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Abstract—Program families are defined (analogously to
hardware families) as sets of programs whose common prop-
erties are so extensive that it is advantageous to study the
common properties of the programs before analyzing in-
dividual members. The assumption that, if one is to de-
velop a set of similar programs over a period of time, one
should consider the set as a whole while developing the first
three approaches to the development, is discussed. A con-
ventional approach called “sequential development” is com-
pared to “stepwise refinement” and “specification of infor-
mation hiding modules.” A more detailed comparison of the
two methods is then made. By means of several examples
it is demonstrated that the two methods are based on the
same concepts but bring complementary advantages.

Index Terms—Information hiding modules, module spec-
ifications, program families, software design methodology,
software engineering, stepwise refinement.

INTRODUCTION

E consider a set of programs to constitute a
family, whenever it is worthwhile to study pro-
grams from the set by first studying the com-

mon properties of the set and then determining the special
properties of the individual family members. A typical
family of programs is the set of versions of an operating
system distributed by a manufacturer. While there are
many significant differences between the versions, it usu-
ally pays to learn the common properties of all the ver-
sions before studying the details of any one. Program fam-
ilies are analogous to the hardware families promulgated
by several manufacturers. Although the various models in
a hardware family might not have a single component in
common, almost everyone reads the common “principles of
operations” manual before studying the special characteris-
tics of a specific model. Traditional programming methods
were intended for the development of a single program. In
this paper, we propose to examine explicitly the process
of developing a program family and to compare various
programming techniques in terms of their suitability for
designing such sets of programs.

MOTIVATION FOR INTEREST IN FAMILIES

Variations in application demands, variations in hard-
ware configurations, and the ever-present opportunity to
improve a program mean that software will inevitably exist
in many versions. The differences between these versions
are unavoidable and purposeful. In addition, experience
has shown that we cannot always design all algorithms
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before implementation of the system. These algorithms
are invariably improved experimentally after the system is
complete. This need for the existence of many experimen-
tal versions of a system is yet another reason for interest
in “multiversion” programs.

It is well known that the production and maintenance of
multiversion programs is an expensive problem for software
distributors. Often separate manuals and separate mainte-
nance groups are needed. Converting a program from one
version to another is a nontrivial (and hence expensive)
task.

This paper discusses two relatively new programming
methods which are intended explicitly for the development
of program families. We are motivated by the assumption
that if a designer/programmer pays conscious attention to
the family rather than a sequence of individual programs,
the overall cost of development and maintenance of the
programs will be reduced!. The goal of this paper is to
compare the methods, providing some insight about the
advantages and disadvantages of each.

CrassicAL METHOD OF PRODUCING PROGRAM
FAMILIES

The classical method of developing programs is best de-
scribed as sequential completion. A particular member of
the family is developed completely to the “working” stage.
The next member(s) of the family is (are) developed by
modification of these working programs. A schematic rep-
resentation of this process is shown by Fig. 1. In this figure
a node is represented as a circle, if it is an intermediate rep-
resentation on the way to producing a program, but not a
working program itself. An X represents a complete (us-
able) family member. An arc from one node to another
indicates that a program (or intermediate representation
of a program) associated with the first node was modified
to produce that associated with the second.

Each arc of this graph represents a design decision. In
most cases each decision reduces the set of possible pro-
grams under consideration. However, when one starts from
a working program, one generally goes through a reverse
step, in which the set of possible programs is again in-
creased (i.e., some details are not decided). Nodes 5 and 6
are instances of this.

When a family of programs is produced according to the
above model, one member of the family can be considered
to be an ancestor of other family members. It is quite
usual for descendants of a given program to share some

!Some preliminary experiments support this assumption [1], [2], but
the validity of our assumption has not yet been proved in practice.
Readers who do not want to read about programming techniques
based on this unproved assumption should stop reading here.
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Fig. 1. Representation of development by sequential completion.
Note: nodes 5 and 6 represent incomplete programs obtained
by removing code from program 4 in preparation for producing
programs 1, 8, and 9. Symbols: O is the set of initial possibilities;
O is the incomplete program; X is the working program.

of its ancestor’s characteristics which are not appropriate
to the purpose of the descendants. In bringing the earlier
version to completion, certain decisions were made which
would not have been made if the descendant program had
been developed independently. These decisions remain in
the descendant program only because their removal would
entail a great deal of reprogramming. As a result, later
versions of the program have performance deficiencies, be-
cause they were derived by modifying programs designed
to function in a different environment or with a different
load.

NEwW TECHNIQUES

Fig. 2 shows the common basic concept of newer meth-
ods. Using these methods one never modifies a completed
program to get a new family member; one always begins
with one of the intermediate stages and continues from that
point with design decisions, ignoring the decisions made af-
ter that point in the development of the previous versions.
Where in the classical method one can say that one version
of the program is the ancestor of another, here we find that
the two versions have a common ancestor [3].

The various versions need not be developed sequentially.
If the development of one branch of the tree does not use
information from another branch, the two subfamilies could
be developed in parallel. A second important note is that
in these methods the order in which decisions are made
has more significance than in the classical method. Recall
that all decisions made above a branch point are shared
by all family members below that point. In our motivation
of the family concept we emphasized the value of having
much in common among the family members. By deciding
as much as possible before a branch point, we increase the
“similarity” of the systems. Because we know that certain
differences must exist between the programs, the aim of the
new design methods is to allow the decisions, which can be
shared by a whole family, to be made before those decisions,

which differentiate family members. As Fig. 2 illustrates,
it is meaningful to talk of subfamilies which share more
decisions than are shared by the whole family.

If the root of the tree represents the situation before any
decisions are made, then two programs, which have only
the root as common ancestor, have nothing in common.

We should note that representing this process by a tree is
an oversimplification. Certain design decisions can be made
without consideration of others (the decision processes can
be viewed as commutative operators). It is possible to
use design decisions in several branches. For example, a
number of quite different operating systems could make use
of the same deadlock prevention algorithm, even if it was
not one of the decisions made in a common ancestor.

REPRESENTING THE INTERMEDIATE STAGES

In the classical method of producing program families,
the intermediate stages were not well defined and the in-
complete designs were not precisely represented. This was
both the cause and the result of the fact that communi-
cation between versions was in the form of completed pro-
grams. If either of the two methods discussed here is to
work effectively, it is necessary that we have precise repre-
sentations of the intermediate stages (especially those that
might be used as branch points). Both methods emphasize
precision in the descriptions of partially designed programs.
They differ in the way that the partial designs are repre-
sented. We should note that it is not the final version of
the program, which is our real product (one seldom uses a
program without modification); in the new methods it is
the well-developed but still incomplete representation that
is offered as a contribution to the work of others.

PROGRAMMING BY STEPWISE REFINEMENT

The method of “stepwise refinement”? was first formally
introduced by Dijkstra [3] and has since been further dis-
cussed by a variety of contributors [4]-[6]. In the literature
the major emphasis has been on the production of correct
programs, but the side effect is that the method encourages
the production of program families. One of the early ex-
amples was the development of a program for generation of
prime numbers in which the next to the last program still
permitted the use of two quite different algorithms for gen-
erating primes. This incomplete program defined a family
of programs which included at least two significantly dif-
ferent members.

In “stepwise refinement” the intermediate stages are rep-
resented by programs, which are complete except for the
implementation of certain operators and operand types.
The programs are written as if the operators and operands
were “built in” the language. The implementation of these
operators in the actual language is postponed to the later
stages. Where the (implicit or explicit) definition of the
operators is sufficiently abstract to permit a variety of im-
plementations, the early versions of the program define a

2The reader should note that although stepwise refinement is often
identified with “goto less programming”, the use and abuse of the
goto is irrelevant in this paper.
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Fig. 2. Representation of program development using “abstract de-
cisions.” Symbols: O is the set of initial possibilities; O is the
incomplete program; X is the working program.

family in which there is a member for each possible imple-
mentation of the unimplemented operators and operands.
For example, a program might be written with a declara-
tion of a data type stack and operators push and pop. Only
in later versions would the stack representation and proce-
dures to execute push and pop be introduced. We illustrate
the technique of stepwise refinement with two examples,
which will be used in a later comparison.

Example 1), Dijkstra’s Prime Program: Dijkstra [3] has
described the development of a program to print numbers.
The first step appears as follows:

begin variable table p;
fill table p with first thousand prime numbers;
print table p;

end

In this program Dijkstra has assumed an operand type
“table” and two operators. The representation of the ta-
ble, the method of calculating the primes, and the printing
format are all left undecided. In fact, the only binding
decisions (common characteristics of the whole family of
programs) are that all the primes will be developed before
any are printed, and that we will always want the first thou-
sand primes. Dijkstra then debates between implementing
table or elaborating “fill table.” Eventually he decides that
“table” should be implemented, and all members of the re-
maining family share the same table implementation. A
branch of the family with an alternative table implemen-
tation is mentioned, but not developed. Later members
of the family are developed by considering various possible
methods of computing the prime numbers.

Example 2), Wulf’s KWIC Index Program: Wulf [5]
presents a proposed stepwise refinement development of a
KWIC index production program as follows:

Step 1: PRINTKWIC
We may think of this as being an instruction in a lan-

guage (or machine), in which the notion of generating a
KWIC index is primitive. Since this operation is not prim-
itive in most practical languages, we proceed to define it:

Step 2: PRINTKWIC: generate and save all
interesting circular
shifts

alphabetize the saved
lines

print alphabetized lines

Again we may think of each of these lines as being an
instruction in an appropriate language; and again, since
they are not primitive in most existing languages, we must
define them; for example:

Step 3 a: generate and save all interesting
circular shifts:
for each line in the input do
_begin o
generate and save all inter-
esting shifts of “this
line”
end

etc.

For purposes of later comparison, we note the decisions
that must be shared by the remaining members of the fam-

1) all shifts will be stored,;

2) all circular shifts will be generated and stored before
alphabetization begins;

3) alphabetical ordering will be completed before printing
is started;

4) all shifts of the one line will be developed before any
of the shifts for another line;

5) “uninteresting” shifts will be eliminated at the time
that the shifts are generated.

In the best-known examples of programming by stepwise
refinement the definitions of the operators have been infor-
mal. All of the published examples have been designed as
tutorial examples, and the operators are kept “classical” so
that ones intuitive understanding of them suffices for the
correct understanding of the program development. The
only exception known to the author is [7].* Formal defini-
tion of the operators can be included by application of the
predicate insertion technique first introduced by Floyd for
the purpose of program verification. As Dijkstra has sug-
gested, we can think of the operators as “predicate trans-
formers” (rules which describe how a predicate which de-
scribes the state of the program variables after application
of the operator can be transformed into a predicate describ-
ing the state of the program variables before the operator
is executed [8]).

3In this example the method failed to produce a correct program
because the intuitive understanding of the operators was too vague.



TECHNIQUE OF MODULE SPECIFICATION

Another technique for the design of program families has
been described in [9], [10]. This method is distinguished
from the method of stepwise refinement in that the inter-
mediate representations are not incomplete programs. In-
stead, they are “specifications” of the externally visible col-
lective behavior of program groups called modules.* These
intermediate representations are not written in a program-
ming language, and they never become part of the final
system.

To illustrate this method we compare the development
of the KWIC program described in [9], [10] with the de-
velopment by stepwise refinement discussed earlier in this
paper.

In the method of “module specification” the design de-
cisions which cannot be common properties of the family
are identified and a module (a group of programs) is de-
signed to hide each design decision. For our example, the
following design decisions were identified:

1) the internal representation of the data to be pro-
cessed;.

2) the representation of the circular shifts of those lines
and the time at which the shifts would be computed;

3) the method of alphabetization, which would be used,
and the time at which the alphabetization would be
carried out;

4) the input formats;

5) the output formats;

6) the internal representation of the individual words (a
part of decision 1).

To hide the representation of the data in memory, a
module was provided which allows its users to simply
write CHAR (line, word, c) in order to access a certain
character. Data were “stored” in this module by calling
SETCHAR. (line, word, c, d). Other functions in the module
would report the number of lines, the number of words in
a given line, and the number of characters in a word. By
the use of this group of programs the rest of the program
could be written in a way that was completely independent
of the actual representation.

A module quite similar in appearance to the one de-
scribed above hid the representation of the circular shifts,
the time at which they were computed, even whether or
not they were ever stored. (Some members of the pro-
gram family reduced storage requirements by computing
the character at a given point in the list of shifts whenever
it was requested.) All of these implementations shared the
same external interface.

Still another pair of programs hid the time and method
of alphabetization. This (2 program) module provided a
function 1TH (i) which would give the index in the second
module for the i-th line in the alphabetic sequence.

The decisions listed above are those which are not made,
i.e., postponed. The decisions which were made are more
difficult to identify. The design has placed restrictions on

4Naur has called a similar concept “action clusters” [11].

the way that program parts may refer to each other and
has, in that way, reduced the space of possible programs.

The above description is intended as a brief review for
those who already have some familiarity with the two meth-
ods. Those who are new to the ideas should refer to the
original articles before reading further.?

CoMPARISON BASED OoON THE KWIC EXAMPLE

To understand the differences in the techniques the
reader should look at the list of decisions which define the
family of KWIC programs whose development was started
by Wulf. All of the decisions which are shared by the mem-
bers of Wulfs family are hidden in individual modules by
the second method and can therefore differentiate family
members. Those decisions about sequencing of events are
specified early in Wulfs development but have been post-
poned in the second method.

Lest one think that in the second method no decisions
about implementation have been made, we list below some
of the common properties of programs produced using the
second method.

1) All programs will have access to the original charac-
ter string during the process of computing the KWIC
index.

2) Common words such as THE, AND, etc., would not be
eliminated until the output stage (if ever).

3) The output module will get its information one char-
acter at a time.

The astute reader will have noted that these decisions
are not necessarily good ones. Nonetheless, decisions have
been made which allow work on the modules to begin and
progress to completion without further interaction between
the programmers. In this method the aim of the early work
is not to make decisions about a program but to make it
possible to postpone (and therefore easily change) deci-
sions about the program. Later work should proceed more
quickly and easily as a result [1].

In the stepwise refinement method we progressed quickly
toward a relatively narrow family (limited variations in the
family). With modules we have prepared the way for the
development of a relatively broad family.

COMPARATIVE REMARKS BASED ON DIJKSTRA’S
PRIME PROGRAM

We now take a second look at the Dijkstra development
of the prime number program.

In his development Dijkstra is moved to make an early
decision about the implementation of TABLE in order to go
further. All members of the family developed subsequently
share that implementation. Should he decide to go back
and reconsider that decision, he would have to reconsider

5For symmetry we remark that while stepwise refinement was de-
veloped primarily to assist in the production of correct programs and
has a pleasant side effect in the production of program families, mod-
ule specification was developed for the production of program families
but helps with “correctness” as discussed in [12].



all of the decisions made after that point. The method of
module specification would have allowed him to postpone
the table implementation to a later stage (i.e., to hide the
decision) and thereby achieve a broader family.

COMPARATIVE REMARKS BASED ON AN OPERATING
SYSTEM PROBLEM

We consider the problem of core allocation in an operat-
ing system. We assume that we have a list of free core areas
and data that should be brought to core storage. Writing
a program that will find a free spot, and allocate the space
to the program needing it, is trivial. Unfortunately there
are many such programs, and we cannot be certain which
of them we want. The programs can differ in at least two
important ways, policy and implementation of the mecha-
nism. By “policy” we mean simply the rule for choosing
a place, if there are several usable places; by “implemen-
tation of the mechanism” we mean such questions as, how
shall we represent the list of free spaces, what operations
must we perform to add a free space to the list, to remove
a free space? Should the list be kept in a special order?
What is the search procedure? etc.

The decisions discussed above are important in that they
can have a major impact on the performance of a system.
On the other hand, we cannot pick a “best” solution; there
is no best solution!

On the policy side there have been numerous debates
between such policies as “first fit”-allocate the first usable
space in the list, “best fit”-find the smallest space that will
fit, “favor one end of core,” “modified best fit”-look for a
piece that fits well but does not leave a hopelessly small
fragment, etc. It is clear to most who have studied the
problem that the “best” policy depends on the nature of
the demand, i.e., the distribution of the requested sizes,
the expected length of time that an area will be retained,
and so on.

Choosing an implementation is even more complicated
because it depends in part on the policy choice. Keeping a
list ordered by size of fragment is valuable if we are going to
seek a “best fit” but worse than useless for a policy which
tends to put things as low in core as possible.

The following “structured programming” development of
such an algorithm illustrates the construction of an ab-
stract program which has the properties of all of those that
we are interested in and does not yet prejudice our choice.

stage 1:
bestyet := null;
while not all spaces considered do
begin o
find next item from list of free spaces (candidate)
best yet := bestof (bestyet,candidate)
end
o if bestyet = null then erroraction
allocate (best yet); remove (best yet)

Strictly following the principles of writing well-

structured programs we should now verify that the above
is correct or write down the conditions under which we can
be certain that it is correct.

Correctness Assumptions:

1) “bestyet” is a variable capable of indicating a free
space; null is a possible value of this variable indicating
no space.

2) “not all spaces considered” is a predicate which will

be true as long as it is possible that a “better” space

is still to be found but will be false when all possible
items have been considered.

“candidate” is a variable of the same type as bestyet.

4) “find next item from list of free spaces” will assign to
its parameter a value indicating one of the items on
the free space list. If there are m such items on the
list, n calls of the procedure will deliver each of the n
items once.

5) No items will be removed from or added to the list
during the execution of the program.

6) “bestof” is a procedure which takes two variables of
the type of bestyet and returns (as a value of the same
type) the better of the two possible spaces according to
some unspecified criterium. If neither place is suitable,
the value is “null,” which is always unsuitable.

7) “error action” is what the program is supposed to do
if no suitable place can be found.

8) “remove” is a procedure which removes the space in-
dicated by its parameter from the list of free spaces.
A later search will not find this space.

9) “allocate” is a procedure which gives the space indi-
cated by its parameter to the requesting program.
10) Once we have begun to execute this program, no
other execution of it will begin until this one is com-

plete (mutual exclusion).

11) The only other program which might change the data
structures involved is one that would add a space to
the free space list. Mutual exclusion may also be
needed here.

w
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DESIGN DECISIONS IN STAGE 1

Although this first program appears quite innocuous, it
does represent some real design decisions which are best
understood by considering programs which do not share
the properties of the above abstract program.

1) We have decided to produce a program in which one
is not allowed to add to the free space list during a
search for a free space.

2) We have not allowed a program in which two searches
will be conducted simultaneously.

3) We are considering only programs where a candidate
is not removed from the free space list while it is be-
ing considered. Perfectly reasonable programs could
be written in which the “bestyet” was not on the list
and was reinserted in the list when a better space was
discovered.

4) We have chosen not to use a program in which a check
for possible allocation is made before searching the list.



Some reasonable programs would have a check for the
empty list, or even a check for the size of the largest
available space before the loop so that no time would
be spent searching for an optimum fit when no fit at
all was possible. In our program, an assignment to
“bestyet,” an evaluation of the termination condition,
plus an evaluation of “bestyet=null” will take place
every time the program is called.

The programs omitted from the family of programs
which share the abstract program of stage 1 are not sig-
nificant omissions. If they were, we would not have chosen
to eliminate them at such an early stage in our design.
We have discussed them only so that the reader will see
that writing the program of stage 1 has not been an empty
exercise.

We now consider a subfamily of the family of programs
defined in stage 1. In this subfamily we will decide to rep-
resent the list by a two-dimensional array in which each
row represents an item in the free space list. We assume
further that the first free space is kept in row 1, that the
last is in row N, and that all rows between 1 and N repre-
sent valid free spaces. We make no assumptions about the
information kept in each row to describe the free space nor
the order of rows in the array. This allows us to write the
following;:

stage 2:
bestyet := 0;
candidate := 0;
while candidate # N do
begin o
~ candidate := candidate +1;
bestyet := bestof (bestyet,candidate)

end
if bestyet = 0 then erroraction;

allocate (bestyet)
remove (bestyet).

We have been able to allow the variables “bestyet” and
“candidate” to be integers to implement the test for “not
all spaces considered” as an integer test on the value of
“candidate” because of our assumptions. Our assumptions
do not yet permit us to elaborate the operations on the
table rows or to implement our policy decision in “best
of.” We cannot even implement “remove,” because we do
not know if we are going to allocate all of the space found
or allocate only that part needed and leave the rest on the
free space list.

STAGE 3

We now skip several stages in a “proper” structured pro-
gramming development in order to show one of the possible
“concrete” family members. In this program we have de-
cided that the entries in each row of the array will give the
first and last locations of each free space and that when
we allocate a space we will allocate the whole space so as
to avoid having to keep track of an ever increasing set of
small fragments. We also assume a policy of “best fit”

which means that we pick the smallest of the suitable free
spaces.

bestyet :=0;
candidate := 0;
oLDT = o0

while candidate # N do
begin o
candidate := candidate +1
T : = (end (candidate)-start (candidate))
if T > request A T < oLDT then begin
B bestyet := candidate
oLDT:= T end,;

end;

if bestyet = 0 then erroraction;

allocate (bestyet)
N :=N-l;

for I := bestyet step 1 until N do begin

~ END[I] := END[I+1];
START|[I| := START[I+1];

end;

To understand the value of structured programming in
producing programming families, we now have to consider
what would happen if. instead of the program developed
in stage 3, we wanted a program in which I) we did not
allocate the smallest suitable Space but only that part of
it that was needed and 2) we represented the free spaces
by giving the start address and the lenght rather then start
and end address. We consider making this changes in two
situations.

Situation 1: We wrote the program shown in stage 3
in the classical way, i.e., we wrote that program directly
without writing down the intermediate stages.

Situation 2: We used the structured programming devel-
opment as shown above.

In situation 1 we would have to modify the programs
shown in the section in stage 3. We would have nothing
else. As you can see, it would take some effort to identify
which lines in the program could remain and which could
or should be changed. Even on this rather simple example
it would require a fairly careful study of the program to
determine which changes should be made unless the person
making the changes was very familiar with the program
(e.g., unless he personally had just written it).

In situation 2, however, we have the option of returning
to the program labeled “stage 2.” All the assumptions
made in stage 2 are still valid and the program itself is still
valid, only incomplete. Completing the program shown in
stage 2 in order to produce the new nonabstract program
is as straightforward as the original modification of stage
2 to get stage 3. It can be done by someone new. In
this situation the new final program is obtained not by
modifying the old working program but by modifying the
closest common ancestor.

If the organization in charge of maintaining the system
wishes to keep both versions in active use, they can use
the stage 2 documentation as valid documentation for both



versions of the program and even consider some changes for
both versions by studying stage 2.

This example was intended to demonstrate why struc-
tured programming is such a valuable tool for those who
wish to maintain and develop families of programs such as
operating systems. The reader must keep in mind that this
is a small and simple example, the benefits would be even
greater for larger programs developed in this way.

Although we have shown an advantage for development
of program families by using structured programming we
have also revealed a fundamental problem. Progress at
each stage was made by making design decisions. Going
back to stage 2 was possible in our case because we had
in stage 2 all of those design decisions which we wanted
to keep and none of those which we wanted to discard.
Unless we were able to predict in advance exactly which
decisions we would change and which we would keep, we
are not likely to be so lucky in practice. In fact, even
with the ability to see into the future, there might not
be any decision making sequence which would allow us to
backtrack without discarding the results of decisions which
will remain unchanged. The results of perfectly valid design
decisions may have to be recoded because the code that
implements those decisions was designed to interact with
other code that is being changed.

It is to get around these difficulties that the division into
“information hiding” modules can be introduced. Rather
than continually refine step by step a single program, as
is done in stepwise refinement, we break the program up
into independent parts and develop each of them in igno-
rance of the implementation of the other. In contrast to
classical programming methods, these parts are not the
subprograms which are called from a main program; they
are collections of subprograms.

In our example we would have a free space list module,
allocation module, and a selection criterium module. The
free space list module would consist of

1) the code which implemented the variable bestyet and
any other variable that could represent a place in a list
as well as the representation of the constant null

2) the program “not all spaces considered”;

3) the program “find next item from the list of free
spaces”;

4) the program “remove”;

5) a program to add items to the free space list (this pro-
gram is not called in the above program, but must be
called elsewhere in the system and would be considered
a part of the free space list module);

6) programs to give the essential characteristics of a space
on the list (e.g., start and end address).

The selection criterium module would consist of

1) bestof;

2) some other programs which will be called elsewhere,
such as programs to choose a victim (a space to be
removed from its owner and made available).

The allocation module consists of “allocate” and other
programs not discussed above. Each of these modules

would have to contain an initialization section which would
be called from the main program so that the additional
temporary variables introduced in implementing the pro-
grams would not be visible in the main program. For
some implementations of a module the initialization sec-
tion would be empty, but its call would be written in the
main program so that the main program would not have to
be changed if the new implementation included variables
which had to be initialized.

This division into modules and independent implemen-
tation will only result in a working program if the external
characteristics of each module were sufficiently well spec-
ified so that the code could be written without looking
at the implementation of other modules [1], [10]. This is
clearly an extra effort which is not needed if only the step-
wise refinement method is used. In return for this effort
one would gain the ability to reverse the decision about
table representation made in stage 2 without even consid-
ering the code written to implement the policy introduced
in stage 3. One also gains the ability to develop the two
parts of the program without any communication between
the groups developing each one. This can lead to a shorter
development time and the ability to develop several ver-
sions of the system simultaneously.

How THE MODULE SPECIFICATIONS DEFINE A FAMILY

Members of a family of programs defined by a set of
module specifications can vary in three principal ways.

1) Implementation methods used within the modules. Any
combination of sets of programs which meets the mod-
ule specifications is a member of the program family.
Subfamilies may be defined either by dividing each of
the main modules into submodules in alternative ways,
or by using the method of structured programming to
describe a family of implementations for the module.

2) Variation in the external parameters. The module spec-
ifications can be written in terms of parameters so that
a family of specifications results. Programs may differ
in the values of those parameters and still be consid-
ered to be members of the program family.

3) Use of subsets. In many situations one application will
require only a subset of the functions provided by a
system. We may consider programs which consist of a
subset of the programs described by a set of module
specifications to be members of a family as well. This
is especially important in the development of families
of operating systems, where some installations will re-
quire only a subset of the system provided for another.
The set of possible subsets is defined by the “uses” re-
lation between the individual programs[13].

WHIcH METHOD TO USE

By now it should be clear that the two methods are nei-
ther equivalent nor contradictory. Rather they are com-
plementary. They are both based on the same basic ideas
(see historical note which follows): 1) precise representa-
tions of the intermediate stage in a program design, and



2) postponement of certain decisions, while continuing to
make progress towards a completed program.

Stepwise refinement (as practiced in the literature) en-
courages one to make decisions about sequencing early, be-
cause the intermediate representations are all programs.
Postponement of sequencing decisions until run time re-
quires the introduction of processes [14]. The method
of module specification is not usually convenient for the
expressing of sequencing decisions. (In our KWIC index
project sequencing had to be described by writing a brief
“structured” “Main Program,” which was one of several
possible ways that the modules could have been used to
produce a KWIC index. It was written last!)

Stepwise refinement has the significant advantage that it
does not add to the total amount of effort required to design
the first complete family member. By keeping complexity
in control, it usually reduces the total amount of effort. In
contrast, the module specifications represent a very signif-
icant amount of extra effort. Experience has shown that
the effort involved in writing the set of specifications can
be greater than the effort that it would take to write one
complete program. The method permits the production of
a broader family and the completion of various parts of the
system independently, but at a significant cost. It usually
pays to apply the method only when one expects the even-
tual implementation of a wide selection of possible family
members. In contrast, the method of stepwise refinement
is always profitable.

RELATION OF THE QUESTION OF PROGRAM FAMILIES
TO PROGRAM GENERATORS

A common step taken by industrial maintainers of mul-
tiversion programmers is the construction of system gen-
eration programs. These programs are given a great deal
of data describing the hardware configuration and software
needs of the users. Built into the generator is a description
of a large family of programs and the generator causes one
member of the family to materialize and be loaded on the
target hardware.

The methods described in this paper are not intended to
replace system generators. Since these methods are applied
in the design stage and generators are useful when a specific
family member must be produced. Stepwise refinement and
the method of module specification can simplify the work
to be done by a system generation program.

System generators would be completely unnecessary if we
wished to build a program which at run time could “sim-
ulate” any member of the family. Such a program would
be relatively inefficient. By removing much of this variabil-
ity at the time that the program is generated, increases in
productive capacity are made possible.

Often a family of programs includes small members in
which certain variables are fixed and larger members in
which these factors may vary. For example, an operating
system family may include some small members where the
number of processes is fixed and other members where dy-
namic creation and deletion is possible. The programs de-
veloped for the larger members of the family can be used as

part of the “generator,” which produces a smaller member.

CONCLUDING REMARKS

Another way of comparing the two methods is to answer
the following often-heard questions.

1) When should we teach structured programming or
step- wise refinement to our students?

2) When should we teach about modules and specifica-
tions?

To the first question we can respond with another ques-
tion: “When should we teach unstructured programming?”
The second question, however, requires a “straight an-
swer”: module design specifications should only be taught
to students who have learned to program well and have de-
cided to proceed further and learn methods appropriate to
the production of software packages [16].

One of the difficulties in applying the recent concepts
of structured programming is that there are no criteria by
which one may evaluate the structure of a system on an
objective basis. Aspiring practitioners must go to a famous
artist and ask for an evaluation. The “master” may then
indicate whether or not he considers the system “tasteful.”

The concept of program families provides one way of
considering program structure more objectively. For any
precise description of a program family (either an incom-
plete refinement of a program or a set of specifications or
a combination of both) one may ask which programs have
been excluded and which still remain.

One may consider a program development to be good, if
the early decisions exclude only uninteresting, undesired, or
unnecessary programs. The decisions which remove desired
programs would be either postponed until a later stage or
confined to a well delimited subset of the code. Objec-
tive criticism of a programs structure would be based upon
the fact that a decision or assumption which was likely to
change has influenced too much of the code either because
it was made too early in the development or because it was
not confined to an information hiding module.

Clearly this is not the only criterion which one may use
in evaluating program structures. Clarity (e.g., ease of un-
derstanding, ease of verification) is another quite relevant
consideration. Although there is some reason to suspect
that the two measures are not completely unrelated, there
are no reasons to assume that they will agree. For one
thing, the “ease” measures mentioned above are functions
of the understander or verifier, the set of programs being
excluded by a design decision can be interpreted objec-
tively. Of course, the question of which decisions are likely
to require changing for some family members is again a
question which requires judgment and experience. It is,
however, a somewhat more concrete and more easily dis-
cussed question than ease of comprehension.

HisToRrICAL NOTE

In closing this comparison, I want to make a comment
on the origin and history of some of the ideas found in
this paper. I recently reread one of the papers in which



Dijkstra introduced the ideas of structured programming
[3]. This paper is unusual in that it seems better each time
you read it. The root of both methods of producing program
families and the concept of family itself is in this original
work by Dijkstra. The concept of the division into modules
is somewhat differently formulated, but it is present in the
concept of the design of the abstract machines, the notion
of information hiding is implicit (in the discussion of the
thickness of the ropes tying the pearls together). Module
specification is not discussed. (Naur introduced a concept
quite similar to that of the module when he discussed action
clusters [11], but the concept of information hiding was
not made specific and the example does not correspond
exactly to what this principle would suggest.) For various
reasons the concept of division into modules and the hiding
of information seems to have attracted less attention, and
later works by other authors [4], [5] have emphasized only
the stepwise refinement of programs, ignoring the order of
the steps or the question of the thickness of the ropes.
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