration choices abbreviated in Figure 1.
The three forbidden pairs are: =(VC' A NOC'), =(VC A BW),

134

and ~(V R A =V ('), and it is not difficult to prove that:
~(VC ANOC) A=(VC ABW)A-(VRA-VC) = ~(VRABW)

but determining the set of implied forbidden ¢-sets or even the size
of that set is computationally demanding. Determining forbidden
t-sets by hand would be infeasible for all but the smallest problems,
e.g., due to the combinatorial nature of the candidate ¢-sets and the
difficulty in identifying dependent combinations of constraints —
the first conjunct in the above implication is unnecessary for the
proof.

Implications: Many existing CIT algorithms rely on calculating
the number of uncovered t-sets during the calculation of the sam-
ple; they continue until this number is zero. The presence of con-
straints makes it impossible to calculate the number of uncovered
t-sets from MCA parameters.

This has a significant impact on greedy algorithms and simulat-
ing annealing approaches that we address in Section 5. For exam-
ple, the discussion in Bryce et al. [2] that proposes to bias the sam-
ple to “avoid” certain ¢-sets, actually guarantees that it will always
include some forbidden tuples in the presence of implied forbid-
den t-sets. Otherwise their algorithm will never terminate. Tools
such as Whitch force the user to list all forbidden ¢-sets which we
believe to be infeasible for non-trivial problems with implied for-
bidden t-sets; the case studies in Section 4 clearly indicate this.

Implied forbidden t-sets from low-order tuples: The arity of a
forbidden tuple may or may not be ¢. When forbidden tuples of
arity < t are present the number of implied forbidden ¢-sets will,
in general, be exponential in the number of factors. For example, a
system with 5 binary configuration options, o1, . . ., 05 and a single
forbidden pair (01, 02) can be embedded in 6 different 3-way sets
and 12 different 4-way sets. These sets must be forbidden when
calculating 3-way or 4-way CIT samples.

Implications: Exponentially many implied forbidden ¢-sets may
arise in the presence of low-order constraints.

Implied forbidden ¢-sets from high-order tuples: Forbidden tu-
ples with arity greater than ¢ do not typically pose the same prob-
lem. This is because a forbidden tuple does not forbid the tuples
embedded within it. Consequently, they do not need to be forbid-
den as t-sets from a CIT sample. The combinations of higher-order
tuples must still be considered because it is possible for implicit
forbidden t-sets to arise. In Figure 6, the third constraint is implied
in part by the 3-way constraint from Figure 4.

Implications: Algorithms which use weighting of ¢-sets or rely
on already covered ¢-sets to construct solutions, may suffer since
higher arity forbidden tuples provide little guidance. This may neg-
atively impact the quality of solutions (i.e. they may get large) or
the performance may suffer (long run-times may be encountered).

3.3 Constrained Covering Arrays

The presence of constraints demands a new definition for a proper
CIT sample. Integral to this definition is the concept of whether a
t-set is consistent with a set of constraints.

DEFINITION 3.1. Given a set of constraints C, a given t-set, s,
is C-consistent if s is not forbidden by any combination of con-
straints in C.

This definition permits flexibility in defining the nature of con-
straints and how they combine to forbid combinations; in Section 5,
we define F'-consistency for constraints encoded as a set of forbid-
den tuples. We provide a definition of constrained covering arrays
that is parameterized by C' and its associated definition of consis-
tency.

Display Email Camera Video Video
Viewer Camera | Ringtones
1 16 Million Colors Graphical None No No
2 16 Million Colors Text 1 Megapixel Yes Yes
3 16 Million Colors None 2 Megapixels Yes Yes
4 8 Million Colors Graphical 1 Megapixel Yes Yes
5 8 Million Colors None None No No
6 8 Million Colors Text 1 Megapixel Yes No
7 Black and White None 1 Megapixel No No
8 Black and White Text None No No
9 16 Million Colors None 2 Megapixels No No

All Constraints satisfied (3 Implied constraints):
(1) Black and white excludes Video ringtones
(2) No camera excludes Video ringtones
(3) 2 Megapixel camera excludes Text

Figure 6: CIT-sample satisfying all constraints
DEFINITION 3.2. A constrained-covering array, denoted
CCA(N;t, k,v,C), is an N x k array on v symbols with con-
straints C, such that every N X t sub-array contains all ordered
C-consistent subsets of size t from the v symbols at least once.

We extend this definition to constrained mixed-level covering ar-
rays CMCA(N;t, k, (v1,v2, ..., vk), C) in the natural way.

4. CASE STUDIES

The example and discussion in the preceding section makes it
clear that constraints can complicate the solution of an interaction
testing problem. If, however, the practical use of constraints in
describing highly-configurable systems is such that, for example,
the number of constraints is small or there are no implied forbid-
den t-sets, then the concerns of the previous section are of little
consequence. In this section we examine two non-trivial highly-
configurable software systems — SPIN [16] and GCC [12]. We an-
alyzed the configuration options for these tools based on available
documentation and constructed models of the options and any con-
straints among those options. We report data on the size of these
models, the number and variety of constraints, and the existence of
implied forbidden ¢-sets.

4.1 SPIN Model Checker

SPIN is the most widely-used publicly available model check-
ing tool [16]. SPIN serves both as a stable tool that people use
to analyze the design of a system they are developing, expressed
in SPIN’s Promela language, and as a vehicle for research on ad-
vanced model checking techniques; as such it has a large number
and wide variety of options. We examined the manual pages for
SPIN, available at [17], and used it as the primary means of deter-
mining options and constraints; in certain cases we looked at the
source code itself to confirm our understanding of constraints.

SPIN can be used in two different modes : as a simulator that an-
imates a single run of the system description or as a verifier that ex-
haustively analyzes all possible runs of the described system. The
“-a”options select verifier mode. The choice of mode also toggles
between partitions of the remaining SPIN options, i.e., when sim-
ulator mode is selected the verifier options are inactive and vice-
versa. While SPIN’s simulator and verifier modes do share com-
mon code, we believe that the kind of bi-modal behavior of SPIN

135

warrants the development of two configuration models — one for
each mode.

The simulator configuration model is the simpler of the two. It
consists of 18 factors and ignoring constraints it could be modeled
asa MCA(N;2,2'345), i.e., 13 binary options and 5 options each
with 4 different values; this describes a space of 8.3 % 10° different
system configurations. It has a total of 13 pairwise constraints that
relate 9 of the 18 factors. The nature of the interaction among the
constraints for this problem, however, give rise to no implied for-
bidden pairs. As for most problems, constraints for this problem
can have a dramatic impact — enforcing just 1 of the 13 constraint
eliminates over 2 million configurations.

We note that, like all of the models in this paper, this model
should be considered an underestimate of the true configuration
space of the SPIN simulator. One way we do this is by ignoring
options we regard as overlapping, i.e., an option whose only pur-
pose is to configure another set of options is ignored, as well as
options that serve only to define program inputs. Another is by un-
derestimating the number of possible values for each option. For
example, if an option takes an integer value in a certain range we
apply a kind of category partitioning and select a default value, a
non-default legal value, and an illegal value; clearly one could use
more values to explore boundary values, but we choose not to do
that. Similarly for string options we choose values modeling no
string given, an empty string, and a legal string. Ultimately, the
specific values chosen are determined during test input generation
for a configuration of SPIN, a topic we do not consider here.

The verifier configuration model is richer. It is worth noting that
running a verification involves three steps. (1) A verifier implemen-
tation is generated by invoking the spin tool on a Promela input
with selected command line parameters. (2) The verifier imple-
mentation is compiled by invoking a C compiler, for example gcc,
with a number of compilation flags, e.g., “-DSAFETY”, to con-
trol the capabilities that are included in the verifier executable. (3)
Finally, the verifier is executed with the option of passing several
parameters. We view the separation of these phases as an imple-
mentation artifact and our verifier configuration model coalesces
all of the options for these phases. This has the important conse-
quence of allowing our model to properly account for constraints
between configuration options in different phases. The model con-
sists of 55 factors and ignoring constraints it could be modeled as a
MCA(N;2,2*2324™); this describes a space of 1.7 10%° differ-
ent configurations. This model includes a total of 49 constraints —
47 constraints that either require or forbid pairs of combinations of
option values and 2 constraints over triples of such combinations.
An example of a constraint is the illegality of compiling a verifier
with the “-DSAFETY” flag and then executing the resultant veri-
fier with the “-a” option to search for acceptance cycles; we note
that these kinds of constraints are spread throughout software doc-
umentation and source code.

The set of SPIN verifier constraints span the majority of the fac-
tors in the model — 33 of the 55 factors are involved in constraints.
Furthermore, the interaction of these constraints through the model
gives rise to 9 implied forbidden pairs. It is no surprise given the
size of this model that enforcing a single constraint eliminates an
enormous number of configurations, more than 2 s 10*°.

4.2 GCC Compiler

GCC is a widely used compiler infra-structure that supports mul-
tiple input languages, e.g., C, C++, Fortran, Java, and Ada, and over
30 different target machine architectures. We analyzed version 4.1,
the most recent release series of this large compiler infra-structure
that has been under development for nearly twenty years. GCC is

a very large system with over 100 developers contributing over the
years and a steering committee consisting of 13 experts who strive
to maintain its architectural integrity.

As for SPIN, we analyzed the documentation of GCC 4.1 [12] to
determine the set of options and constraints among those options;
in some cases we ran the tool with different option settings to de-
termine their compatibility. We constructed three different configu-
ration models: (1) a comprehensive model accounting for all of the
GCC options had 1462 factors and 406 constraints, (2) a model that
eliminated the machine-specific options reduced this to 702 factors
and 213 constraints, and (3) a model that focused on the machine-
independent optimizer that lies at the heart of GCC was comprised
of 199 factors and 40 constraints.

We focus primarily on the optimizer model since the other mod-
els were so large that it was impractical for us to perform the man-
ual model manipulations needed to prepare them for analysis by ex-
isting interaction testing tools. The optimizer model, without con-
straints, can be modeled as a M C' A(N; 2, 2189310); this describes
a space of 4.6x10°! different configurations. Of the 40 constraints,
3 were three-way and the remaining 37 were pairwise. These con-
straints are related to 35 of the 199 factors and their interaction
gives rise to 2 implied forbidden pairs. Nevertheless, the sheer
size of this configuration space causes the elimination of more than
1.2 % 10%! configurations when a single constraint is enforced.

Examples of constraints on optimizer settings include: “-finline-
functions-called-once ... Enabled if -funit-at-a-time is enabled.”
and “-fsched2-use-superblocks ... This only makes sense when
scheduling after register allocation, i.e. with -fschedule-insns2”.
We took a conservative approach to defining constraints. The com-
monly used “-O” options are interpreted as option packages that
specify an initial set of option settings, but which can be over-
ridden by an explicit “-fno” command. Interpreting these more
strictly gives rise to hundreds of constraints many of which are
higher-order.

In summary, the SPIN simulator and verifier and the GCC op-
timizer configuration models provide clear evidence on the preva-
lence of constraints in highly-configurable software systems. The
models included from 13 to 40 constraints where the coupling of
constraints in two of the models gives rise to implied forbidden
t-sets. We note that manually determining the set of implied con-
straints for these models is a daunting task. In the SPIN verifier
model this would involve considering the simultaneous satisfaction
of the 49 constraints in the system. Some interaction testing tools
require that implied forbidden t¢-sets be made explicit to operate
properly and in the presence of large numbers of constraints calcu-
lating those t-sets may be very difficult — calculating implied for-
bidden ¢-sets must be automated. Other tools require that the set of
illegal configurations be enumerated and in our three models many
millions of configurations are eliminated by enforcing constraints —
enforcing constraints must be automated and in a non-enumerative
fashion. Constraints clearly have the potential to make interaction
testing of real software systems more difficult, in the next section
we explore techniques for integrating constraint solving into exist-
ing algorithms and then we investigate their effectiveness.

S. INCORPORATING CONSTRAINTS

The difficulty posed for interaction testing tools and techniques
caused by the presence of constraints is clear. Developers of com-
mercial CIT tools, such as AETG and TestCover, as well as free
tools such as Whitch and PICT have recognized this dilemma. Yet,
the literature does not have a clear discussion of how constraints
can be integrated as an extension into CIT algorithms to resolve the
problems outlined in previous sections. In this section, we fill that

136

gap by presenting a general technique for representing constraints
that can be efficiently processed by existing constraint-solving li-
braries and can be incorporated into existing classes of algorithms.
We do not claim to present a new algorithm, rather, we present an
approach to adding constraint handling to established greedy and
simulating annealing CIT algorithms. We have prototyped these
algorithms and in section 6 present results of this analysis.

5.1 Constraints as Boolean Formulae

We represent constraints as boolean formulae defined over atomic
propositions that encode factor-value pairs; Figure 1 informally in-
troduced such propositions. Let Flact be the set of factors in a CIT
problem and let V; be defined as set of atomic propositions one for
each possible value of f € Fact. Let F be the set of forbidden tu-
ples in the CIT problem. A forbidden tuple, ¢ € F/, is defined as a
collection of propositions (p1, . .., pn) such that each p; is associ-
ated with a factor, i.e., is in some V, and at most one p; is present
for each factor. Without loss of generality a proposition may be
replaced with its negation in a tuple; for simplicity in the sequel we
only use positive occurrences of propositions. A forbidden tuple is
encoded as the boolean formula ¢, = — /\1 <i<n Di-

To define consistency for ¢-sets relative to F', as is required in
the definitions in Section 3.2, we must encode an additional class
of constraints; note that ¢-sets can be formulated as boolean formu-
lae by conjoining the propositions for its constituent values. Figure
7 illustrates the need for these constraints. Suppose we have three
factors, each with 2 values, and two forbidden tuples t1 = (0, 2)
and t2 = (1,4). It is clear that the ¢-set (2,4) is implied by these
tuples, but determining this requires that a value be bound for fac-
tor 1 and the ¢ formula do not require values to be bound for all
factors. To resolve this, we add boolean formulae that encode at
least constraints to our model [15]. For each factor, f € Fact, an
at least constraint is simply ¢y = \/ v, V- We can now define

consistency for constraints encoded as forbidden tuples.

DEFINITION 5.1. Given a set of forbidden tuples F', a given
t-set encoded as a boolean formula, s, is F'-consistent if

(No)AC N\ Wy #s

teF f€Fact

That is, if the conjunction of forbidden tuples and the at least con-
straints do not imply a t-set, then it is F'-consistent. In the sequel,
we consider CIT problems of the form

CMCA(N;t, k, (v1,v2,...,ux), F'), which in turn use this defini-
tion of F'-consistency.

Boolean formulae are convenient for our purposes for two rea-
sons: (1) they permit an encoding of consistency that is linear in the
size of the CIT problem, i.e., the number of factor values, and (2)
there exist off-the-shelf satisfiability solvers that can quickly eval-
uate consistency tests. Furthermore, SAT solvers, such as zChaff
[21], are available in library form thereby permitting easy integra-
tion with CIT implementations.

5.2 Algorithmic Extensions For CCAs

The algorithmic extension to find a constrained covering array
has two major steps. The first step initializes a number of struc-
tures used throughout the CIT algorithm. It begins by adding the
F'-consistency constraint formula to the representation used by the
SAT solver; in some solvers, such as zChaff, this representation
can be stored persistently and retained throughout both steps of the
algorithm. Recall that in the presence of constraints the number of
t-sets cannot be calculated using CCA parameters. Consequently,
the initialization step exhaustively enumerates all ¢-sets. Those that

factor 0: 0, 1 For%dczi;e?&a)irs:
factor1: 2,31 | = .t Forbidden Pair
factor 2: 4,5 (2.4)

fo f1 f2
| * | 2] 4 | satisfiable?

partial test case to SAT solver
——lon 23] 45 |
.

Need: at least
constraint:

Figure 7: Illustration of the need for at least constraints
are implied by the constraints are processed to configure data struc-
tures for the second step of the algorithm. Algorithm 1 illustrates
the initialization step which can be trivially parallelized to improve
its performance.

mAETG_SAT(CAModel)

Require: uncovered-t-set-count: calculated from FindForbiddenSets
M-candidates = 50
numTests = 0
while uncovered-t¢-set-count > 0 do
for candidateCount = 1 to M-candidates do
for factorCount = 1to k do
maxTries=v
f=select next factor to fix
select best value for f
if factorInvolved(f) then
counter=0
repeat
feasible = !checkImpliesSAT (partial configuration)
if !feasible then
select next best value for f
counter+-
until feasible or counter == maxTries
if counter == maxTries then
remove from candidate pool
select best candidate
increment numT’ests

FindForbiddenSets(ForbiddenTuples, CAModel)
addS AT (atLeastConstraints(CAModel))
addSAT(¢Constraints(ForbiddenTuples))
for all ¢-set; do

if checkImpliesSAT (¢-set;) then
add t-set; to ForbiddenSets
mark t-set covered
mark factors involved
decrement uncovered t-set count

Algorithm 1: Finding all forbidden t-sets

The second part of our extension is to incorporate calls to the
SAT solver during the CCA construction phase. Although we have
exposed all forbidden ¢-sets, forbidden tuples of different arity may
still exist. Most CIT algorithms are driven by the quality of a so-
lution which is defined in terms of the coverage of new t¢-sets at
each step. We allow the algorithms to proceed as normal and only
call the SAT solver after a decision has been made that a particular
value should be added to the current configuration. We avoid calls
to the SAT solver when the factor being manipulated was not de-
termined to be involved in any forbidden tuple in the initialization
step.

There are two widely used approaches to constructing covering
arrays that we address here: the greedy algorithms, like AETG or
DDA and a meta-heuristic search algorithm, simulated annealing.
We believe that this method can be adapted to other existing al-
gorithmic construction methods as well. Our extension to these
algorithms works by processing a (full or partial) configuration,
converting it to a boolean formula (not shown), and checking for
implication by the constraint formula established in the initializa-
tion step.

We first illustrate the integration of constraints with a generic
greedy framework from [3] in Figure 2. This framework abstracts
the commonalities between the one row at a time greedy algo-
rithms. The SAT solver is called to check whether the selected best
value is feasible. If not it attempts to fill in the next best. This con-
tinues until all values have been tried. If no values can be added,
that result in an F'-consistent configuration, it is removed from the
pool of M candidates. Alternatively, repetition can be used to try
again with a stopping criteria.

To integrate this extension into the simulated annealing algo-
rithm, two more SAT integration steps are needed. After initial-

Algorithm 2: SAT Calls in AETG-Like Algorithm

ization (Algorithm 1), the array is filled with an initial random so-
lution. This happens once. We use a method similar to the AETG-
extension since this is in essence a one row at a time greedy con-
struction (without selecting a best). The algorithm selects a ran-
dom value for each factor in the row until complete, and checks if
the partial configuration is F'-consistent. Since we are using a fixed
single ordering of factors there is potential to get stuck, therefore
we repeat this up to v times and backtrack if all v attempts fail. An
alternative method would fill in factors in random order. We also
add extensions to the move method. Here, the SAT solver is used,
only if the algorithm determines a move should be accepted and the
changed value is for a factor that is involved in a constraint. Since
the forbidden ¢-sets are marked as covered, the algorithm will often
avoid forbidden t-sets on its own. Accepting a new solution can
happen in two places (1) if the new solution is as fit or better than
the old, or (2) if a worse solution is accepted based on a given prob-
ability. In the first case if a constraint is violated we reject the new
solution. For the second case we implemented a variation. Instead
of rejecting the move, the algorithm will try up to v times to find an
F'-consistent value for the factor. Our reasoning is that a bad move
is rare and a bad solution has already been allowed so, this does not
break the general heuristics employed. In the integration of SAT
with simulated annealing we found it necessary to adjust the cool-
ing schedule and stopping criteria slightly. We observe that there
may be alternative ways to integrate this such as incorporating the
results of SAT calls into the calculation of the solution’s fitness.

6. EVALUATION

We implemented the constrained covering array extension for
forbidden tuples in two classes of algorithms. The first algorithm,
mAETG_SAT, is an AETG-like algorithm [5]. The second, SA_SAT,
is a meta-heuristic search algorithm — simulated annealing [5, 6].
SAT solving was implemented using the zChaff C++ library [21].
We ran the CIT algorithms on an Opteron 250 processor with 4G
of RAM running Linux.

To validate that our results produce reasonable sized constrained
covering arrays we selected PICT and TestCover ' for compari-
son. PICT was chosen because it has a good general constraint
handling mechanism, and TestCover because it uses mathematical
constructions which produce very small CAs when unconstrained.
The PICT tool only runs on Windows, while TestCover is a web

ITestCover results were obtained in January 2007.

CCA mAETG SAT | SA_SAT | PICT | TestCover
I | CA(N;2,3,3), F ={J 9 9 10 9
F={(5.6).(4.0).00,0,23),28).1.58)) 10 10 10 10
2. | CA(N;2,3,4).F ={} 16 16 17 16
F ={(05),(Z11),(3.7.8).(2.5)} 17 17 9 17
3. | CA(N;2,3,5).F ={} 26 25 26 25
F={(1,6).(4,12),@14),@G 8 1D D18} 26 26 27 30
4. | CA(N;2,3,6).F ={} 37 36 39 36
F ={G.11),09,16),(2,6).(7,14).(3,13).(0,13),(5,10,16)} 37 36 39 38
5 | CAN;2,3,0) F ={} 52 49 55 49
F ={(7,19),(5.12,17),(3,18),6,1D(L,ID6,10)} 52 52 56 54
6. | CA(N;3,4,5).F ={} 143 127 151 -
F ={(3.12,16),(6,19),2.8).(1.13)} 138 140 143 -
7.] CA(N;3,4,6).F ={} 247 222 260 -
F ={(4,20)(15,19),(8.20)(7,14)} 241 251 250 -
8. | CA(N;3,4,7).F ={} 395 351 413 -
F ={(9,20),(12,20),(11,16).(7,15,26),(16,25),(2,20)} 383 438 201 -

Table 2: Comparison of existing tools with mAETG_SAT and SA_SAT

service and we do not know what platform it runs on. Our inability
to control for platform variation makes it unfair to report perfor-
mance data — we do present that data for our case studies.

We generated a set of examples to explore the performance of our
algorithm implementations. We randomly generated constrained
covering arrays for 3 < k < 6and 3 < v < 7. Based on the
variation in constraints observed in the case studies, we randomly
generated between 1 and 8 forbidden tuples of arity 2 or 3, where
2-way tuples were produced with a probability of .66.

Table 2 shows size data on computed CIT samples for a selec-
tion of the data we collected (the other results are similar). For
each of the CCAs we give the unconstrained array first (F' ={}),
followed by its constrained counterpart. The numbers in the tuples
assume a unique mapping of factor-values in the array. The first
five examples are 2-way CCAs while 6-8 are 3-way CCAs; Test-
Cover does not support 3-way. We see little variation between the
constrained and unconstrained arrays for the 2-way examples. All
four tools produce similar results. The 3-way arrays show more
variation. It is notable that although unconstrained arrays produced
by simulated annealing are consistently the smallest, this does not
hold for the constrained arrays. This may be due to the need for
better tuning of the simulated annealing parameters when working
with constrained arrays or it may be caused by the lack of con-
straint information driving the search. Overall, mAETG_SAT and
the SA_SAT appear to be the most optimal of the constrained CIT
algorithms we considered. They produce the smallest size arrays
and are applicable for higher strength.

The examples in Table 2 are relatively small. To validate our
algorithmic extension on larger realistic examples we use the SPIN
and GCC models described in the case study. Table 3 shows the
results for our tools and includes run-time in seconds. The top
portion of the table gives results for ¢ = 2, while the bottom portion
contains the results of ¢ = 3 for the simulator portion only of SPIN.

We ran mAETG_SAT 50 times for each problem and present
the smallest constrained covering array along with the average run-
time in seconds. For SA_SAT we present the total time for a single
run of the algorithm. We did this to be consistent with the way
these tools have been used in previous studies [5].

Of these examples the SPIN Verifier seems to have the largest
variation, up to 33%, in computed CIT sample size. Recalling that
this system had the most implied forbidden t-sets, 9 in total, one is
tempted to conjecture that problems with large numbers of implied
forbidden t-sets are particularly problematic for CIT. We believe
that this question is worthy of further study, but that study must be
done for systems with rich sets of constraints.

138

In terms of performance, mAETG_SAT appears reasonably tol-
erant to the addition of our constraint handling technique. The per-
formance of the meta-heuristic search, on the other hand, is greatly
impacted by the addition of constraints. More study is needed to
understand whether this is a fundamental performance obstacle.

mAETG_SAT SA_SAT
without with without with

constraints | constraints | constraints constraints
t=2
SPIN 33 41 27 35
Verifier 9.8 sec 32.2 sec 19.6 sec 31,595.2 sec
SPIN 25 24 16 19
simulator 0.4 sec 1.5 sec 25.6 sec 694.3 sec
GCC 24 23 16 20

323.2 sec 371.6 sec 4,137.0sec | 18,186.2 sec
t=3
SPIN 100 108 78 95
simulator 6.3 sec 11.9 sec 1,577.5 sec | 13,337.4 sec

Table 3: CIT size and time for GCC and SPIN

Given these results we believe that the constraint extensions to
existing covering array algorithms, has promise, however we see
the need to examine a much larger set of data points to understand
how various types of constraints impact each of the different algo-
rithms.

7. CONCLUSIONS

In this paper we examine the need for an open constraint han-
dling technique that can be used with existing combinatorial inter-
action testing tools. We highlight the various aspects of constraints
that make them difficult for many of the existing algorithms and
present a case study to show the extent to which these exist in two
real configurable applications. We describe an algorithmic exten-
sion that can be used with other existing tools and validate this on
two existing algorithms. We show that it works for small problems
as well as our case study examples. Given the small set of data ex-
amined, no conclusions can be drawn about the general impact of
constraints on CIT, but the results do suggest that different types of
problems will work better for different types of tools. We expect
that this work will allow others to incorporate constraint handling
into their existing algorithms to provide a richer set of data that can
begin to expose the real challenges for CIT in highly-configurable
software. In future work we plan to implement alternatives to SAT

solving techniques and to tune the various algorithms to incorpo-
rate more intelligence about the constraints. Furthermore, we plan
to conduct other case studies to understand how constraints are dis-
tributed in real applications.

8.

ACKNOWLEDGMENTS

We thank the following for helpful comments on this subject:
Alan Hartman, Tim Klinger and Christopher Lott. We thank George
Sherwood for the use of TestCover. This work was supported in
part by an EPSCoR FIRST award and by the Army Research Of-
fice through DURIP award W91NF-04-1-0104, and by the National
Science Foundation through awards 0429149, 0444167, 0454203,
and 0541263.

9.
(1]

(2]

(3]

(4]

(]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

REFERENCES

R. Brownlie, J. Prowse, and M. S. Phadke. Robust testing of
AT&T PMX/StarMAIL using OATS. AT& T Technical
Journal, 71(3):41-47, 1992.

R. C. Bryce and C. J. Colbourn. Prioritized interaction
testing for pair-wise coverage with seeding and constraints.
Journal of Information and Software Technology,
48(10):960-970, 2006.

R. C. Bryce, C. J. Colbourn, and M. B. Cohen. A framework
of greedy methods for constructing interaction test suites. In
Proceedings of the International Conference on Software
Engineering, pages 146-155, May 2005.

D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton.
The AETG system: an approach to testing based on
combinatorial design. IEEE Transactions on Software
Engineering, 23(7):437-444, 1997.

M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B.
Mugridge. Constructing test suites for interaction testing. In
Proceedings of the International Conference on Software
Engineering, pages 38—48, May 2003.

M. B. Cohen, C. J. Colbourn, and A. C. H. Ling.
Augmenting simulated annealing to build interaction test
suites. In /4th IEEE International Symposium on Software
Reliability Engineering, pages 394—405, November 2003.
M. B. Cohen, M. B. Dwyer, and J.Shi. Coverage and
adequacy in software product line testing. In Proceedings of
the Workshop on the Role of Architecture for Testing and
Analysis, pages 53—-63, July 2006.

C. J. Colbourn, M. B. Cohen, and R. C. Turban. A
deterministic density algorithm for pairwise interaction
coverage. In JASTED Proceedings of the International
Conference on Software Engineering, pages 345-352,
February 2004.

J. Czerwonka. Pairwise testing in real world. In Pacific
Northwest Software Quality Conference, pages 419-430,
October 2006.

I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows,
and A. Iannino. Applying design of experiments to software
testing. In Proceedings of the International Conference on
Software Engineering, pages 205-215, 1997.

D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks.
Software architecture themes in JPL’s mission data system.
In Proceedings of the 2000 IEEE Aerospace Conference,
Mar. 2000.

Free Software Foundation. GNU 4.1.1 manpages. http:
//gcc.gnu.org/onlinedocs/gcc-4.1.1/gcc/,
2005.

139

[13]

(14]

[15]

[16]

(171

(18]

(19]

[20]

[21]

[22]

(23]

[24]
[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

A. Hartman. Software and hardware testing using
combinatorial covering suites. In Graph Theory,
Combinatorics and Algorithms: Interdisciplinary
Applications, pages 327-266, 2005.

A. Hartman and L. Raskin. Problems and algorithms for
covering arrays. Discrete Math, 284:149 — 156, 2004.

B. Hnich, S. Prestwich, E. Selensky, and B. Smith.
Constraint models for the covering test problem. Constraints,
11:199-219, 2006.

G. J. Holzmann. The model checker SPIN. IEEE
Transactions on Software Engineering, 23(5):279-295, 1997.
G. J. Holzmann. On-the-fly, LTL model checking with SPIN:
Man pages.
http://spinroot.com/spin/Man/index.html,
2006.

IBM alphaWorks. IBM Intelligent Test Case Handler.
http:
//www.alphaworks.ibm.com/tech/whitch, 2005.
D. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault
interactions and implications for software testing. I[EEE
Transactions on Software Engineering, 30(6):418—-421, 2004.
C. Lott, A. Jain, and S. Dalal. Modeling requirements for
combinatorial software testing. In Workshop on Advances in
Model-based Software Testing, pages 1-7, May 2005.

S. Malik. zchaff. http:
//www.princeton.edu/~chaff/zchaff.html,
2004.

R. Mandl. Orthogonal latin squares: An application of
experiment design to compiler testing. Communications of
the ACM, 28(10):1054-1058, October 1985.

J. D. McGregor. Testing a software product line. Technical
report, Carnegie Mellon, Software Engineering Institute,
December 2001.

Nokia Corporation. Nokia mobile phone line.
http://www.nokiausa.com/phones, 2007.

K. Nurmela. Upper bounds for covering arrays by tabu
search. Discrete Applied Mathematics, 138(1-2):143-152,
2004.

D. L. Parnas. On the design and development of program
families. IEEE Transactions on Software Engineering,
2(1):1-9, 1976.

G. Sherwood. Testcover.com.
http://testcover.com/pub/constex.php, 2006.
G. Sherwood. Personal communication, 2007.

K. C. Tai and Y. Lei. A test generation strategy for pairwise
testing. [EEE Transactions on Software Engineering,
28(1):109-111, 2002.

Y. Tung and W. S. Aldiwan. Automating test case generation
for the new generation mission software system. In
Proceedings of the IEEE Aerospace Conference, pages
431-437, 2000.

A. W. Williams and R. L. Probert. A measure for component
interaction test coverage. In Proceedings of the ACS/IEEE
International Conference on Computer Systems and
Applications, pages 301-311, Los Alamitos, CA, October
2001. IEEE.

C. Yilmaz, M. B. Cohen, and A. Porter. Covering arrays for
efficient fault characterization in complex configuration
spaces. I[EEE Transactions on Software Engineering,
31(1):20-34, 2006.

