
This doument is an eletronially re-engineered (OCR, LATEX and BibTEX) version of the original paper published in IEEE Transa-tions On Software Engineering, Vol. SE-2, No. 1, Marh 1976 1On the Design and Development of Program FamiliesDAVID L. PARNASAbstrat|Program families are de�ned (analogously tohardware families) as sets of programs whose ommon prop-erties are so extensive that it is advantageous to study theommon properties of the programs before analyzing in-dividual members. The assumption that, if one is to de-velop a set of similar programs over a period of time, oneshould onsider the set as a whole while developing the �rstthree approahes to the development, is disussed. A on-ventional approah alled \sequential development" is om-pared to \stepwise re�nement" and \spei�ation of infor-mation hiding modules." A more detailed omparison of thetwo methods is then made. By means of several examplesit is demonstrated that the two methods are based on thesame onepts but bring omplementary advantages.Index Terms|Information hiding modules, module spe-i�ations, program families, software design methodology,software engineering, stepwise re�nement.IntrodutionW E onsider a set of programs to onstitute afamily, whenever it is worthwhile to study pro-grams from the set by �rst studying the om-mon properties of the set and then determining the speialproperties of the individual family members. A typialfamily of programs is the set of versions of an operatingsystem distributed by a manufaturer. While there aremany signi�ant di�erenes between the versions, it usu-ally pays to learn the ommon properties of all the ver-sions before studying the details of any one. Program fam-ilies are analogous to the hardware families promulgatedby several manufaturers. Although the various models ina hardware family might not have a single omponent inommon, almost everyone reads the ommon \priniples ofoperations" manual before studying the speial harateris-tis of a spei� model. Traditional programming methodswere intended for the development of a single program. Inthis paper, we propose to examine expliitly the proessof developing a program family and to ompare variousprogramming tehniques in terms of their suitability fordesigning suh sets of programs.Motivation for Interest in FamiliesVariations in appliation demands, variations in hard-ware on�gurations, and the ever-present opportunity toimprove a program mean that software will inevitably existin many versions. The di�erenes between these versionsare unavoidable and purposeful. In addition, experienehas shown that we annot always design all algorithmsManusript reeived November 3, 1975.The author is with the Researh Group on Operating Systems I, Fah-bereih Informatik, Tehnishe Hohshule Darmstadt, Darmstadt,West Germany.

before implementation of the system. These algorithmsare invariably improved experimentally after the system isomplete. This need for the existene of many experimen-tal versions of a system is yet another reason for interestin \multiversion" programs.It is well known that the prodution and maintenane ofmultiversion programs is an expensive problem for softwaredistributors. Often separate manuals and separate mainte-nane groups are needed. Converting a program from oneversion to another is a nontrivial (and hene expensive)task.This paper disusses two relatively new programmingmethods whih are intended expliitly for the developmentof program families. We are motivated by the assumptionthat if a designer/programmer pays onsious attention tothe family rather than a sequene of individual programs,the overall ost of development and maintenane of theprograms will be redued1. The goal of this paper is toompare the methods, providing some insight about theadvantages and disadvantages of eah.Classial Method of Produing ProgramFamiliesThe lassial method of developing programs is best de-sribed as sequential ompletion. A partiular member ofthe family is developed ompletely to the \working" stage.The next member(s) of the family is (are) developed bymodi�ation of these working programs. A shemati rep-resentation of this proess is shown by Fig. 1. In this �gurea node is represented as a irle, if it is an intermediate rep-resentation on the way to produing a program, but not aworking program itself. An X represents a omplete (us-able) family member. An ar from one node to anotherindiates that a program (or intermediate representationof a program) assoiated with the �rst node was modi�edto produe that assoiated with the seond.Eah ar of this graph represents a design deision. Inmost ases eah deision redues the set of possible pro-grams under onsideration. However, when one starts froma working program, one generally goes through a reversestep, in whih the set of possible programs is again in-reased (i.e., some details are not deided). Nodes 5 and 6are instanes of this.When a family of programs is produed aording to theabove model, one member of the family an be onsideredto be an anestor of other family members. It is quiteusual for desendants of a given program to share some1Some preliminary experiments support this assumption [1℄, [2℄, butthe validity of our assumption has not yet been proved in pratie.Readers who do not want to read about programming tehniquesbased on this unproved assumption should stop reading here.

2 This doument is an eletronially re-engineered (OCR, LATEX and BibTEX) version of the original paper published in IEEE Transa-tions On Software Engineering, Vol. SE-2, No. 1, Marh 1976

Fig. 1. Representation of development by sequential ompletion.Note: nodes 5 and 6 represent inomplete programs obtainedby removing ode from program 4 in preparation for produingprograms 1, 8, and 9. Symbols: 2 is the set of initial possibilities;Æ is the inomplete program; � is the working program.of its anestor's harateristis whih are not appropriateto the purpose of the desendants. In bringing the earlierversion to ompletion, ertain deisions were made whihwould not have been made if the desendant program hadbeen developed independently. These deisions remain inthe desendant program only beause their removal wouldentail a great deal of reprogramming. As a result, laterversions of the program have performane de�ienies, be-ause they were derived by modifying programs designedto funtion in a di�erent environment or with a di�erentload. New TehniquesFig. 2 shows the ommon basi onept of newer meth-ods. Using these methods one never modi�es a ompletedprogram to get a new family member; one always beginswith one of the intermediate stages and ontinues from thatpoint with design deisions, ignoring the deisions made af-ter that point in the development of the previous versions.Where in the lassial method one an say that one versionof the program is the anestor of another, here we �nd thatthe two versions have a ommon anestor [3℄.The various versions need not be developed sequentially.If the development of one branh of the tree does not useinformation from another branh, the two subfamilies ouldbe developed in parallel. A seond important note is thatin these methods the order in whih deisions are madehas more signi�ane than in the lassial method. Reallthat all deisions made above a branh point are sharedby all family members below that point. In our motivationof the family onept we emphasized the value of havingmuh in ommon among the family members. By deidingas muh as possible before a branh point, we inrease the\similarity" of the systems. Beause we know that ertaindi�erenes must exist between the programs, the aim of thenew design methods is to allow the deisions, whih an beshared by a whole family, to be made before those deisions,

whih di�erentiate family members. As Fig. 2 illustrates,it is meaningful to talk of subfamilies whih share moredeisions than are shared by the whole family.If the root of the tree represents the situation before anydeisions are made, then two programs, whih have onlythe root as ommon anestor, have nothing in ommon.We should note that representing this proess by a tree isan oversimpli�ation. Certain design deisions an be madewithout onsideration of others (the deision proesses anbe viewed as ommutative operators). It is possible touse design deisions in several branhes. For example, anumber of quite di�erent operating systems ould make useof the same deadlok prevention algorithm, even if it wasnot one of the deisions made in a ommon anestor.Representing the Intermediate StagesIn the lassial method of produing program families,the intermediate stages were not well de�ned and the in-omplete designs were not preisely represented. This wasboth the ause and the result of the fat that ommuni-ation between versions was in the form of ompleted pro-grams. If either of the two methods disussed here is towork e�etively, it is neessary that we have preise repre-sentations of the intermediate stages (espeially those thatmight be used as branh points). Both methods emphasizepreision in the desriptions of partially designed programs.They di�er in the way that the partial designs are repre-sented. We should note that it is not the �nal version ofthe program, whih is our real produt (one seldom uses aprogram without modi�ation); in the new methods it isthe well-developed but still inomplete representation thatis o�ered as a ontribution to the work of others.Programming by Stepwise RefinementThe method of \stepwise re�nement"2 was �rst formallyintrodued by Dijkstra [3℄ and has sine been further dis-ussed by a variety of ontributors [4℄{[6℄. In the literaturethe major emphasis has been on the prodution of orretprograms, but the side e�et is that the method enouragesthe prodution of program families. One of the early ex-amples was the development of a program for generation ofprime numbers in whih the next to the last program stillpermitted the use of two quite di�erent algorithms for gen-erating primes. This inomplete program de�ned a familyof programs whih inluded at least two signi�antly dif-ferent members.In \stepwise re�nement" the intermediate stages are rep-resented by programs, whih are omplete exept for theimplementation of ertain operators and operand types.The programs are written as if the operators and operandswere \built in" the language. The implementation of theseoperators in the atual language is postponed to the laterstages. Where the (impliit or expliit) de�nition of theoperators is suÆiently abstrat to permit a variety of im-plementations, the early versions of the program de�ne a2The reader should note that although stepwise re�nement is oftenidenti�ed with \goto less programming", the use and abuse of thegoto is irrelevant in this paper.

This doument is an eletronially re-engineered (OCR, LATEX and BibTEX) version of the original paper published in IEEE Transa-tions On Software Engineering, Vol. SE-2, No. 1, Marh 1976 3

Fig. 2. Representation of program development using \abstrat de-isions." Symbols: 2 is the set of initial possibilities; Æ is theinomplete program; � is the working program.family in whih there is a member for eah possible imple-mentation of the unimplemented operators and operands.For example, a program might be written with a delara-tion of a data type stak and operators push and pop. Onlyin later versions would the stak representation and proe-dures to exeute push and pop be introdued. We illustratethe tehnique of stepwise re�nement with two examples,whih will be used in a later omparison.Example 1), Dijkstra's Prime Program: Dijkstra [3℄ hasdesribed the development of a program to print numbers.The �rst step appears as follows:begin variable table p;�ll table p with �rst thousand prime numbers;print table p;endIn this program Dijkstra has assumed an operand type\table" and two operators. The representation of the ta-ble, the method of alulating the primes, and the printingformat are all left undeided. In fat, the only bindingdeisions (ommon harateristis of the whole family ofprograms) are that all the primes will be developed beforeany are printed, and that we will always want the �rst thou-sand primes. Dijkstra then debates between implementingtable or elaborating \�ll table." Eventually he deides that\table" should be implemented, and all members of the re-maining family share the same table implementation. Abranh of the family with an alternative table implemen-tation is mentioned, but not developed. Later membersof the family are developed by onsidering various possiblemethods of omputing the prime numbers.Example 2), Wulf 's KWIC Index Program: Wulf [5℄presents a proposed stepwise re�nement development of aKWIC index prodution program as follows:Step 1: PRINTKWICWe may think of this as being an instrution in a lan-

guage (or mahine), in whih the notion of generating aKWIC index is primitive. Sine this operation is not prim-itive in most pratial languages, we proeed to de�ne it:Step 2: PRINTKWIC: generate and save allinteresting irularshiftsalphabetize the savedlinesprint alphabetized linesAgain we may think of eah of these lines as being aninstrution in an appropriate language; and again, sinethey are not primitive in most existing languages, we mustde�ne them; for example:Step 3 a: generate and save all interestingirular shifts:for eah line in the input dobegingenerate and save all inter-esting shifts of \thisline"endet.For purposes of later omparison, we note the deisionsthat must be shared by the remaining members of the fam-ily:1) all shifts will be stored;2) all irular shifts will be generated and stored beforealphabetization begins;3) alphabetial ordering will be ompleted before printingis started;4) all shifts of the one line will be developed before anyof the shifts for another line;5) \uninteresting" shifts will be eliminated at the timethat the shifts are generated.In the best-known examples of programming by stepwisere�nement the de�nitions of the operators have been infor-mal. All of the published examples have been designed astutorial examples, and the operators are kept \lassial" sothat ones intuitive understanding of them suÆes for theorret understanding of the program development. Theonly exeption known to the author is [7℄.3 Formal de�ni-tion of the operators an be inluded by appliation of theprediate insertion tehnique �rst introdued by Floyd forthe purpose of program veri�ation. As Dijkstra has sug-gested, we an think of the operators as \prediate trans-formers" (rules whih desribe how a prediate whih de-sribes the state of the program variables after appliationof the operator an be transformed into a prediate desrib-ing the state of the program variables before the operatoris exeuted [8℄).3In this example the method failed to produe a orret programbeause the intuitive understanding of the operators was too vague.

4 This doument is an eletronially re-engineered (OCR, LATEX and BibTEX) version of the original paper published in IEEE Transa-tions On Software Engineering, Vol. SE-2, No. 1, Marh 1976Tehnique of Module SpeifiationAnother tehnique for the design of program families hasbeen desribed in [9℄, [10℄. This method is distinguishedfrom the method of stepwise re�nement in that the inter-mediate representations are not inomplete programs. In-stead, they are \spei�ations" of the externally visible ol-letive behavior of program groups alled modules.4 Theseintermediate representations are not written in a program-ming language, and they never beome part of the �nalsystem.To illustrate this method we ompare the developmentof the KWIC program desribed in [9℄, [10℄ with the de-velopment by stepwise re�nement disussed earlier in thispaper.In the method of \module spei�ation" the design de-isions whih annot be ommon properties of the familyare identi�ed and a module (a group of programs) is de-signed to hide eah design deision. For our example, thefollowing design deisions were identi�ed:1) the internal representation of the data to be pro-essed;.2) the representation of the irular shifts of those linesand the time at whih the shifts would be omputed;3) the method of alphabetization, whih would be used,and the time at whih the alphabetization would bearried out;4) the input formats;5) the output formats;6) the internal representation of the individual words (apart of deision 1).To hide the representation of the data in memory, amodule was provided whih allows its users to simplywrite har (line, word,) in order to aess a ertainharater. Data were \stored" in this module by allingsethar (line, word, , d). Other funtions in the modulewould report the number of lines, the number of words ina given line, and the number of haraters in a word. Bythe use of this group of programs the rest of the programould be written in a way that was ompletely independentof the atual representation.A module quite similar in appearane to the one de-sribed above hid the representation of the irular shifts,the time at whih they were omputed, even whether ornot they were ever stored. (Some members of the pro-gram family redued storage requirements by omputingthe harater at a given point in the list of shifts wheneverit was requested.) All of these implementations shared thesame external interfae.Still another pair of programs hid the time and methodof alphabetization. This (2 program) module provided afuntion ith (i) whih would give the index in the seondmodule for the i-th line in the alphabeti sequene.The deisions listed above are those whih are not made,i.e., postponed. The deisions whih were made are morediÆult to identify. The design has plaed restritions on4Naur has alled a similar onept \ation lusters" [11℄.

the way that program parts may refer to eah other andhas, in that way, redued the spae of possible programs.The above desription is intended as a brief review forthose who already have some familiarity with the two meth-ods. Those who are new to the ideas should refer to theoriginal artiles before reading further.5Comparison Based on the KWIC ExampleTo understand the di�erenes in the tehniques thereader should look at the list of deisions whih de�ne thefamily of KWIC programs whose development was startedby Wulf. All of the deisions whih are shared by the mem-bers of Wulfs family are hidden in individual modules bythe seond method and an therefore di�erentiate familymembers. Those deisions about sequening of events arespei�ed early in Wulfs development but have been post-poned in the seond method.Lest one think that in the seond method no deisionsabout implementation have been made, we list below someof the ommon properties of programs produed using theseond method.1) All programs will have aess to the original hara-ter string during the proess of omputing the KWICindex.2) Common words suh as the, and, et., would not beeliminated until the output stage (if ever).3) The output module will get its information one har-ater at a time.The astute reader will have noted that these deisionsare not neessarily good ones. Nonetheless, deisions havebeen made whih allow work on the modules to begin andprogress to ompletion without further interation betweenthe programmers. In this method the aim of the early workis not to make deisions about a program but to make itpossible to postpone (and therefore easily hange) dei-sions about the program. Later work should proeed morequikly and easily as a result [1℄.In the stepwise re�nement method we progressed quiklytoward a relatively narrow family (limited variations in thefamily). With modules we have prepared the way for thedevelopment of a relatively broad family.Comparative Remarks Based on Dijkstra'sPrime ProgramWe now take a seond look at the Dijkstra developmentof the prime number program.In his development Dijkstra is moved to make an earlydeision about the implementation of TABLE in order to gofurther. All members of the family developed subsequentlyshare that implementation. Should he deide to go bakand reonsider that deision, he would have to reonsider5For symmetry we remark that while stepwise re�nement was de-veloped primarily to assist in the prodution of orret programs andhas a pleasant side e�et in the prodution of program families, mod-ule spei�ation was developed for the prodution of program familiesbut helps with \orretness" as disussed in [12℄.

This doument is an eletronially re-engineered (OCR, LATEX and BibTEX) version of the original paper published in IEEE Transa-tions On Software Engineering, Vol. SE-2, No. 1, Marh 1976 5all of the deisions made after that point. The method ofmodule spei�ation would have allowed him to postponethe table implementation to a later stage (i.e., to hide thedeision) and thereby ahieve a broader family.Comparative Remarks Based on an OperatingSystem ProblemWe onsider the problem of ore alloation in an operat-ing system. We assume that we have a list of free ore areasand data that should be brought to ore storage. Writinga program that will �nd a free spot, and alloate the spaeto the program needing it, is trivial. Unfortunately thereare many suh programs, and we annot be ertain whihof them we want. The programs an di�er in at least twoimportant ways, poliy and implementation of the meha-nism. By \poliy" we mean simply the rule for hoosinga plae, if there are several usable plaes; by \implemen-tation of the mehanism" we mean suh questions as, howshall we represent the list of free spaes, what operationsmust we perform to add a free spae to the list, to removea free spae? Should the list be kept in a speial order?What is the searh proedure? et.The deisions disussed above are important in that theyan have a major impat on the performane of a system.On the other hand, we annot pik a \best" solution; thereis no best solution!On the poliy side there have been numerous debatesbetween suh poliies as \�rst �t"-alloate the �rst usablespae in the list, \best �t"-�nd the smallest spae that will�t, \favor one end of ore," \modi�ed best �t"-look for apiee that �ts well but does not leave a hopelessly smallfragment, et. It is lear to most who have studied theproblem that the \best" poliy depends on the nature ofthe demand, i.e., the distribution of the requested sizes,the expeted length of time that an area will be retained,and so on.Choosing an implementation is even more ompliatedbeause it depends in part on the poliy hoie. Keeping alist ordered by size of fragment is valuable if we are going toseek a \best �t" but worse than useless for a poliy whihtends to put things as low in ore as possible.The following \strutured programming" development ofsuh an algorithm illustrates the onstrution of an ab-strat program whih has the properties of all of those thatwe are interested in and does not yet prejudie our hoie.stage 1:bestyet := null;while not all spaes onsidered dobegin�nd next item from list of free spaes (andidate)best yet := bestof (bestyet,andidate)end if bestyet = null then errorationalloate (best yet); remove (best yet)Stritly following the priniples of writing well-

strutured programs we should now verify that the aboveis orret or write down the onditions under whih we anbe ertain that it is orret.Corretness Assumptions:1) \bestyet" is a variable apable of indiating a freespae; null is a possible value of this variable indiatingno spae.2) \not all spaes onsidered" is a prediate whih willbe true as long as it is possible that a \better" spaeis still to be found but will be false when all possibleitems have been onsidered.3) \andidate" is a variable of the same type as bestyet.4) \�nd next item from list of free spaes" will assign toits parameter a value indiating one of the items onthe free spae list. If there are n suh items on thelist, n alls of the proedure will deliver eah of the nitems one.5) No items will be removed from or added to the listduring the exeution of the program.6) \bestof" is a proedure whih takes two variables ofthe type of bestyet and returns (as a value of the sametype) the better of the two possible spaes aording tosome unspei�ed riterium. If neither plae is suitable,the value is \null," whih is always unsuitable.7) \error ation" is what the program is supposed to doif no suitable plae an be found.8) \remove" is a proedure whih removes the spae in-diated by its parameter from the list of free spaes.A later searh will not �nd this spae.9) \alloate" is a proedure whih gives the spae indi-ated by its parameter to the requesting program.10) One we have begun to exeute this program, noother exeution of it will begin until this one is om-plete (mutual exlusion).11) The only other program whih might hange the datastrutures involved is one that would add a spae tothe free spae list. Mutual exlusion may also beneeded here.Design Deisions in Stage 1Although this �rst program appears quite innouous, itdoes represent some real design deisions whih are bestunderstood by onsidering programs whih do not sharethe properties of the above abstrat program.1) We have deided to produe a program in whih oneis not allowed to add to the free spae list during asearh for a free spae.2) We have not allowed a program in whih two searheswill be onduted simultaneously.3) We are onsidering only programs where a andidateis not removed from the free spae list while it is be-ing onsidered. Perfetly reasonable programs ouldbe written in whih the \bestyet" was not on the listand was reinserted in the list when a better spae wasdisovered.4) We have hosen not to use a program in whih a hekfor possible alloation is made before searhing the list.

6 This doument is an eletronially re-engineered (OCR, LATEX and BibTEX) version of the original paper published in IEEE Transa-tions On Software Engineering, Vol. SE-2, No. 1, Marh 1976Some reasonable programs would have a hek for theempty list, or even a hek for the size of the largestavailable spae before the loop so that no time wouldbe spent searhing for an optimum �t when no �t atall was possible. In our program, an assignment to\bestyet," an evaluation of the termination ondition,plus an evaluation of \bestyet=null" will take plaeevery time the program is alled.The programs omitted from the family of programswhih share the abstrat program of stage 1 are not sig-ni�ant omissions. If they were, we would not have hosento eliminate them at suh an early stage in our design.We have disussed them only so that the reader will seethat writing the program of stage 1 has not been an emptyexerise.We now onsider a subfamily of the family of programsde�ned in stage 1. In this subfamily we will deide to rep-resent the list by a two-dimensional array in whih eahrow represents an item in the free spae list. We assumefurther that the �rst free spae is kept in row 1, that thelast is in row N, and that all rows between 1 and N repre-sent valid free spaes. We make no assumptions about theinformation kept in eah row to desribe the free spae northe order of rows in the array. This allows us to write thefollowing:stage 2:bestyet := 0;andidate := 0;while andidate 6= N dobeginandidate := andidate +1;bestyet := bestof (bestyet,andidate)endif bestyet = 0 then erroration;alloate (bestyet)remove (bestyet).We have been able to allow the variables \bestyet" and\andidate" to be integers to implement the test for \notall spaes onsidered" as an integer test on the value of\andidate" beause of our assumptions. Our assumptionsdo not yet permit us to elaborate the operations on thetable rows or to implement our poliy deision in \bestof." We annot even implement \remove," beause we donot know if we are going to alloate all of the spae foundor alloate only that part needed and leave the rest on thefree spae list. Stage 3We now skip several stages in a \proper" strutured pro-gramming development in order to show one of the possible\onrete" family members. In this program we have de-ided that the entries in eah row of the array will give the�rst and last loations of eah free spae and that whenwe alloate a spae we will alloate the whole spae so asto avoid having to keep trak of an ever inreasing set ofsmall fragments. We also assume a poliy of \best �t"

whih means that we pik the smallest of the suitable freespaes. bestyet :=0;andidate := 0;oldT := 1while andidate 6= N dobeginandidate := andidate +1T : = (end (andidate)-start (andidate))if T � request � T < oldT then beginbestyet := andidateoldT:= T end;end;if bestyet = 0 then erroration;alloate (bestyet)N :=N-l;for I := bestyet step 1 until N do beginend[I℄ := end[I+1℄;start[I℄ := start[I+1℄;end;To understand the value of strutured programming inproduing programming families, we now have to onsiderwhat would happen if. instead of the program developedin stage 3, we wanted a program in whih I) we did notalloate the smallest suitable Spae but only that part ofit that was needed and 2) we represented the free spaesby giving the start address and the lenght rather then startand end address. We onsider making this hanges in twosituations.Situation 1: We wrote the program shown in stage 3in the lassial way, i.e., we wrote that program diretlywithout writing down the intermediate stages.Situation 2: We used the strutured programming devel-opment as shown above.In situation 1 we would have to modify the programsshown in the setion in stage 3. We would have nothingelse. As you an see, it would take some e�ort to identifywhih lines in the program ould remain and whih ouldor should be hanged. Even on this rather simple exampleit would require a fairly areful study of the program todetermine whih hanges should be made unless the personmaking the hanges was very familiar with the program(e.g., unless he personally had just written it).In situation 2, however, we have the option of returningto the program labeled \stage 2." All the assumptionsmade in stage 2 are still valid and the program itself is stillvalid, only inomplete. Completing the program shown instage 2 in order to produe the new nonabstrat programis as straightforward as the original modi�ation of stage2 to get stage 3. It an be done by someone new. Inthis situation the new �nal program is obtained not bymodifying the old working program but by modifying thelosest ommon anestor.If the organization in harge of maintaining the systemwishes to keep both versions in ative use, they an usethe stage 2 doumentation as valid doumentation for both

This doument is an eletronially re-engineered (OCR, LATEX and BibTEX) version of the original paper published in IEEE Transa-tions On Software Engineering, Vol. SE-2, No. 1, Marh 1976 7versions of the program and even onsider some hanges forboth versions by studying stage 2.This example was intended to demonstrate why stru-tured programming is suh a valuable tool for those whowish to maintain and develop families of programs suh asoperating systems. The reader must keep in mind that thisis a small and simple example, the bene�ts would be evengreater for larger programs developed in this way.Although we have shown an advantage for developmentof program families by using strutured programming wehave also revealed a fundamental problem. Progress ateah stage was made by making design deisions. Goingbak to stage 2 was possible in our ase beause we hadin stage 2 all of those design deisions whih we wantedto keep and none of those whih we wanted to disard.Unless we were able to predit in advane exatly whihdeisions we would hange and whih we would keep, weare not likely to be so luky in pratie. In fat, evenwith the ability to see into the future, there might notbe any deision making sequene whih would allow us tobaktrak without disarding the results of deisions whihwill remain unhanged. The results of perfetly valid designdeisions may have to be reoded beause the ode thatimplements those deisions was designed to interat withother ode that is being hanged.It is to get around these diÆulties that the division into\information hiding" modules an be introdued. Ratherthan ontinually re�ne step by step a single program, asis done in stepwise re�nement, we break the program upinto independent parts and develop eah of them in igno-rane of the implementation of the other. In ontrast tolassial programming methods, these parts are not thesubprograms whih are alled from a main program; theyare olletions of subprograms.In our example we would have a free spae list module,alloation module, and a seletion riterium module. Thefree spae list module would onsist of1) the ode whih implemented the variable bestyet andany other variable that ould represent a plae in a listas well as the representation of the onstant null2) the program \not all spaes onsidered";3) the program \�nd next item from the list of freespaes";4) the program \remove";5) a program to add items to the free spae list (this pro-gram is not alled in the above program, but must bealled elsewhere in the system and would be onsidereda part of the free spae list module);6) programs to give the essential harateristis of a spaeon the list (e.g., start and end address).The seletion riterium module would onsist of1) bestof;2) some other programs whih will be alled elsewhere,suh as programs to hoose a vitim (a spae to beremoved from its owner and made available).The alloation module onsists of \alloate" and otherprograms not disussed above. Eah of these modules

would have to ontain an initialization setion whih wouldbe alled from the main program so that the additionaltemporary variables introdued in implementing the pro-grams would not be visible in the main program. Forsome implementations of a module the initialization se-tion would be empty, but its all would be written in themain program so that the main program would not have tobe hanged if the new implementation inluded variableswhih had to be initialized.This division into modules and independent implemen-tation will only result in a working program if the externalharateristis of eah module were suÆiently well spe-i�ed so that the ode ould be written without lookingat the implementation of other modules [1℄, [10℄. This islearly an extra e�ort whih is not needed if only the step-wise re�nement method is used. In return for this e�ortone would gain the ability to reverse the deision abouttable representation made in stage 2 without even onsid-ering the ode written to implement the poliy introduedin stage 3. One also gains the ability to develop the twoparts of the program without any ommuniation betweenthe groups developing eah one. This an lead to a shorterdevelopment time and the ability to develop several ver-sions of the system simultaneously.How the Module Speifiations Define a FamilyMembers of a family of programs de�ned by a set ofmodule spei�ations an vary in three prinipal ways.1) Implementation methods used within the modules. Anyombination of sets of programs whih meets the mod-ule spei�ations is a member of the program family.Subfamilies may be de�ned either by dividing eah ofthe main modules into submodules in alternative ways,or by using the method of strutured programming todesribe a family of implementations for the module.2) Variation in the external parameters. The module spe-i�ations an be written in terms of parameters so thata family of spei�ations results. Programs may di�erin the values of those parameters and still be onsid-ered to be members of the program family.3) Use of subsets. In many situations one appliation willrequire only a subset of the funtions provided by asystem. We may onsider programs whih onsist of asubset of the programs desribed by a set of modulespei�ations to be members of a family as well. Thisis espeially important in the development of familiesof operating systems, where some installations will re-quire only a subset of the system provided for another.The set of possible subsets is de�ned by the \uses" re-lation between the individual programs[13℄.Whih Method to UseBy now it should be lear that the two methods are nei-ther equivalent nor ontraditory. Rather they are om-plementary. They are both based on the same basi ideas(see historial note whih follows): 1) preise representa-tions of the intermediate stage in a program design, and

8 This doument is an eletronially re-engineered (OCR, LATEX and BibTEX) version of the original paper published in IEEE Transa-tions On Software Engineering, Vol. SE-2, No. 1, Marh 19762) postponement of ertain deisions, while ontinuing tomake progress towards a ompleted program.Stepwise re�nement (as pratied in the literature) en-ourages one to make deisions about sequening early, be-ause the intermediate representations are all programs.Postponement of sequening deisions until run time re-quires the introdution of proesses [14℄. The methodof module spei�ation is not usually onvenient for theexpressing of sequening deisions. (In our KWIC indexprojet sequening had to be desribed by writing a brief\strutured" \Main Program," whih was one of severalpossible ways that the modules ould have been used toprodue a KWIC index. It was written last!)Stepwise re�nement has the signi�ant advantage that itdoes not add to the total amount of e�ort required to designthe �rst omplete family member. By keeping omplexityin ontrol, it usually redues the total amount of e�ort. Inontrast, the module spei�ations represent a very signif-iant amount of extra e�ort. Experiene has shown thatthe e�ort involved in writing the set of spei�ations anbe greater than the e�ort that it would take to write oneomplete program. The method permits the prodution ofa broader family and the ompletion of various parts of thesystem independently, but at a signi�ant ost. It usuallypays to apply the method only when one expets the even-tual implementation of a wide seletion of possible familymembers. In ontrast, the method of stepwise re�nementis always pro�table.Relation of the Question of Program Familiesto Program GeneratorsA ommon step taken by industrial maintainers of mul-tiversion programmers is the onstrution of system gen-eration programs. These programs are given a great dealof data desribing the hardware on�guration and softwareneeds of the users. Built into the generator is a desriptionof a large family of programs and the generator auses onemember of the family to materialize and be loaded on thetarget hardware.The methods desribed in this paper are not intended toreplae system generators. Sine these methods are appliedin the design stage and generators are useful when a spei�family member must be produed. Stepwise re�nement andthe method of module spei�ation an simplify the workto be done by a system generation program.System generators would be ompletely unneessary if wewished to build a program whih at run time ould \sim-ulate" any member of the family. Suh a program wouldbe relatively ineÆient. By removing muh of this variabil-ity at the time that the program is generated, inreases inprodutive apaity are made possible.Often a family of programs inludes small members inwhih ertain variables are �xed and larger members inwhih these fators may vary. For example, an operatingsystem family may inlude some small members where thenumber of proesses is �xed and other members where dy-nami reation and deletion is possible. The programs de-veloped for the larger members of the family an be used as

part of the \generator," whih produes a smaller member.Conluding RemarksAnother way of omparing the two methods is to answerthe following often-heard questions.1) When should we teah strutured programming orstep- wise re�nement to our students?2) When should we teah about modules and spei�a-tions?To the �rst question we an respond with another ques-tion: \When should we teah unstrutured programming?"The seond question, however, requires a \straight an-swer": module design spei�ations should only be taughtto students who have learned to program well and have de-ided to proeed further and learn methods appropriate tothe prodution of software pakages [16℄.One of the diÆulties in applying the reent oneptsof strutured programming is that there are no riteria bywhih one may evaluate the struture of a system on anobjetive basis. Aspiring pratitioners must go to a famousartist and ask for an evaluation. The \master" may thenindiate whether or not he onsiders the system \tasteful."The onept of program families provides one way ofonsidering program struture more objetively. For anypreise desription of a program family (either an inom-plete re�nement of a program or a set of spei�ations ora ombination of both) one may ask whih programs havebeen exluded and whih still remain.One may onsider a program development to be good, ifthe early deisions exlude only uninteresting, undesired, orunneessary programs. The deisions whih remove desiredprograms would be either postponed until a later stage oron�ned to a well delimited subset of the ode. Obje-tive ritiism of a programs struture would be based uponthe fat that a deision or assumption whih was likely tohange has inuened too muh of the ode either beauseit was made too early in the development or beause it wasnot on�ned to an information hiding module.Clearly this is not the only riterion whih one may usein evaluating program strutures. Clarity (e.g., ease of un-derstanding, ease of veri�ation) is another quite relevantonsideration. Although there is some reason to suspetthat the two measures are not ompletely unrelated, thereare no reasons to assume that they will agree. For onething, the \ease" measures mentioned above are funtionsof the understander or veri�er, the set of programs beingexluded by a design deision an be interpreted obje-tively. Of ourse, the question of whih deisions are likelyto require hanging for some family members is again aquestion whih requires judgment and experiene. It is,however, a somewhat more onrete and more easily dis-ussed question than ease of omprehension.Historial NoteIn losing this omparison, I want to make a ommenton the origin and history of some of the ideas found inthis paper. I reently reread one of the papers in whih

This doument is an eletronially re-engineered (OCR, LATEX and BibTEX) version of the original paper published in IEEE Transa-tions On Software Engineering, Vol. SE-2, No. 1, Marh 1976 9Dijkstra introdued the ideas of strutured programming[3℄. This paper is unusual in that it seems better eah timeyou read it. The root of bothmethods of produing programfamilies and the onept of family itself is in this originalwork by Dijkstra. The onept of the division into modulesis somewhat di�erently formulated, but it is present in theonept of the design of the abstrat mahines, the notionof information hiding is impliit (in the disussion of thethikness of the ropes tying the pearls together). Modulespei�ation is not disussed. (Naur introdued a oneptquite similar to that of the module when he disussed ationlusters [11℄, but the onept of information hiding wasnot made spei� and the example does not orrespondexatly to what this priniple would suggest.) For variousreasons the onept of division into modules and the hidingof information seems to have attrated less attention, andlater works by other authors [4℄, [5℄ have emphasized onlythe stepwise re�nement of programs, ignoring the order ofthe steps or the question of the thikness of the ropes.AknowledgmentI am grateful for opportunities to disuss the subjetwith members of I.F.I.P. Working Group 2.3 on Program-ming Methodology. These disussions have helped me tolarify the points in this paper. I am also grateful to W.Bartussek of the Tehnishe Hohshule Darmstadt, for histhoughtful omments on an earlier version of this paper,to Dr. H. Mills of the IBM Federal Systems Division whofound a rather subtle error in a reent draft, and to Dr. L.Belady of the IBM T. J. Watson Researh Laboratory whomade a number of helpful omments.Referenes[1℄ D. L. Parnas, \Some onlusions from an experiment in softwareengineering tehniques," in 1972 Fall Joint Computer Conf.,AFIPS Conf Pro., Montvale, NJ, 1972, vol. 41, pp. 325{329,AFIPS Press.[2℄ H. Mills, \Mathematial foundations of strutured program-ming," IBM Federal Systems Div., vol. No. FSC72-6012, pp.1{62, Feb. 1972.[3℄ E. W. Dijkstra, \Strutured programming," in Software Engi-neering Tehniques, J.N. Buxton and B. Randall, Eds., pp. 84{87. NATO Sienti� A�airs Division, Brussels, Belgium, 1970.[4℄ N. Wirth, \Program development by stepwise re�nement,"Comm. ACM, vol. 14, pp. 221{227, Apr. 1971.[5℄ W. A. Wulf, \The GOTO ontroversy: A ase against theGOTO," SIGPLAN Noties, vol. 7, pp. 63{69, Nov. 1972.[6℄ C. A. R. Hoare, \Monitors: An operating system struturingonept," Comm. ACM, vol. 17, pp. 549{557, Ot. 1974.[7℄ P. Henderson and R. Snowdon, \An experiment in struturedprogramming," BIT, vol. 12, pp. 38{53, 1972.[8℄ E. W. Dijkstra, \On the axiomati de�nition of semantis,"EWD 367, privately irulated.[9℄ D. L. Parnas, \On the riteria used in deomposing systems intomodules," Comm. ACM, vol. 15, pp. 1053{1058, De. 1972.[10℄ \A tehnique for software module spei�ation with examples,"Commun. ACM (Programming Tehniques Dept.), pp. 330{336,May 1972.[11℄ P. Naur, \Programming by ation lusters," BIT, vol. 9, pp.250{258, 1969.[12℄ W. R. Prie, Impliations of a virtual memory mehanism forimplementing protetion in a family of operating systems, Ph.D.thesis, Carnegie-Mellon Univ., Pittsburgh, PA, 1973.[13℄ D. L. Parnas, \On a `buzzword' hierarhial struture," in Pro.IFIP Congr., 1974, pp. 336{339.[14℄ E. W. Dijkstra, \Co-operating sequential proesses," in Pro-

gramming Languages, F. Genuys, Ed., pp. 43{112. AademiPress, New York, 1968.[15℄ B. Randell and F. W. Zurher, \Iterative multi-level modelling{ A methodology for omputer system design," in Pro. IFIPCongr., 1968.[16℄ D. L. Parnas, \A ourse on software engineering tehniques," inACM SIGCSE, 2nd Teh. Symp., Mar. 1972, pp. 24{25.David L. Parnas reeived the B.S. andM.S. degrees in eletrial engineering, and thePh.D. degree in systems and ommuniationssienes, from the Carnegie Institute of Teh-nology, Pittsburgh, PA, in 1961, 1964, and1965, respetively.He has held the position of Assistant Professorof Computer Siene, University of Maryland,College Park, and was Assistant and AssoiateProfessor of Computer Siene at Carnegie-Mellon University, Pittsburgh, PA. Sine Juneof 1973 he has been Professor and Head of one of the two ResearhGroups on Operating Systems at the Tehnishe Hohshule Darm-stadt, Darmstadt, West Germany. He is also a onsultant for the U.S.Naval Researh Laboratory, Washington, D.C. His areas of researhhave been design methods for omputer systems, proess synhroniza-tion in operating systems, seurity mehanisms in operating systems,simulation tehniques, and design automation.

