
This do
ument is an ele
troni
ally re-engineered (OCR, LATEX and BibTEX) version of the original paper published in IEEE Transa
-tions On Software Engineering, Vol. SE-2, No. 1, Mar
h 1976 1On the Design and Development of Program FamiliesDAVID L. PARNASAbstra
t|Program families are de�ned (analogously tohardware families) as sets of programs whose 
ommon prop-erties are so extensive that it is advantageous to study the
ommon properties of the programs before analyzing in-dividual members. The assumption that, if one is to de-velop a set of similar programs over a period of time, oneshould 
onsider the set as a whole while developing the �rstthree approa
hes to the development, is dis
ussed. A 
on-ventional approa
h 
alled \sequential development" is 
om-pared to \stepwise re�nement" and \spe
i�
ation of infor-mation hiding modules." A more detailed 
omparison of thetwo methods is then made. By means of several examplesit is demonstrated that the two methods are based on thesame 
on
epts but bring 
omplementary advantages.Index Terms|Information hiding modules, module spe
-i�
ations, program families, software design methodology,software engineering, stepwise re�nement.Introdu
tionW E 
onsider a set of programs to 
onstitute afamily, whenever it is worthwhile to study pro-grams from the set by �rst studying the 
om-mon properties of the set and then determining the spe
ialproperties of the individual family members. A typi
alfamily of programs is the set of versions of an operatingsystem distributed by a manufa
turer. While there aremany signi�
ant di�eren
es between the versions, it usu-ally pays to learn the 
ommon properties of all the ver-sions before studying the details of any one. Program fam-ilies are analogous to the hardware families promulgatedby several manufa
turers. Although the various models ina hardware family might not have a single 
omponent in
ommon, almost everyone reads the 
ommon \prin
iples ofoperations" manual before studying the spe
ial 
hara
teris-ti
s of a spe
i�
 model. Traditional programming methodswere intended for the development of a single program. Inthis paper, we propose to examine expli
itly the pro
essof developing a program family and to 
ompare variousprogramming te
hniques in terms of their suitability fordesigning su
h sets of programs.Motivation for Interest in FamiliesVariations in appli
ation demands, variations in hard-ware 
on�gurations, and the ever-present opportunity toimprove a program mean that software will inevitably existin many versions. The di�eren
es between these versionsare unavoidable and purposeful. In addition, experien
ehas shown that we 
annot always design all algorithmsManus
ript re
eived November 3, 1975.The author is with the Resear
h Group on Operating Systems I, Fa
h-berei
h Informatik, Te
hnis
he Ho
hs
hule Darmstadt, Darmstadt,West Germany.

before implementation of the system. These algorithmsare invariably improved experimentally after the system is
omplete. This need for the existen
e of many experimen-tal versions of a system is yet another reason for interestin \multiversion" programs.It is well known that the produ
tion and maintenan
e ofmultiversion programs is an expensive problem for softwaredistributors. Often separate manuals and separate mainte-nan
e groups are needed. Converting a program from oneversion to another is a nontrivial (and hen
e expensive)task.This paper dis
usses two relatively new programmingmethods whi
h are intended expli
itly for the developmentof program families. We are motivated by the assumptionthat if a designer/programmer pays 
ons
ious attention tothe family rather than a sequen
e of individual programs,the overall 
ost of development and maintenan
e of theprograms will be redu
ed1. The goal of this paper is to
ompare the methods, providing some insight about theadvantages and disadvantages of ea
h.Classi
al Method of Produ
ing ProgramFamiliesThe 
lassi
al method of developing programs is best de-s
ribed as sequential 
ompletion. A parti
ular member ofthe family is developed 
ompletely to the \working" stage.The next member(s) of the family is (are) developed bymodi�
ation of these working programs. A s
hemati
 rep-resentation of this pro
ess is shown by Fig. 1. In this �gurea node is represented as a 
ir
le, if it is an intermediate rep-resentation on the way to produ
ing a program, but not aworking program itself. An X represents a 
omplete (us-able) family member. An ar
 from one node to anotherindi
ates that a program (or intermediate representationof a program) asso
iated with the �rst node was modi�edto produ
e that asso
iated with the se
ond.Ea
h ar
 of this graph represents a design de
ision. Inmost 
ases ea
h de
ision redu
es the set of possible pro-grams under 
onsideration. However, when one starts froma working program, one generally goes through a reversestep, in whi
h the set of possible programs is again in-
reased (i.e., some details are not de
ided). Nodes 5 and 6are instan
es of this.When a family of programs is produ
ed a

ording to theabove model, one member of the family 
an be 
onsideredto be an an
estor of other family members. It is quiteusual for des
endants of a given program to share some1Some preliminary experiments support this assumption [1℄, [2℄, butthe validity of our assumption has not yet been proved in pra
ti
e.Readers who do not want to read about programming te
hniquesbased on this unproved assumption should stop reading here.



2 This do
ument is an ele
troni
ally re-engineered (OCR, LATEX and BibTEX) version of the original paper published in IEEE Transa
-tions On Software Engineering, Vol. SE-2, No. 1, Mar
h 1976

Fig. 1. Representation of development by sequential 
ompletion.Note: nodes 5 and 6 represent in
omplete programs obtainedby removing 
ode from program 4 in preparation for produ
ingprograms 1, 8, and 9. Symbols: 2 is the set of initial possibilities;Æ is the in
omplete program; � is the working program.of its an
estor's 
hara
teristi
s whi
h are not appropriateto the purpose of the des
endants. In bringing the earlierversion to 
ompletion, 
ertain de
isions were made whi
hwould not have been made if the des
endant program hadbeen developed independently. These de
isions remain inthe des
endant program only be
ause their removal wouldentail a great deal of reprogramming. As a result, laterversions of the program have performan
e de�
ien
ies, be-
ause they were derived by modifying programs designedto fun
tion in a di�erent environment or with a di�erentload. New Te
hniquesFig. 2 shows the 
ommon basi
 
on
ept of newer meth-ods. Using these methods one never modi�es a 
ompletedprogram to get a new family member; one always beginswith one of the intermediate stages and 
ontinues from thatpoint with design de
isions, ignoring the de
isions made af-ter that point in the development of the previous versions.Where in the 
lassi
al method one 
an say that one versionof the program is the an
estor of another, here we �nd thatthe two versions have a 
ommon an
estor [3℄.The various versions need not be developed sequentially.If the development of one bran
h of the tree does not useinformation from another bran
h, the two subfamilies 
ouldbe developed in parallel. A se
ond important note is thatin these methods the order in whi
h de
isions are madehas more signi�
an
e than in the 
lassi
al method. Re
allthat all de
isions made above a bran
h point are sharedby all family members below that point. In our motivationof the family 
on
ept we emphasized the value of havingmu
h in 
ommon among the family members. By de
idingas mu
h as possible before a bran
h point, we in
rease the\similarity" of the systems. Be
ause we know that 
ertaindi�eren
es must exist between the programs, the aim of thenew design methods is to allow the de
isions, whi
h 
an beshared by a whole family, to be made before those de
isions,

whi
h di�erentiate family members. As Fig. 2 illustrates,it is meaningful to talk of subfamilies whi
h share morede
isions than are shared by the whole family.If the root of the tree represents the situation before anyde
isions are made, then two programs, whi
h have onlythe root as 
ommon an
estor, have nothing in 
ommon.We should note that representing this pro
ess by a tree isan oversimpli�
ation. Certain design de
isions 
an be madewithout 
onsideration of others (the de
ision pro
esses 
anbe viewed as 
ommutative operators). It is possible touse design de
isions in several bran
hes. For example, anumber of quite di�erent operating systems 
ould make useof the same deadlo
k prevention algorithm, even if it wasnot one of the de
isions made in a 
ommon an
estor.Representing the Intermediate StagesIn the 
lassi
al method of produ
ing program families,the intermediate stages were not well de�ned and the in-
omplete designs were not pre
isely represented. This wasboth the 
ause and the result of the fa
t that 
ommuni-
ation between versions was in the form of 
ompleted pro-grams. If either of the two methods dis
ussed here is towork e�e
tively, it is ne
essary that we have pre
ise repre-sentations of the intermediate stages (espe
ially those thatmight be used as bran
h points). Both methods emphasizepre
ision in the des
riptions of partially designed programs.They di�er in the way that the partial designs are repre-sented. We should note that it is not the �nal version ofthe program, whi
h is our real produ
t (one seldom uses aprogram without modi�
ation); in the new methods it isthe well-developed but still in
omplete representation thatis o�ered as a 
ontribution to the work of others.Programming by Stepwise RefinementThe method of \stepwise re�nement"2 was �rst formallyintrodu
ed by Dijkstra [3℄ and has sin
e been further dis-
ussed by a variety of 
ontributors [4℄{[6℄. In the literaturethe major emphasis has been on the produ
tion of 
orre
tprograms, but the side e�e
t is that the method en
ouragesthe produ
tion of program families. One of the early ex-amples was the development of a program for generation ofprime numbers in whi
h the next to the last program stillpermitted the use of two quite di�erent algorithms for gen-erating primes. This in
omplete program de�ned a familyof programs whi
h in
luded at least two signi�
antly dif-ferent members.In \stepwise re�nement" the intermediate stages are rep-resented by programs, whi
h are 
omplete ex
ept for theimplementation of 
ertain operators and operand types.The programs are written as if the operators and operandswere \built in" the language. The implementation of theseoperators in the a
tual language is postponed to the laterstages. Where the (impli
it or expli
it) de�nition of theoperators is suÆ
iently abstra
t to permit a variety of im-plementations, the early versions of the program de�ne a2The reader should note that although stepwise re�nement is oftenidenti�ed with \goto less programming", the use and abuse of thegoto is irrelevant in this paper.



This do
ument is an ele
troni
ally re-engineered (OCR, LATEX and BibTEX) version of the original paper published in IEEE Transa
-tions On Software Engineering, Vol. SE-2, No. 1, Mar
h 1976 3

Fig. 2. Representation of program development using \abstra
t de-
isions." Symbols: 2 is the set of initial possibilities; Æ is thein
omplete program; � is the working program.family in whi
h there is a member for ea
h possible imple-mentation of the unimplemented operators and operands.For example, a program might be written with a de
lara-tion of a data type sta
k and operators push and pop. Onlyin later versions would the sta
k representation and pro
e-dures to exe
ute push and pop be introdu
ed. We illustratethe te
hnique of stepwise re�nement with two examples,whi
h will be used in a later 
omparison.Example 1), Dijkstra's Prime Program: Dijkstra [3℄ hasdes
ribed the development of a program to print numbers.The �rst step appears as follows:begin variable table p;�ll table p with �rst thousand prime numbers;print table p;endIn this program Dijkstra has assumed an operand type\table" and two operators. The representation of the ta-ble, the method of 
al
ulating the primes, and the printingformat are all left unde
ided. In fa
t, the only bindingde
isions (
ommon 
hara
teristi
s of the whole family ofprograms) are that all the primes will be developed beforeany are printed, and that we will always want the �rst thou-sand primes. Dijkstra then debates between implementingtable or elaborating \�ll table." Eventually he de
ides that\table" should be implemented, and all members of the re-maining family share the same table implementation. Abran
h of the family with an alternative table implemen-tation is mentioned, but not developed. Later membersof the family are developed by 
onsidering various possiblemethods of 
omputing the prime numbers.Example 2), Wulf 's KWIC Index Program: Wulf [5℄presents a proposed stepwise re�nement development of aKWIC index produ
tion program as follows:Step 1: PRINTKWICWe may think of this as being an instru
tion in a lan-

guage (or ma
hine), in whi
h the notion of generating aKWIC index is primitive. Sin
e this operation is not prim-itive in most pra
ti
al languages, we pro
eed to de�ne it:Step 2: PRINTKWIC: generate and save allinteresting 
ir
ularshiftsalphabetize the savedlinesprint alphabetized linesAgain we may think of ea
h of these lines as being aninstru
tion in an appropriate language; and again, sin
ethey are not primitive in most existing languages, we mustde�ne them; for example:Step 3 a: generate and save all interesting
ir
ular shifts:for ea
h line in the input dobegingenerate and save all inter-esting shifts of \thisline"endet
.For purposes of later 
omparison, we note the de
isionsthat must be shared by the remaining members of the fam-ily:1) all shifts will be stored;2) all 
ir
ular shifts will be generated and stored beforealphabetization begins;3) alphabeti
al ordering will be 
ompleted before printingis started;4) all shifts of the one line will be developed before anyof the shifts for another line;5) \uninteresting" shifts will be eliminated at the timethat the shifts are generated.In the best-known examples of programming by stepwisere�nement the de�nitions of the operators have been infor-mal. All of the published examples have been designed astutorial examples, and the operators are kept \
lassi
al" sothat ones intuitive understanding of them suÆ
es for the
orre
t understanding of the program development. Theonly ex
eption known to the author is [7℄.3 Formal de�ni-tion of the operators 
an be in
luded by appli
ation of thepredi
ate insertion te
hnique �rst introdu
ed by Floyd forthe purpose of program veri�
ation. As Dijkstra has sug-gested, we 
an think of the operators as \predi
ate trans-formers" (rules whi
h des
ribe how a predi
ate whi
h de-s
ribes the state of the program variables after appli
ationof the operator 
an be transformed into a predi
ate des
rib-ing the state of the program variables before the operatoris exe
uted [8℄).3In this example the method failed to produ
e a 
orre
t programbe
ause the intuitive understanding of the operators was too vague.



4 This do
ument is an ele
troni
ally re-engineered (OCR, LATEX and BibTEX) version of the original paper published in IEEE Transa
-tions On Software Engineering, Vol. SE-2, No. 1, Mar
h 1976Te
hnique of Module Spe
ifi
ationAnother te
hnique for the design of program families hasbeen des
ribed in [9℄, [10℄. This method is distinguishedfrom the method of stepwise re�nement in that the inter-mediate representations are not in
omplete programs. In-stead, they are \spe
i�
ations" of the externally visible 
ol-le
tive behavior of program groups 
alled modules.4 Theseintermediate representations are not written in a program-ming language, and they never be
ome part of the �nalsystem.To illustrate this method we 
ompare the developmentof the KWIC program des
ribed in [9℄, [10℄ with the de-velopment by stepwise re�nement dis
ussed earlier in thispaper.In the method of \module spe
i�
ation" the design de-
isions whi
h 
annot be 
ommon properties of the familyare identi�ed and a module (a group of programs) is de-signed to hide ea
h design de
ision. For our example, thefollowing design de
isions were identi�ed:1) the internal representation of the data to be pro-
essed;.2) the representation of the 
ir
ular shifts of those linesand the time at whi
h the shifts would be 
omputed;3) the method of alphabetization, whi
h would be used,and the time at whi
h the alphabetization would be
arried out;4) the input formats;5) the output formats;6) the internal representation of the individual words (apart of de
ision 1).To hide the representation of the data in memory, amodule was provided whi
h allows its users to simplywrite 
har (line, word, 
) in order to a

ess a 
ertain
hara
ter. Data were \stored" in this module by 
allingset
har (line, word, 
, d). Other fun
tions in the modulewould report the number of lines, the number of words ina given line, and the number of 
hara
ters in a word. Bythe use of this group of programs the rest of the program
ould be written in a way that was 
ompletely independentof the a
tual representation.A module quite similar in appearan
e to the one de-s
ribed above hid the representation of the 
ir
ular shifts,the time at whi
h they were 
omputed, even whether ornot they were ever stored. (Some members of the pro-gram family redu
ed storage requirements by 
omputingthe 
hara
ter at a given point in the list of shifts wheneverit was requested.) All of these implementations shared thesame external interfa
e.Still another pair of programs hid the time and methodof alphabetization. This (2 program) module provided afun
tion ith (i) whi
h would give the index in the se
ondmodule for the i-th line in the alphabeti
 sequen
e.The de
isions listed above are those whi
h are not made,i.e., postponed. The de
isions whi
h were made are morediÆ
ult to identify. The design has pla
ed restri
tions on4Naur has 
alled a similar 
on
ept \a
tion 
lusters" [11℄.

the way that program parts may refer to ea
h other andhas, in that way, redu
ed the spa
e of possible programs.The above des
ription is intended as a brief review forthose who already have some familiarity with the two meth-ods. Those who are new to the ideas should refer to theoriginal arti
les before reading further.5Comparison Based on the KWIC ExampleTo understand the di�eren
es in the te
hniques thereader should look at the list of de
isions whi
h de�ne thefamily of KWIC programs whose development was startedby Wulf. All of the de
isions whi
h are shared by the mem-bers of Wulfs family are hidden in individual modules bythe se
ond method and 
an therefore di�erentiate familymembers. Those de
isions about sequen
ing of events arespe
i�ed early in Wulfs development but have been post-poned in the se
ond method.Lest one think that in the se
ond method no de
isionsabout implementation have been made, we list below someof the 
ommon properties of programs produ
ed using these
ond method.1) All programs will have a

ess to the original 
hara
-ter string during the pro
ess of 
omputing the KWICindex.2) Common words su
h as the, and, et
., would not beeliminated until the output stage (if ever).3) The output module will get its information one 
har-a
ter at a time.The astute reader will have noted that these de
isionsare not ne
essarily good ones. Nonetheless, de
isions havebeen made whi
h allow work on the modules to begin andprogress to 
ompletion without further intera
tion betweenthe programmers. In this method the aim of the early workis not to make de
isions about a program but to make itpossible to postpone (and therefore easily 
hange) de
i-sions about the program. Later work should pro
eed morequi
kly and easily as a result [1℄.In the stepwise re�nement method we progressed qui
klytoward a relatively narrow family (limited variations in thefamily). With modules we have prepared the way for thedevelopment of a relatively broad family.Comparative Remarks Based on Dijkstra'sPrime ProgramWe now take a se
ond look at the Dijkstra developmentof the prime number program.In his development Dijkstra is moved to make an earlyde
ision about the implementation of TABLE in order to gofurther. All members of the family developed subsequentlyshare that implementation. Should he de
ide to go ba
kand re
onsider that de
ision, he would have to re
onsider5For symmetry we remark that while stepwise re�nement was de-veloped primarily to assist in the produ
tion of 
orre
t programs andhas a pleasant side e�e
t in the produ
tion of program families, mod-ule spe
i�
ation was developed for the produ
tion of program familiesbut helps with \
orre
tness" as dis
ussed in [12℄.



This do
ument is an ele
troni
ally re-engineered (OCR, LATEX and BibTEX) version of the original paper published in IEEE Transa
-tions On Software Engineering, Vol. SE-2, No. 1, Mar
h 1976 5all of the de
isions made after that point. The method ofmodule spe
i�
ation would have allowed him to postponethe table implementation to a later stage (i.e., to hide thede
ision) and thereby a
hieve a broader family.Comparative Remarks Based on an OperatingSystem ProblemWe 
onsider the problem of 
ore allo
ation in an operat-ing system. We assume that we have a list of free 
ore areasand data that should be brought to 
ore storage. Writinga program that will �nd a free spot, and allo
ate the spa
eto the program needing it, is trivial. Unfortunately thereare many su
h programs, and we 
annot be 
ertain whi
hof them we want. The programs 
an di�er in at least twoimportant ways, poli
y and implementation of the me
ha-nism. By \poli
y" we mean simply the rule for 
hoosinga pla
e, if there are several usable pla
es; by \implemen-tation of the me
hanism" we mean su
h questions as, howshall we represent the list of free spa
es, what operationsmust we perform to add a free spa
e to the list, to removea free spa
e? Should the list be kept in a spe
ial order?What is the sear
h pro
edure? et
.The de
isions dis
ussed above are important in that they
an have a major impa
t on the performan
e of a system.On the other hand, we 
annot pi
k a \best" solution; thereis no best solution!On the poli
y side there have been numerous debatesbetween su
h poli
ies as \�rst �t"-allo
ate the �rst usablespa
e in the list, \best �t"-�nd the smallest spa
e that will�t, \favor one end of 
ore," \modi�ed best �t"-look for apie
e that �ts well but does not leave a hopelessly smallfragment, et
. It is 
lear to most who have studied theproblem that the \best" poli
y depends on the nature ofthe demand, i.e., the distribution of the requested sizes,the expe
ted length of time that an area will be retained,and so on.Choosing an implementation is even more 
ompli
atedbe
ause it depends in part on the poli
y 
hoi
e. Keeping alist ordered by size of fragment is valuable if we are going toseek a \best �t" but worse than useless for a poli
y whi
htends to put things as low in 
ore as possible.The following \stru
tured programming" development ofsu
h an algorithm illustrates the 
onstru
tion of an ab-stra
t program whi
h has the properties of all of those thatwe are interested in and does not yet prejudi
e our 
hoi
e.stage 1:bestyet := null;while not all spa
es 
onsidered dobegin�nd next item from list of free spa
es (
andidate)best yet := bestof (bestyet,
andidate)end if bestyet = null then errora
tionallo
ate (best yet); remove (best yet)Stri
tly following the prin
iples of writing well-

stru
tured programs we should now verify that the aboveis 
orre
t or write down the 
onditions under whi
h we 
anbe 
ertain that it is 
orre
t.Corre
tness Assumptions:1) \bestyet" is a variable 
apable of indi
ating a freespa
e; null is a possible value of this variable indi
atingno spa
e.2) \not all spa
es 
onsidered" is a predi
ate whi
h willbe true as long as it is possible that a \better" spa
eis still to be found but will be false when all possibleitems have been 
onsidered.3) \
andidate" is a variable of the same type as bestyet.4) \�nd next item from list of free spa
es" will assign toits parameter a value indi
ating one of the items onthe free spa
e list. If there are n su
h items on thelist, n 
alls of the pro
edure will deliver ea
h of the nitems on
e.5) No items will be removed from or added to the listduring the exe
ution of the program.6) \bestof" is a pro
edure whi
h takes two variables ofthe type of bestyet and returns (as a value of the sametype) the better of the two possible spa
es a

ording tosome unspe
i�ed 
riterium. If neither pla
e is suitable,the value is \null," whi
h is always unsuitable.7) \error a
tion" is what the program is supposed to doif no suitable pla
e 
an be found.8) \remove" is a pro
edure whi
h removes the spa
e in-di
ated by its parameter from the list of free spa
es.A later sear
h will not �nd this spa
e.9) \allo
ate" is a pro
edure whi
h gives the spa
e indi-
ated by its parameter to the requesting program.10) On
e we have begun to exe
ute this program, noother exe
ution of it will begin until this one is 
om-plete (mutual ex
lusion).11) The only other program whi
h might 
hange the datastru
tures involved is one that would add a spa
e tothe free spa
e list. Mutual ex
lusion may also beneeded here.Design De
isions in Stage 1Although this �rst program appears quite inno
uous, itdoes represent some real design de
isions whi
h are bestunderstood by 
onsidering programs whi
h do not sharethe properties of the above abstra
t program.1) We have de
ided to produ
e a program in whi
h oneis not allowed to add to the free spa
e list during asear
h for a free spa
e.2) We have not allowed a program in whi
h two sear
heswill be 
ondu
ted simultaneously.3) We are 
onsidering only programs where a 
andidateis not removed from the free spa
e list while it is be-ing 
onsidered. Perfe
tly reasonable programs 
ouldbe written in whi
h the \bestyet" was not on the listand was reinserted in the list when a better spa
e wasdis
overed.4) We have 
hosen not to use a program in whi
h a 
he
kfor possible allo
ation is made before sear
hing the list.



6 This do
ument is an ele
troni
ally re-engineered (OCR, LATEX and BibTEX) version of the original paper published in IEEE Transa
-tions On Software Engineering, Vol. SE-2, No. 1, Mar
h 1976Some reasonable programs would have a 
he
k for theempty list, or even a 
he
k for the size of the largestavailable spa
e before the loop so that no time wouldbe spent sear
hing for an optimum �t when no �t atall was possible. In our program, an assignment to\bestyet," an evaluation of the termination 
ondition,plus an evaluation of \bestyet=null" will take pla
eevery time the program is 
alled.The programs omitted from the family of programswhi
h share the abstra
t program of stage 1 are not sig-ni�
ant omissions. If they were, we would not have 
hosento eliminate them at su
h an early stage in our design.We have dis
ussed them only so that the reader will seethat writing the program of stage 1 has not been an emptyexer
ise.We now 
onsider a subfamily of the family of programsde�ned in stage 1. In this subfamily we will de
ide to rep-resent the list by a two-dimensional array in whi
h ea
hrow represents an item in the free spa
e list. We assumefurther that the �rst free spa
e is kept in row 1, that thelast is in row N, and that all rows between 1 and N repre-sent valid free spa
es. We make no assumptions about theinformation kept in ea
h row to des
ribe the free spa
e northe order of rows in the array. This allows us to write thefollowing:stage 2:bestyet := 0;
andidate := 0;while 
andidate 6= N dobegin
andidate := 
andidate +1;bestyet := bestof (bestyet,
andidate)endif bestyet = 0 then errora
tion;allo
ate (bestyet)remove (bestyet).We have been able to allow the variables \bestyet" and\
andidate" to be integers to implement the test for \notall spa
es 
onsidered" as an integer test on the value of\
andidate" be
ause of our assumptions. Our assumptionsdo not yet permit us to elaborate the operations on thetable rows or to implement our poli
y de
ision in \bestof." We 
annot even implement \remove," be
ause we donot know if we are going to allo
ate all of the spa
e foundor allo
ate only that part needed and leave the rest on thefree spa
e list. Stage 3We now skip several stages in a \proper" stru
tured pro-gramming development in order to show one of the possible\
on
rete" family members. In this program we have de-
ided that the entries in ea
h row of the array will give the�rst and last lo
ations of ea
h free spa
e and that whenwe allo
ate a spa
e we will allo
ate the whole spa
e so asto avoid having to keep tra
k of an ever in
reasing set ofsmall fragments. We also assume a poli
y of \best �t"

whi
h means that we pi
k the smallest of the suitable freespa
es. bestyet :=0;
andidate := 0;oldT := 1while 
andidate 6= N dobegin
andidate := 
andidate +1T : = (end (
andidate)-start (
andidate))if T � request � T < oldT then beginbestyet := 
andidateoldT:= T end;end;if bestyet = 0 then errora
tion;allo
ate (bestyet)N :=N-l;for I := bestyet step 1 until N do beginend[I℄ := end[I+1℄;start[I℄ := start[I+1℄;end;To understand the value of stru
tured programming inprodu
ing programming families, we now have to 
onsiderwhat would happen if. instead of the program developedin stage 3, we wanted a program in whi
h I) we did notallo
ate the smallest suitable Spa
e but only that part ofit that was needed and 2) we represented the free spa
esby giving the start address and the lenght rather then startand end address. We 
onsider making this 
hanges in twosituations.Situation 1: We wrote the program shown in stage 3in the 
lassi
al way, i.e., we wrote that program dire
tlywithout writing down the intermediate stages.Situation 2: We used the stru
tured programming devel-opment as shown above.In situation 1 we would have to modify the programsshown in the se
tion in stage 3. We would have nothingelse. As you 
an see, it would take some e�ort to identifywhi
h lines in the program 
ould remain and whi
h 
ouldor should be 
hanged. Even on this rather simple exampleit would require a fairly 
areful study of the program todetermine whi
h 
hanges should be made unless the personmaking the 
hanges was very familiar with the program(e.g., unless he personally had just written it).In situation 2, however, we have the option of returningto the program labeled \stage 2." All the assumptionsmade in stage 2 are still valid and the program itself is stillvalid, only in
omplete. Completing the program shown instage 2 in order to produ
e the new nonabstra
t programis as straightforward as the original modi�
ation of stage2 to get stage 3. It 
an be done by someone new. Inthis situation the new �nal program is obtained not bymodifying the old working program but by modifying the
losest 
ommon an
estor.If the organization in 
harge of maintaining the systemwishes to keep both versions in a
tive use, they 
an usethe stage 2 do
umentation as valid do
umentation for both



This do
ument is an ele
troni
ally re-engineered (OCR, LATEX and BibTEX) version of the original paper published in IEEE Transa
-tions On Software Engineering, Vol. SE-2, No. 1, Mar
h 1976 7versions of the program and even 
onsider some 
hanges forboth versions by studying stage 2.This example was intended to demonstrate why stru
-tured programming is su
h a valuable tool for those whowish to maintain and develop families of programs su
h asoperating systems. The reader must keep in mind that thisis a small and simple example, the bene�ts would be evengreater for larger programs developed in this way.Although we have shown an advantage for developmentof program families by using stru
tured programming wehave also revealed a fundamental problem. Progress atea
h stage was made by making design de
isions. Goingba
k to stage 2 was possible in our 
ase be
ause we hadin stage 2 all of those design de
isions whi
h we wantedto keep and none of those whi
h we wanted to dis
ard.Unless we were able to predi
t in advan
e exa
tly whi
hde
isions we would 
hange and whi
h we would keep, weare not likely to be so lu
ky in pra
ti
e. In fa
t, evenwith the ability to see into the future, there might notbe any de
ision making sequen
e whi
h would allow us toba
ktra
k without dis
arding the results of de
isions whi
hwill remain un
hanged. The results of perfe
tly valid designde
isions may have to be re
oded be
ause the 
ode thatimplements those de
isions was designed to intera
t withother 
ode that is being 
hanged.It is to get around these diÆ
ulties that the division into\information hiding" modules 
an be introdu
ed. Ratherthan 
ontinually re�ne step by step a single program, asis done in stepwise re�nement, we break the program upinto independent parts and develop ea
h of them in igno-ran
e of the implementation of the other. In 
ontrast to
lassi
al programming methods, these parts are not thesubprograms whi
h are 
alled from a main program; theyare 
olle
tions of subprograms.In our example we would have a free spa
e list module,allo
ation module, and a sele
tion 
riterium module. Thefree spa
e list module would 
onsist of1) the 
ode whi
h implemented the variable bestyet andany other variable that 
ould represent a pla
e in a listas well as the representation of the 
onstant null2) the program \not all spa
es 
onsidered";3) the program \�nd next item from the list of freespa
es";4) the program \remove";5) a program to add items to the free spa
e list (this pro-gram is not 
alled in the above program, but must be
alled elsewhere in the system and would be 
onsidereda part of the free spa
e list module);6) programs to give the essential 
hara
teristi
s of a spa
eon the list (e.g., start and end address).The sele
tion 
riterium module would 
onsist of1) bestof;2) some other programs whi
h will be 
alled elsewhere,su
h as programs to 
hoose a vi
tim (a spa
e to beremoved from its owner and made available).The allo
ation module 
onsists of \allo
ate" and otherprograms not dis
ussed above. Ea
h of these modules

would have to 
ontain an initialization se
tion whi
h wouldbe 
alled from the main program so that the additionaltemporary variables introdu
ed in implementing the pro-grams would not be visible in the main program. Forsome implementations of a module the initialization se
-tion would be empty, but its 
all would be written in themain program so that the main program would not have tobe 
hanged if the new implementation in
luded variableswhi
h had to be initialized.This division into modules and independent implemen-tation will only result in a working program if the external
hara
teristi
s of ea
h module were suÆ
iently well spe
-i�ed so that the 
ode 
ould be written without lookingat the implementation of other modules [1℄, [10℄. This is
learly an extra e�ort whi
h is not needed if only the step-wise re�nement method is used. In return for this e�ortone would gain the ability to reverse the de
ision abouttable representation made in stage 2 without even 
onsid-ering the 
ode written to implement the poli
y introdu
edin stage 3. One also gains the ability to develop the twoparts of the program without any 
ommuni
ation betweenthe groups developing ea
h one. This 
an lead to a shorterdevelopment time and the ability to develop several ver-sions of the system simultaneously.How the Module Spe
ifi
ations Define a FamilyMembers of a family of programs de�ned by a set ofmodule spe
i�
ations 
an vary in three prin
ipal ways.1) Implementation methods used within the modules. Any
ombination of sets of programs whi
h meets the mod-ule spe
i�
ations is a member of the program family.Subfamilies may be de�ned either by dividing ea
h ofthe main modules into submodules in alternative ways,or by using the method of stru
tured programming todes
ribe a family of implementations for the module.2) Variation in the external parameters. The module spe
-i�
ations 
an be written in terms of parameters so thata family of spe
i�
ations results. Programs may di�erin the values of those parameters and still be 
onsid-ered to be members of the program family.3) Use of subsets. In many situations one appli
ation willrequire only a subset of the fun
tions provided by asystem. We may 
onsider programs whi
h 
onsist of asubset of the programs des
ribed by a set of modulespe
i�
ations to be members of a family as well. Thisis espe
ially important in the development of familiesof operating systems, where some installations will re-quire only a subset of the system provided for another.The set of possible subsets is de�ned by the \uses" re-lation between the individual programs[13℄.Whi
h Method to UseBy now it should be 
lear that the two methods are nei-ther equivalent nor 
ontradi
tory. Rather they are 
om-plementary. They are both based on the same basi
 ideas(see histori
al note whi
h follows): 1) pre
ise representa-tions of the intermediate stage in a program design, and



8 This do
ument is an ele
troni
ally re-engineered (OCR, LATEX and BibTEX) version of the original paper published in IEEE Transa
-tions On Software Engineering, Vol. SE-2, No. 1, Mar
h 19762) postponement of 
ertain de
isions, while 
ontinuing tomake progress towards a 
ompleted program.Stepwise re�nement (as pra
ti
ed in the literature) en-
ourages one to make de
isions about sequen
ing early, be-
ause the intermediate representations are all programs.Postponement of sequen
ing de
isions until run time re-quires the introdu
tion of pro
esses [14℄. The methodof module spe
i�
ation is not usually 
onvenient for theexpressing of sequen
ing de
isions. (In our KWIC indexproje
t sequen
ing had to be des
ribed by writing a brief\stru
tured" \Main Program," whi
h was one of severalpossible ways that the modules 
ould have been used toprodu
e a KWIC index. It was written last!)Stepwise re�nement has the signi�
ant advantage that itdoes not add to the total amount of e�ort required to designthe �rst 
omplete family member. By keeping 
omplexityin 
ontrol, it usually redu
es the total amount of e�ort. In
ontrast, the module spe
i�
ations represent a very signif-i
ant amount of extra e�ort. Experien
e has shown thatthe e�ort involved in writing the set of spe
i�
ations 
anbe greater than the e�ort that it would take to write one
omplete program. The method permits the produ
tion ofa broader family and the 
ompletion of various parts of thesystem independently, but at a signi�
ant 
ost. It usuallypays to apply the method only when one expe
ts the even-tual implementation of a wide sele
tion of possible familymembers. In 
ontrast, the method of stepwise re�nementis always pro�table.Relation of the Question of Program Familiesto Program GeneratorsA 
ommon step taken by industrial maintainers of mul-tiversion programmers is the 
onstru
tion of system gen-eration programs. These programs are given a great dealof data des
ribing the hardware 
on�guration and softwareneeds of the users. Built into the generator is a des
riptionof a large family of programs and the generator 
auses onemember of the family to materialize and be loaded on thetarget hardware.The methods des
ribed in this paper are not intended torepla
e system generators. Sin
e these methods are appliedin the design stage and generators are useful when a spe
i�
family member must be produ
ed. Stepwise re�nement andthe method of module spe
i�
ation 
an simplify the workto be done by a system generation program.System generators would be 
ompletely unne
essary if wewished to build a program whi
h at run time 
ould \sim-ulate" any member of the family. Su
h a program wouldbe relatively ineÆ
ient. By removing mu
h of this variabil-ity at the time that the program is generated, in
reases inprodu
tive 
apa
ity are made possible.Often a family of programs in
ludes small members inwhi
h 
ertain variables are �xed and larger members inwhi
h these fa
tors may vary. For example, an operatingsystem family may in
lude some small members where thenumber of pro
esses is �xed and other members where dy-nami
 
reation and deletion is possible. The programs de-veloped for the larger members of the family 
an be used as

part of the \generator," whi
h produ
es a smaller member.Con
luding RemarksAnother way of 
omparing the two methods is to answerthe following often-heard questions.1) When should we tea
h stru
tured programming orstep- wise re�nement to our students?2) When should we tea
h about modules and spe
i�
a-tions?To the �rst question we 
an respond with another ques-tion: \When should we tea
h unstru
tured programming?"The se
ond question, however, requires a \straight an-swer": module design spe
i�
ations should only be taughtto students who have learned to program well and have de-
ided to pro
eed further and learn methods appropriate tothe produ
tion of software pa
kages [16℄.One of the diÆ
ulties in applying the re
ent 
on
eptsof stru
tured programming is that there are no 
riteria bywhi
h one may evaluate the stru
ture of a system on anobje
tive basis. Aspiring pra
titioners must go to a famousartist and ask for an evaluation. The \master" may thenindi
ate whether or not he 
onsiders the system \tasteful."The 
on
ept of program families provides one way of
onsidering program stru
ture more obje
tively. For anypre
ise des
ription of a program family (either an in
om-plete re�nement of a program or a set of spe
i�
ations ora 
ombination of both) one may ask whi
h programs havebeen ex
luded and whi
h still remain.One may 
onsider a program development to be good, ifthe early de
isions ex
lude only uninteresting, undesired, orunne
essary programs. The de
isions whi
h remove desiredprograms would be either postponed until a later stage or
on�ned to a well delimited subset of the 
ode. Obje
-tive 
riti
ism of a programs stru
ture would be based uponthe fa
t that a de
ision or assumption whi
h was likely to
hange has in
uen
ed too mu
h of the 
ode either be
auseit was made too early in the development or be
ause it wasnot 
on�ned to an information hiding module.Clearly this is not the only 
riterion whi
h one may usein evaluating program stru
tures. Clarity (e.g., ease of un-derstanding, ease of veri�
ation) is another quite relevant
onsideration. Although there is some reason to suspe
tthat the two measures are not 
ompletely unrelated, thereare no reasons to assume that they will agree. For onething, the \ease" measures mentioned above are fun
tionsof the understander or veri�er, the set of programs beingex
luded by a design de
ision 
an be interpreted obje
-tively. Of 
ourse, the question of whi
h de
isions are likelyto require 
hanging for some family members is again aquestion whi
h requires judgment and experien
e. It is,however, a somewhat more 
on
rete and more easily dis-
ussed question than ease of 
omprehension.Histori
al NoteIn 
losing this 
omparison, I want to make a 
ommenton the origin and history of some of the ideas found inthis paper. I re
ently reread one of the papers in whi
h



This do
ument is an ele
troni
ally re-engineered (OCR, LATEX and BibTEX) version of the original paper published in IEEE Transa
-tions On Software Engineering, Vol. SE-2, No. 1, Mar
h 1976 9Dijkstra introdu
ed the ideas of stru
tured programming[3℄. This paper is unusual in that it seems better ea
h timeyou read it. The root of bothmethods of produ
ing programfamilies and the 
on
ept of family itself is in this originalwork by Dijkstra. The 
on
ept of the division into modulesis somewhat di�erently formulated, but it is present in the
on
ept of the design of the abstra
t ma
hines, the notionof information hiding is impli
it (in the dis
ussion of thethi
kness of the ropes tying the pearls together). Modulespe
i�
ation is not dis
ussed. (Naur introdu
ed a 
on
eptquite similar to that of the module when he dis
ussed a
tion
lusters [11℄, but the 
on
ept of information hiding wasnot made spe
i�
 and the example does not 
orrespondexa
tly to what this prin
iple would suggest.) For variousreasons the 
on
ept of division into modules and the hidingof information seems to have attra
ted less attention, andlater works by other authors [4℄, [5℄ have emphasized onlythe stepwise re�nement of programs, ignoring the order ofthe steps or the question of the thi
kness of the ropes.A
knowledgmentI am grateful for opportunities to dis
uss the subje
twith members of I.F.I.P. Working Group 2.3 on Program-ming Methodology. These dis
ussions have helped me to
larify the points in this paper. I am also grateful to W.Bartussek of the Te
hnis
he Ho
hs
hule Darmstadt, for histhoughtful 
omments on an earlier version of this paper,to Dr. H. Mills of the IBM Federal Systems Division whofound a rather subtle error in a re
ent draft, and to Dr. L.Belady of the IBM T. J. Watson Resear
h Laboratory whomade a number of helpful 
omments.Referen
es[1℄ D. L. Parnas, \Some 
on
lusions from an experiment in softwareengineering te
hniques," in 1972 Fall Joint Computer Conf.,AFIPS Conf Pro
., Montvale, NJ, 1972, vol. 41, pp. 325{329,AFIPS Press.[2℄ H. Mills, \Mathemati
al foundations of stru
tured program-ming," IBM Federal Systems Div., vol. No. FSC72-6012, pp.1{62, Feb. 1972.[3℄ E. W. Dijkstra, \Stru
tured programming," in Software Engi-neering Te
hniques, J.N. Buxton and B. Randall, Eds., pp. 84{87. NATO S
ienti�
 A�airs Division, Brussels, Belgium, 1970.[4℄ N. Wirth, \Program development by stepwise re�nement,"Comm. ACM, vol. 14, pp. 221{227, Apr. 1971.[5℄ W. A. Wulf, \The GOTO 
ontroversy: A 
ase against theGOTO," SIGPLAN Noti
es, vol. 7, pp. 63{69, Nov. 1972.[6℄ C. A. R. Hoare, \Monitors: An operating system stru
turing
on
ept," Comm. ACM, vol. 17, pp. 549{557, O
t. 1974.[7℄ P. Henderson and R. Snowdon, \An experiment in stru
turedprogramming," BIT, vol. 12, pp. 38{53, 1972.[8℄ E. W. Dijkstra, \On the axiomati
 de�nition of semanti
s,"EWD 367, privately 
ir
ulated.[9℄ D. L. Parnas, \On the 
riteria used in de
omposing systems intomodules," Comm. ACM, vol. 15, pp. 1053{1058, De
. 1972.[10℄ \A te
hnique for software module spe
i�
ation with examples,"Commun. ACM (Programming Te
hniques Dept.), pp. 330{336,May 1972.[11℄ P. Naur, \Programming by a
tion 
lusters," BIT, vol. 9, pp.250{258, 1969.[12℄ W. R. Pri
e, Impli
ations of a virtual memory me
hanism forimplementing prote
tion in a family of operating systems, Ph.D.thesis, Carnegie-Mellon Univ., Pittsburgh, PA, 1973.[13℄ D. L. Parnas, \On a `buzzword' hierar
hi
al stru
ture," in Pro
.IFIP Congr., 1974, pp. 336{339.[14℄ E. W. Dijkstra, \Co-operating sequential pro
esses," in Pro-

gramming Languages, F. Genuys, Ed., pp. 43{112. A
ademi
Press, New York, 1968.[15℄ B. Randell and F. W. Zur
her, \Iterative multi-level modelling{ A methodology for 
omputer system design," in Pro
. IFIPCongr., 1968.[16℄ D. L. Parnas, \A 
ourse on software engineering te
hniques," inACM SIGCSE, 2nd Te
h. Symp., Mar. 1972, pp. 24{25.David L. Parnas re
eived the B.S. andM.S. degrees in ele
tri
al engineering, and thePh.D. degree in systems and 
ommuni
ationss
ien
es, from the Carnegie Institute of Te
h-nology, Pittsburgh, PA, in 1961, 1964, and1965, respe
tively.He has held the position of Assistant Professorof Computer S
ien
e, University of Maryland,College Park, and was Assistant and Asso
iateProfessor of Computer S
ien
e at Carnegie-Mellon University, Pittsburgh, PA. Sin
e Juneof 1973 he has been Professor and Head of one of the two Resear
hGroups on Operating Systems at the Te
hnis
he Ho
hs
hule Darm-stadt, Darmstadt, West Germany. He is also a 
onsultant for the U.S.Naval Resear
h Laboratory, Washington, D.C. His areas of resear
hhave been design methods for 
omputer systems, pro
ess syn
hroniza-tion in operating systems, se
urity me
hanisms in operating systems,simulation te
hniques, and design automation.


