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ABSTRACT

This paper describes a language-independent program
representation—the program dependence graph—and discusses
how program dependence graphs, together with operations such as
program slicing, can provide the basis for powerful programming
tools that address important software-engineering problems, such
as understanding what an existing program does and how it works,
understanding the differences between several versions of a pro-
gram, and creating new programs by combining pieces of old pro-
grams.

The paper primarily surveys work in this area that has been car-
ried out at the University of Wisconsin during the past five years.

1. INTRODUCTION
A fundamental goal of software engineering is to make program
development and maintenance easier, faster, and less error prone.
This includes addressing problems like
g understanding what an existing program does and how it

works,
g understanding the differences between several versions of a

program,
g creating new programs by combining pieces of old programs.
Tools that assist programmers with such problems are most useful
if they are language based, that is, if they incorporate knowledge
about the programming language in use. On the other hand, it is
desirable to base these tools on language-independent algorithms
and data structures so as to avoid the need to re-design and re-
develop a set of tools for every different programming language.

This paper describes a language-independent program
representation—the program dependence graph [24,12,18]—and
discusses how program dependence graphs, together with opera-
tions such as program slicing, can form the basis for powerful pro-
gramming tools that address the problems listed above. Our focus
is primarily on work done at the University of Wisconsin during
the past five years (and some of the material presented in this paper
is excerpted from previous publications). Related work by other
groups is cited, but is not explored in detail. Uses of program
dependence graphs for purposes outside the scope of software
engineering (for example, for discovering potential parallelism in
sequential programs) is not discussed.

The goal of our work has been to address the problems listed
above by using knowledge about the program obtained through
static analysis—in particular, knowledge about the execution
behavior at the different points in the program. (By a “program
point” we mean an assignment statement, an output statement, or a
predicate of an if-then-else statement or while loop.) Questions
concerning the execution behavior at a given point p in a program
are ordinarily addressed by considering the sequence of states that
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would arise at p when the program is run on some initial state.
However, this approach is incompatible with the goals of our work,
which deals with program “projections”—programs in which some
of the statements have been removed—and “program variants”—
programs that have been modified by the user (for example, to fix a
bug or to extend its functionality). The problem is that the
sequence of states that arise at related points in two program vari-
ants (or in a program and one of its projections) are almost certain
to differ. For example, any modification that introduces a new pro-
gram variable will change the sequence of states at every point in
the program; a modification that changes the way even a single
existing program variable is used is likely to change the sequences
of states produced at most points in the program. Consequently,
for our work it is necessary to use an alternative approach to cap-
turing the behavior at a point in a program.

For our work, the execution behavior exhibited at program point
p is considered to be the sequence of values produced at p when
the program is run on a given initial state:
(i) if p is an assignment statement, the behavior at p is the

sequence of values assigned to the left-hand-side variable;
(ii) if p is an output statement, the behavior at p is the sequence of

values written to the output;
(iii) if p is a predicate, the behavior at p is the sequence of boolean

values to which p evaluates.
To build tools that can help programmers to understand the differ-
ences between several versions of a program or to create new pro-
grams by combining pieces of old programs, it is necessary to be
able to determine when different program points have equivalent
behaviors. Given program points p 1 and p 2 in programs P 1 and
P 2 , respectively, we say that p 1 and p 2 have equivalent behavior if
for every initial state on which both P 1 and P 2 terminate normally,
p 1 and p 2 produce the same sequence of values. (A definition of
equivalent behavior that takes the possibility of nontermination
into account can be found in [46,20,44]; for the purposes of this
paper, we limit our scope of interest to terminating programs.)
Although behavioral equivalence is undecidable in general, it is
possible to develop safe algorithms for detecting equivalent com-
ponents (see Sections 3 and 4).

The problems we are concerned with fall into three different
classes, depending on whether the problem deals with one pro-
gram, two programs, or three (or more) programs:
Slicing problems (one program)
S.1. For a given program point p in program P, find [a superset of]

the points q of P such that if the behavior at q were different
then the behavior at p would be different.

S.2 (the dual of S.1).
For a given program point p in program P, find [a superset of]
the points q of P such that if the behavior at p were different
then the behavior at q would be different.

S.3. For a given program point p in program P, find a projection Q
of P such that when P and Q are run on the same initial state,
the behaviors at p in P and Q are identical.

Differencing problems (two programs)
D.1. Given programs Old and New, and a correspondence between

their components, find [a superset of] the components of New
whose behaviors differ from the corresponding components of
Old.

D.2. Given programs Old and New, but with no correspondence
between their components, find [a superset of] the com-
ponents of New for which there is no component in Old with
the same behavior.

D.3. Given programs Old and New, find a program Changes that
exhibits all changed behaviors of New with respect to Old.
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Integration problems (three or more programs)
I.1. Given a program Base and two or more variants, together

with a correspondence between the programs’ components,
determine whether the changes made to create the variants
from Base are compatible. If the changes are compatible,
combine the variants to form a single, integrated program;
otherwise identify the source of the interference.

I.2. Same problem as I.1, but with no correspondence between the
components of Base and the variants.

For each set of problems, we first address the case of single-
procedure programs and then extended our solution to multi-
procedure programs.1 The different problems will be discussed at
different levels of detail. For some of them, we give an algorithm;
for others (for which the solution is more involved) we explain the
key issues, describe the general approach, and give references to
sources of more complete descriptions.

The eight problems are organized in tabular form in Figure 1.
The table indicates where each problem is discussed in this paper,
and also gives references to the literature.

The remainder of the paper is organized as follows: Section 2
defines the program dependence graph (and two related graph
representations of programs—system dependence graphs and pro-
gram representation graphs). Section 3 discusses program slicing.
Section 4 discusses several approaches to identifying the differ-
ences between two versions of a program. Section 5 describes
algorithms for program integration. Section 6 provides informa-
tion about a prototype system implemented at the University of
Wisconsin that incorporates the ideas described in the paper.

2. DEPENDENCE GRAPHS
Different definitions of program dependence representations have
been given, depending on the intended application; however, they
are all variations on a theme introduced in [23] and share the com-
mon feature of having explicit representations of both control
dependences and data dependences. In Section 2.1 we define pro-
gram dependence graphs, which can be used to represent single-
procedure programs; that is, programs that consist of a single main
procedure, with no procedure or function calls. In Section 2.2 we
extend program dependence graphs to system dependence graphs,
which represent programs with multiple procedures and functions.
In Section 2.3 we discuss a variant of the program dependence
graph called the program representation graph.

2.1. The Program Dependence Graph
In this section we discuss how to build a program dependence
graph for a program written in a restricted language including only
scalar variables, assignment statements, if-then-else statements,
output statements, and while loops. (Input statements are not
included; however, programs are assumed to be run on an initial
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Figure 1. A guide to the problems discussed in the paper.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1The definition of equivalent behavior given above is not always appropri-
ate in the case of multi-procedure programs. Alternative definitions are
proposed in the sections that discuss these problems.

state, so variables can be used before being defined. Such vari-
ables take their values from the initial state.) Techniques for han-
dling arbitrary control constructs, arrays, and pointers can be found
in [12,4,42,26,17].

The program dependence graph (or PDG) for a program P,
denoted by GP , is a directed graph whose vertices are connected by
several kinds of edges. The vertices in GP represent the assign-
ment statements and predicates of P. In addition, GP includes a
special Entry vertex, and also includes one Initial definition vertex
for every variable x that may be used before being defined. (This
vertex represents an assignment to the variable from the initial
state.)

The edges of GP represent control and data dependences. The
source of a control dependence edge is always either the Entry ver-
tex or a predicate vertex; control dependence edges are labeled
either true or false. The intuitive meaning of a control dependence
edge from vertex v to vertex w is the following: if the program
component represented by vertex v is evaluated during program
execution and its value matches the label on the edge, then, assum-
ing that the program terminates normally, the component
represented by w will eventually execute; however, if the value
does not match the label on the edge, then the component
represented by w may never execute. (By definition, the Entry ver-
tex always evaluates to true.)2

For the restricted language under consideration here, control
dependence edges reflect the nesting structure of the program (i.e.,
there is an edge labeled true from the vertex that represents a while
predicate to all vertices that represent statements nested immedi-
ately within the loop; there is an edge labeled true from the vertex
that represents an if predicate to all vertices that represent state-
ments nested immediately within the true branch of the if, and an
edge labeled false to all vertices that represent statements nested
immediately within the false branch; there is an edge labeled true
from the Entry vertex to all vertices that represent statements that
are not nested inside any while loop or if statement).

Data dependence edges include both flow dependence edges and
def-order dependence edges.3 Flow dependence edges represent
possible flow of values, i.e., there is a flow dependence edge from
vertex v to vertex w if vertex v represents a program component
that assigns a value to some variable x, vertex w represents a com-
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
2Podgurski and Clarke have explored an alternative concept that they call
weak control dependence, which accounts for the control effects of poten-
tially nonterminating constructs [31].
3Some definitions of program dependence graphs include output depen-
dences and anti dependences in place of def-order dependences. See [16]
for a comparison of the two approaches.
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program

P := 3.14
rad := 3
if DEBUG then rad := 4 fi
area := P* (rad*rad)
circ := 2*P*rad
output(area)
output(circ)

end

Entry

P := 3.14

rad := 3 area := P * (rad*rad)

circ := 2 * P * rad

output(circ)

output(area)

rad := 4

if DEBUG

DEBUG := InitialState(DEBUG)

Edge Key

Control
Flow

Def−order

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 2. An example program and its program dependence
graph.

ponent that uses the value of variable x, and there is an x-definition
clear path from v to w in the program’s control-flow graph.

Flow dependences are further classified as loop independent or
loop carried [1]. A flow dependence from v to w is carried by the
loop with predicate vertex p if both v and w are enclosed in the
loop with predicate vertex p, and there is an x-definition clear path
from v to w in the control-flow graph that includes a backedge to
predicate vertex p. Loop-carried flow dependence edges are
labeled with their carrying-loop-predicate vertex. A flow depen-
dence from v to w is loop independent if there is an x-definition
clear path from v to w in the control-flow graph that includes no
backedge. It is possible to have several loop-carried flow edges
between two vertices (each labeled with a different loop-predicate
vertex); it is also possible to have both a loop-independent flow
edge and one or more loop-carried flow edges between two ver-
tices.

Def-order dependence edges are included in program depen-
dence graphs to ensure that inequivalent programs cannot have iso-
morphic program dependence graphs [16]. A program dependence
graph contains a def-order dependence edge from vertex v to ver-
tex w with “witness” vertex u iff all of the following hold:
(1) Vertices v and w are both assignment statements that define the

same variable.
(2) Vertices v and w are in the same branch of any conditional that

encloses both of them.
(3) There is a flow dependence edge from v to u, and there is a

flow dependence edge from w to u.
(4) The program component represented by v occurs before the

program component represented by w in a preorder traversal of
the program’s abstract syntax tree.

A def-order edge is labeled with its “witness” vertex.
Note that a program dependence graph can be a multigraph (i.e.,

can have more than one edge v→w). In this case, the different
edges from v to w are distinguished by their types (control, loop-
independent flow, loop-carried flow, or def-order) and/or by their
labels (the carrying loop-predicate vertex for loop-carried flow
edges, and the “witness” vertex for def-order edges).
Example. Figure 2 shows a program that computes the circumfer-
ence and the area of a circle, and the program’s PDG. All edge
labels have been omitted from the PDG. In this example all con-
trol dependence edges would be labeled true; one of the def-order

edges between vertices “rad := 3” and “rad := 4” would be labeled
with the name of the node that represents the assignment
“area := P* (rad*rad),” and the other would be labeled with the
name of the node that represents the assignment
“circ := 2*P*rad.”

2.2. System Dependence Graphs
The system dependence graph (SDG) extends the definition of pro-
gram dependence graphs to accommodate collections of pro-
cedures (with procedure calls) rather than just single-procedure
programs. Our definition of the SDG models a language with the
following properties:
(1) A complete system consists of a single (main) procedure and a

collection of auxiliary procedures.
(2) Parameters are passed by value-result.4

We make the further assumption that there are no calls of the form
P (x, x) or of the form P (g), where g is a global variable. The
former restriction sidesteps potential copy-back conflicts. The
latter restriction permits global variables to be treated as additional
parameters to each procedure; thus, we do not discuss global vari-
ables explicitly.

An SDG is made up of a collection of procedure dependence
graphs, which are essentially the same as the program dependence
graphs defined above, except that they may include additional ver-
tices and edges to represent procedure calls. Procedure depen-
dence graphs are connected by interprocedural control- and flow-
dependence edges.

A procedure call is represented using a call vertex; parameter
passing is represented using four kinds of parameter vertices: On
the calling side, parameter passing is represented by two sets of
vertices, called actual-in and actual-out vertices, which are control
dependent on the call vertex; in the called procedure, parameter
passing is represented by two sets of vertices, called formal-in and
formal-out vertices, which are control dependent on the
procedure’s Entry vertex. Actual-in and formal-in vertices are
included for every parameter; formal-out and actual-out vertices
are included only for parameters that may be modified as a result
of the call. (Interprocedural data-flow analysis can be used to
determine which parameters may be modified as a result of a pro-
cedure call [5].)

In addition to control, flow, and def-order dependence edges, an
SDG includes one new kind of intraprocedural edge called a sum-
mary edge. Summary edges, which connect some of the actual-in
vertices at a call site with some of the actual-out vertices at the
same call site, represent transitive dependences due to calls. Intui-
tively, there should be an edge from a vertex that represents a
value being passed in to formal parameter x to a vertex that
represents a value being copied back from formal parameter y if
the initial value of x might be used to compute the final value of y.
This property is, in general, undecidable; therefore, a safe approxi-
mation is computed as follows: a summary edge is added from
actual-in vertex v to actual-out vertex w if there is an “executable”
path in the system dependence graph from v to w; that is, a path
that respects calling context by matching calls with returns. A
polynomial-time algorithm that computes the set of summary
edges is given in [19].

Connecting procedure dependence graphs to form a system
dependence graph is straightforward, involving the addition of
three kinds of interprocedural edges that represent direct depen-
dences between a call site and the called procedure: (1) a call edge
is added from each call vertex to the corresponding procedure-
entry vertex; (2) a parameter-in edge is added from each actual-in
vertex at a call site to the corresponding formal-in vertex in the
called procedure; (3) a parameter-out edge is added from each
formal-out vertex in the called procedure to the corresponding
actual-out vertex at the call site.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
4Techniques for handling parameters passed by reference and for dealing
with aliasing are discussed in [19].
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program
P := 3.14
rad := 3
if DEBUG then rad := 4 fi
call Mult 3(P, rad, rad, area)
call Mult 3(2, P, rad, circ)
output(area)
output(circ)

end

procedure Mult 3( op 1, op 2, op 3, result )
result := op 1*op 2*op 3

end

Enter
Main

P := 3.14

rad := 3

output(circ)

output(area)

rad := 4

if DEBUG

DEBUG := InitialState(DEBUG)

resultOut := result

result := resultIn

op3 := op3In

op2 := op2In

op1 := op1In

result := op1 * op2 * op3

call Mult3(P, rad, rad, area) call Mult3(2, P, rad, circ)

op1In := P

resultIn := area

area := resultOut

op2In := rad

op3In := rad

op1In := 2

resultIn := circ

circ := resultOut

op2In := P

op3In := rad

Enter
Mult3

Edge Key
Control
Flow
Def−order
Call,
Parameter−in,
Parameter−out
Summary
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Figure 3. An example program and its system dependence graph.

Example. A multi-procedure version of the program from Figure
2 and the corresponding SDG are shown in Figure 3.

2.3. Program Representation Graphs
Program Representation Graphs (PRGs), like program dependence
graphs, represent programs without procedures. PRGs are
currently defined only for programs in the limited language used in
Section 2.1, including scalar variables and assignment, if-then-else,
output, and while statements. PRGs combine features of program
dependence graphs and static single assignment forms [40,2,9,39].
The difference between a PDG and a PRG is that the latter includes
special “φ vertices” as follows: One vertex labeled “φif: x := x” is
added at the end of each if statement for each variable x that is
defined within either (or both) branches of the if and is live at the
end of the if; one vertex labeled “φenter: x := x” is added inside each
while loop immediately before the loop predicate for each variable
x that is defined within the while loop, and is live immediately after
the loop predicate (i.e., may be used before being redefined either
inside the loop or after the loop); one vertex labeled “φexit: x := x”
is added immediately after the loop for each variable x that is
defined within the loop and is live after the loop.

The reason for adding the φ vertices is to ensure that every use
of a variable (in an assignment statement, an output statement, or a
predicate) is reached by exactly one definition. Because of the

presence of φvertices, def-order edges are not needed in PRGs.
Two advantages of using a PRG instead of a PDG are:

(1) A partitioning algorithm has been defined for PRGs to
separate program components into equivalence classes based
on the components’ behaviors. While a slice isomorphism
testing algorithm can be used to provide a similar partitioning
using PDGs, the algorithm for PRGs is more powerful. (The
partitioning algorithm and the slice isomorphism algorithm
are discussed and compared in Section 4.1.2.)

(2) Two single-procedure program-integration algorithms have
been defined; one uses PRGs while the other uses PDGs. The
algorithm that uses PRGs is better able to accommodate
semantics-preserving transformations than the algorithm that
uses PDGs. (Both algorithms are discussed in Section 5.1.1.)

Example. Figure 4 shows the PRG of the program from Figure 2.

3. PROGRAM SLICING
In this section we discuss algorithms to solve the three slicing
problems given in Section 1:
S.1. For a given program point p in program P, find [a superset of]

the points q of P such that if the behavior at q were different
then the behavior at p would be different.
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Entry

P := 3.14

rad := 3 area := P * (rad*rad)

circ := 2 * P * rad

output(circ)

output(area)

rad := 4

if DEBUG

DEBUG := InitialState(DEBUG)

Edge Key

Control
Flow

φ rad := radif
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Figure 4. The Program Representation Graph for the program of
Figure 2.

S.2. For a given program point p in program P, find [a superset of]
the points q of P such that if the behavior at p were different
then the behavior at q would be different.5

In other words, problem S.1 asks for the set of points that might
affect the behavior at p, while problem S.2 asks for the set of
points that might be affected by p.
S.3. For a given program point p in program P, find a projection Q

of P such that when P and Q are run on the same initial state,
the behaviors at p in P and Q are identical.

Problems S.1 and S.3 are closely related. Often, a solution to one
provides a solution to the other, though we will see in Section 3.2
that this is not always true when dealing with multi-procedure pro-
grams. Nevertheless, we often blur the distinction between the two
problems, referring to both of them as backward slicing. Problem
S.2 is referred to as forward slicing.

Tools that compute backward and forward slices can help a pro-
grammer to understand what a program does and how it works by
permitting him to focus his attention on meaningful subparts of the
program. For example, if a programmer determines via testing that
a variable x used at a point p in the program has the wrong value, it
may be useful to examine the backward slice of the program with
respect to point p. This slice will include all points involved in the
computation of x’s (erroneous) value, and will exclude points that
are not relevant to the value of x at point p. Similarly, if a pro-
grammer intends to change a program, for example by deleting a
statement p, it might be worthwhile first to examine the forward
slice with respect to p to make sure that he understands all of the
effects of p, both direct and transitive.

Additional uses for a solution to problem S.3 are discussed in
Section 4.1.
Example. Figure 5(a) shows the program from Figure 2; com-
ponents of the program that are in the backward slice with respect
to statement “output(circ)” are shown enclosed in boxes. In Fig-
ure 5(b), the components of the program that are in the forward
slice with respect to statement “P := 3.14” are shown enclosed in
boxes.

Notice that the statement “output(area)” is not included in the
backward slice shown in Figure 5(a). Therefore, executing the
projection of the program that includes just the boxed components
would produce different output than executing the original pro-
gram. In particular, the projection would write a single value to
the output (the value of circ) while the original program would
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
5 In both S.1 and S.2, when we say “if the behavior at a point were dif-
ferent” we mean “if the expression(s) used at that point were changed”. For
example, an assignment statement “x :=y + z” can be changed to
“x :=a − b” but the left-hand-side variable x cannot be changed.
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program
c P := 3.14 cdddddddddiiiiiiiii
c rad := 3 cddddddddiiiiiiii
if c DEBUG cddddddddiiiiiiiithenc rad := 4 cddddddddiiiiiiiifi
area := P* (rad*rad)
c circ := 2*P*rad cddddddddddddddiiiiiiiiiiiiii
output(area)
c output(circ) cdddddddddddiiiiiiiiiii

end

(a) Backward slice from “output(circ)”

program
c P := 3.14 cdddddddddiiiiiiiii
rad := 3
if DEBUG then rad := 4 fi
c area := P* (rad*rad) cddddddddddddddddddiiiiiiiiiiiiiiiiii
c circ := 2*P*rad cddddddddddddddiiiiiiiiiiiiii
c output(area) cddddddddddddiiiiiiiiiiii
c output(circ) cdddddddddddiiiiiiiiiii

end

(b) Forward slice from “P := 3.14”
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 5. (a) shows the backward slice of the program from Fig-
ure 2 with respect to statement “output(circ)”; (b) shows the for-
ward slice with respect to statement “P := 3.14”.

write two values (the value of area followed by the value of circ).
This is consistent with our definition of behavior, which considers
sequences of values produced at individual program points. How-
ever, it is also possible to model the idea that each output value has
an effect on all future output. This can be accomplished by treat-
ing an output statement of the form “output(exp)” as if it were an
assignment statement of the form “output := output | | exp.” (In
essence, this chains a program’s output statements together with
flow dependences.)

The next two subsections discuss slicing algorithms for single-
and multi-procedure programs, respectively.

3.1. Single-Procedure Slicing
Although Weiser’s original slicing algorithm was expressed in
terms of solving a sequence of dataflow-analysis problems [41],
both backward and forward slices can be computed more
efficiently using traversals of program dependence graphs [30].6
The backward (forward) slice of program P with respect to point p
can be computed in time linear in the size of the slice by following
control and flow dependence edges backward (forward) in P’s
PDG, starting from the vertex that represents point p. The sub-
graph that includes the vertices reached during this traversal,
together with the induced edge set, is called the PDG slice. A
backward slice of P with respect to p is denoted by b (P, p); a for-
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
6Weiser’s algorithm actually solves a problem that is a generalization of
slicing problem S.3. Weiser viewed the behavior at a program point as the
sequence of states that arise at that point, and his slicing problem was the
following: For a given program point p and a set of variables V, find a pro-
jection Q of P such that when P and Q are run on the same initial state, the
sequences of states that arise at point p in the two programs have identical
values for all variables in V. Our goals are more limited; because of the
definition we use for the execution behavior at a program point, in essence
we limit set V to the variables used or defined at p.

Gallagher has developed a prototype software-maintenance tool to
prevent editing changes from having undesired effects on the portions of
the code that the user does not want to change [13]. Although his work
uses slicing to address a problem of interest in software engineering, it is
outside the scope of this paper because it relies on Weiser’s notion of slices,
which cannot be computed using dependence graphs.
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ward slice of P with respect to p is denoted by f (P, p).
The set of program points that correspond to the vertices of the

backward PDG slice with respect to point p provides a solution to
problem S.1; similarly, the set of program points that correspond to
the vertices of the forward PDG slice with respect to p provides a
solution to problem S.2. The program obtained by removing all
statements and predicates that are not included in the backward
PDG slice with respect to p provides a solution to problem S.3.
Example. The boxed components shown in Figure 5(a)
correspond to the vertices reached by following control and flow
dependences backward in the PDG shown in Figure 2, starting at
the vertex labeled “output(circ).” Similarly, the boxed com-
ponents shown in Figure 5(b) correspond to the vertices reached by
following control and flow dependences forward in the PDG
shown in Figure 2, starting at the vertex labeled “P := 3.14.”

The correctness of our solutions to problems S.1, S.2, and S.3
follow from the Slicing Theorem and Corollary proved in [32]:
Theorem. (Slicing Theorem). Let s be a PDG slice of program P
and let Q be a program whose program dependence graph is iso-
morphic to s. If σ is a state on which P halts, then (1) Q halts on
σ, and (2) corresponding points in s and Q compute the same
sequence of values.
Corollary. (Slicing Corollary). Let s 1 and s 2 be PDG slices of
programs P 1 and P 2 , respectively, such that s 1 is isomorphic to
s 2 . Then, for any initial state σ on which both P 1 and P 2 halt,
corresponding points in s 1 and s 2 compute the same sequence of
values.

3.2. Multi-Procedure Slicing
For programs with procedures, simply following control, flow, and
interprocedural edges in the program’s system dependence graph
fails to take calling context into account. That is, a path along such
edges may correspond to a procedure call being made at one call
site, but returning to a different call site. Because of this failure to
account for calling context, this slicing technique can include many
extra program points in a slice, and is thus unsatisfactory.
Example. Figure 6 shows the slice that would be obtained by a
backward traversal of the SDG of Figure 3 starting at the vertex
that represents “output(circ).” The value of circ used in the output
statement is computed in the second call to Mult3; thus the traver-
sal (correctly) “descends” into the procedure dependence graph for
Mult3. However, when the traversal reaches the Entry vertex for
Mult3, it incorrectly “ascends” to both call sites. Thus, using this
technique for computing slices, the final slice includes both calls to
Mult3, although only the second call has an effect on the value of
circ that is output.

A technique for computing slices using system dependence
graphs that correctly handles the calling-context problem was

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
program

c P := 3.14 cdddddddddiiiiiiiii
c rad := 3 cddddddddiiiiiiii
if c DEBUG cddddddddiiiiiiiithen c rad := 4 fi cdddddddddiiiiiiiii
c call Mult3 cdddddddddiiiiiiiii(c P cddii ,c rad cddddiiii ,c rad cddddiiii ,c area cdddddiiiii)
c call Mult3 cdddddddddiiiiiiiii(c 2 cddii ,c P cddii ,c rad cddddiiii ,c circ cddddiiii)
output(area)
c output(circ) cdddddddddddiiiiiiiiiii

end

procedure c Mult3 cddddddiiiiii( c op 1 cddddiiii , c op 2 cddddiiii , c op 3 cddddiiii , c result cddddddiiiiii)
c result:=op 1*op 2*op 3 cddddddddddddddddddddiiiiiiiiiiiiiiiiiiii

endhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 6. The slice obtained by following edges backward in the
SDG of Figure 3 starting from “output(circ)”. This technique ig-
nores calling context, and so includes both calls to Mult3.

defined in [19].7 This technique involves two passes: Pass 1 of a
slice (either backward or forward) with respect to point p, starts
from the vertex that represents p; it moves “across” edges within a
procedure (including stepping across procedure calls by following
summary edges) and “up” from a called procedure to all
corresponding call sites, but not “down” from a procedure to the
procedures that it calls. This is accomplished in a backward slice
by ignoring parameter-out edges, and in a forward slice by ignor-
ing call and parameter-in edges. Pass 2 starts from the set of ver-
tices reached during Pass 1; it follows edges “across” and “down”
but not “up”. Pass 2 of a backward slice ignores call and
parameter-in edges; Pass 2 of a forward slice ignores parameter-
out edges.
Example. Figure 7 shows the two passes of the backward slice of
the SDG from Figure 3 with respect to “output(circ).” Figure 7(a)
shows the vertices reached during Pass 1 as well as their induced
edges; Figure 7(b) adds the vertices and edges included in the slice
due to Pass 2. Figure 7(c) shows the components of the program
that correspond to the vertices identified by the slice. Note that
only the relevant call to Mult3 is included in the slice.

We use the following notation to denote the separate passes of
interprocedural slicing: a backward pass-1 slice of P with respect
to p is denoted by b1(P, p); a backward pass-2 slice of P with
respect to p is denoted by b2(P, p); a forward pass-1 slice of P
with respect to p is denoted by f1(P, p); a forward pass-2 slice of P
with respect to p is denoted by f2(P, p).

The vertices included in the two passes of an interprocedural
slice provide a solution to problems S.1 and S.2. However, they do
not always provide a solution to problem S.3. This is because the
projection that includes just the program points that correspond to
the vertices in the SDG slice may not be a syntactically correct
program due to parameter mismatch. In particular, the slice may
include two calls to the same procedure, with each call using a dif-
ferent subset of the procedure’s parameters. The corresponding
program projection is an incorrect program because the numbers of
actual parameters at the call sites do not match the number of for-
mal parameters in the procedure.

A solution to problem S.3 can be obtained from an SDG slice S
by augmenting S as follows:

while S includes an instance of parameter mismatch do
letv be an actual-in vertex for parameter a in a call to procedure P

such that v is not in S, but there is another call to procedure P
in S that does include an actual-in vertex for parameter a

in augment S by adding the vertices and edges of the pass-2 back-
ward slice starting at vertex v

od

That is, we augment the slice by including “missing” parameters
and as much more of the program as is needed to compute their
values.

4. PROGRAM DIFFERENCING
Programmers are often faced with the problem of finding the
differences between two versions of a program. Text-based tools,
such as the Unix utility diff, can be unsatisfactory because they
only identify textual differences, providing little or no information
about the semantic differences between the two versions.
Although identifying semantic differences exactly is in general an
undecidable problem, it is possible to devise algorithms that iden-
tify a safe approximation to (i.e., a superset of) the semantic differ-
ences between two programs.

In this section, we discuss techniques for solving the three dif-
ferencing problems introduced in Section 1:

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
7A different technique for interprocedural slicing has been given by Hwang
et al. [22]. Their method also correctly handles the calling-context prob-
lem, but does not use SDGs. See [19] for a comparison of the two algo-
rithms.
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Enter
Main

P := 3.14

rad := 3

output(circ)

rad := 4

if DEBUG

DEBUG := InitialState(DEBUG)

call Mult3(2, P, rad, circ)

op1In := 2 circ := resultOut

op2In := P

op3In := rad

(a)

Enter
Main

P := 3.14

rad := 3

output(circ)

rad := 4

if DEBUG

DEBUG := InitialState(DEBUG)

resultOut := result

op3 := op3In

op2 := op2tIn

op1 := op1In

result := op1 * op2 * op3

call Mult3(2, P, rad, circ)

op1In := 2 circ := resultOut

op2In := P

op3In := rad

Enter
Mult3

(b)
c program cdddddddddiiiiiiiii

c P := 3.14 cdddddddddiiiiiiiii
c rad := 3 cddddddddiiiiiiii
if c DEBUG cddddddddiiiiiiiithen c rad := 4 cddddddddiiiiiiiifi
call Mult3(P, rad, rad, area)
c call Mult3 cdddddddddiiiiiiiii(c 2 cddii ,c P cddii ,c rad cddddiiii ,c circ cddddiiii)
output(area)
c output(circ) cdddddddddddiiiiiiiiiii

c end cddddiiii

procedure c Mult3 cddddddiiiiii( c op 1 cddddiiii , c op 2 cddddiiii , c op 3 cddddiiii , c result cddddddiiiiii)
c result := op 1*op 2*op 3 cdddddddddddddddddddddiiiiiiiiiiiiiiiiiiiii

c end cddddiiii
(c)

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 7. A backward (interprocedural) slice of the SDG of Fig-
ure 3 with respect to component “output(circ)”. The vertices
reached during Pass 1 as well as their induced edges are shown in
(a); the vertices and edges added by Pass 2 are shown in (b); the
components of the program that correspond to the vertices
identified by the slice are shown in (c).

D.1. Given programs Old and New, and a correspondence between
their components, find [a superset of] the components of New
whose behaviors differ from the corresponding components of
Old.

D.2. Given programs Old and New, but with no correspondence
between their components, find [a superset of] the com-
ponents of New for which there is no component in Old with
the same behavior.

D.3. Given programs Old and New, find a program Changes that
exhibits all changed behaviors of New with respect to Old.

A solution to differencing problem D.3 is potentially useful in
the context of program maintenance. For example, if program New

is produced from program Old by fixing a bug, then rather than
retesting all of Old’s functionality, only that portion represented in
Changes must be retested, because the remainder of New is com-
putationally equivalent to Old. This would be particularly
beneficial if Changes were very small compared to New.

Solutions to problems D.1 and D.2 are useful for creating a tool
that, given programs Old and New, annotates New to indicate its
semantic and textual differences with respect to Old. A component
of New is considered to represent a semantic difference either if
there is no corresponding component in Old or if the corresponding
component has a different behavior; a component of New is con-
sidered to represent a textual difference with respect to Old if there
is a corresponding component of Old with the same behavior, but
the text of the component has changed.
Example. Figure 8 shows program Old (the program from Figure
2) and two New programs. New 1 changes the name of variable P
to PI and moves the assignment “rad := 3” inside the conditional;
New 2 changes the initialization of variable P. The New programs
are annotated to show their textual and semantic differences with
respect to Old. Note that while a text-based differencing tool
would have identified the same set of differences for program
New 1 , such a tool would have identified only the assignment
“P := 3.1416” as a change in New 2 .

In differencing problem D.1, we assume that we are furnished a
way to identify corresponding components of New and Old. In
practice, this correspondence could be established by using a spe-
cial editor to create New from (a copy of) Old, where the editor
keeps track of the “migration” of components as New is edited.8
The correspondence could also be established by applying a syn-
tactic matching algorithm to the two programs, such as that of
[45].

The component-correspondence relation in differencing prob-
lem D.1 furnishes the means for establishing how program-
dependence-graph vertices from different versions correspond. It
is the component-correspondence relation that is used to determine
“identical” vertices when operations are performed using vertices
from different program dependence graphs. For instance, when we
speak below of “identical slices,” where the slices are actually
taken in different graphs (i.e., b (GOld , v) = b (GNew , v)), we mean
that the slices are isomorphic under the mapping provided by the
component-correspondence relation.

4.1. Program Differencing for Single-Procedure Programs
This section discusses the three differencing problems D.1, D.2,
and D.3 for single-procedure programs. In the single-procedure
case, differencing problem D.3 can be solved by first applying an
algorithm for either D.1 or D.2 (whichever is appropriate) and then
applying an algorithm that solves slicing problem S.3; conse-
quently, in this section we concentrate primarily on differencing
problems D.1 and D.2.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
8One way to track the migration of components is to have the editor attach
tags to program components according to the following principles:

(1) When a copy of a program is made—e.g., when a copy of Old is made
in order to create New—each component in the copy is given the same
tag as the corresponding component in the original program.

(2) The operations on program components supported by the editor are in-
sert, delete, and move. A newly inserted component is given a previ-
ously unused tag; the tag of a component that is deleted is never re-
used; a component that is moved from one position to another retains
its tag.

(3) The tags on components persist across different editing sessions and
machines.

(4) Tags are allocated by a single server, so that two different editors can-
not allocate the same new tag.

A tagging facility with such properties can be supported by language-based
editors, such as those that can be created by such systems as MENTOR
[10], GANDALF [29], and the Synthesizer Generator [33].
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Old New 1 New 2
program

P := 3.14
rad := 3
if DEBUG then

rad := 4
fi
area := P* (rad*rad)
circ := 2*P*rad
output(area)
output(circ)

end

program
PI := 3.14
if DEBUG then

rad := 4
else

rad := 3
fi
area := PI* (rad*rad)
circ := 2*PI*rad
output(area)
output(circ)

end

← TEXTUAL

← SEMANTIC

← TEXTUAL
← TEXTUAL

program
P := 3.1416
rad := 3
if DEBUG then

rad := 4
fi
area := P* (rad*rad)
circ := 2*P*rad
output(area)
output(circ)

end

← SEMANTIC

← SEMANTIC
← SEMANTIC
← SEMANTIC
← SEMANTIC

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
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Figure 8. Program Old and two New programs. Each New program is annotated to show its differences with respect to Old.

4.1.1. D.1: Finding differences when given a correspondence
between Old and New
When given a correspondence between the components of Old and
New, it is possible to determine (a superset of) the components
with different behaviors by comparing slices of Old and New with
respect to corresponding points. Let GOld and GNew denote the pro-
gram dependence graphs for programs Old and New, respectively.
If the slice of variant GNew at vertex v differs from the slice of GOld
at v, then, by the Slicing Theorem (Section 3.1), GNew and GOld
may compute a different sequence of values at v. In other words,
vertex v is a site that potentially exhibits changed behavior in the
two programs. Thus, we define the affected points of GNew with
respect to GOld , which we denote by APNew, Old , as the subset of
vertices of GNew whose slices in GOld and GNew differ:

APNew, Old =df { v ∈ V (GNew) | b (GOld , v) ≠ b (GNew , v) }.

(By definition, the slice of a PDG with respect to a vertex not in its
vertex set is the empty graph; therefore, any vertex of GNew that
has no corresponding vertex in GOld is included in APNew, Old .)
APNew, Old is a superset of the components of New with different
behaviors in New than in Old.

The straightforward way to determine the members of APNew, Old
(in quadratic time) would be to compare slices of GOld and GNew
with respect to every vertex of GNew . There is a more efficient way
to determine APNew, Old by first finding the set of directly affected
points of GNew with respect to GOld . This set, denoted by
DAPNew, Old , consists of those vertices v of GNew with no
corresponding vertex in GOld or with a different set of incoming
edges than the corresponding vertex in GOld .9 APNew, Old can be
determined from DAPNew, Old by taking a forward slice of GNew

with respect to DAPNew, Old .10

APNew, Old = f (GNew, DAPNew, Old).

This method determines APNew, Old in time linear (rather than qua-
dratic) in the size of GNew .

Remark. From the discussion of slicing problem S.3 in Section
3.1, it follows that the vertices of the slice b (GNew , APNew, Old)
define a projection of New that captures New’s changed behavior.
This provides a solution to differencing problem D.3.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
9For this comparison, a def-order edge is considered to be a ternary hyper-
edge whose target is the “witness” vertex.
10The PDG slicing operation defined in Section 3.1 with respect to a single
vertex is easily extended to slicing with respect to a set of vertices:
b (G, (

i
∪ si)) =df

i
∪ b (G, si) This operation can still be performed in time

linear in the size of the (final) slice by performing a single traversal of the
PDG starting from the set of points (rather than computing all of the indivi-
dual slices and then taking the union of the resulting graphs).

4.1.2. D.2: Finding differences when not given a correspon-
dence between Old and New
If one is not given a correspondence between the components of
Old and New, there are two techniques that can be used to deter-
mine (a superset of) the components of New and Old that have dif-
ferent behaviors: slice-isomorphism testing and partitioning.

Slice-isomorphism testing
Two PDG slices are isomorphic if there is a 1-to-1 and onto map
between their vertex sets that preserves adjacency and labels.
Although there is no known polynomial-time graph-isomorphism
algorithm for arbitrary unlabeled graphs [14], there are efficient
algorithms for restricted classes of graphs, such as graphs of
bounded valence [27]. Slice-isomorphism testing also concerns a
restricted class of graphs: the vertices and edges in a program
dependence graph are labeled, and the labeling, in conjunction
with a graph’s def-order edges, permits a vertex’s incoming control
and flow edges to be totally ordered. This property makes it possi-
ble to use depth-first search (traversing edges from targets to
sources) to test whether two slices (possibly in different PDGs) are
isomorphic. The running time of the algorithm is linear in the size
of the smaller of the two slices being tested [21].

Because program points with isomorphic slices are guaranteed
to have equivalent behavior, differencing problem D.2 can be
solved by using the slice-isomorphism-testing algorithm of [21] to
partition the components of New and Old into equivalence classes
of isomorphic slices. The solution to D.2 is the set of components
of New that are in a class that does not include any component of
Old.

A naive partitioning technique based on slice-isomorphism test-
ing would compare all pairs of slices from New and Old; in the
worst case this would require time O (n 3), where n is the size of
the larger of the two program dependence graphs. A more efficient
technique for performing such a partitioning would exploit the fact
that a slice can be linearized in a canonical fashion. Given this
insight, partitioning can be performed in time proportional to the
sum of the sizes of all the slices in the programs, which is O (n 2) in
the worst case.

The key to this more efficient partitioning is to group iso-
morphic slices into equivalence classes, assigning each class a
unique representative. Each vertex of the programs’ graphs in turn
is associated with the representative for its slice’s isomorphism
class; thus, two vertices have isomorphic slices iff they are associ-
ated with the same representative. The partitioning is performed as
follows:
(1) A dictionary of linearized slices is maintained. Associated

with each different slice is the unique representative for that
equivalence class.

(2) For each program dependence graph G and each vertex v of
G, the canonical linearization of slice b (G, v) is computed.
The linearized slice is looked up in the dictionary; if the slice
is in the dictionary, the unique representative for that
equivalence class is associated with vertex v; if the slice is not
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in the dictionary, it is inserted along with a new unique
representative.

Assuming that a lookup can be performed in time proportional to
the size of the slice (e.g., using hashing) the total time for the parti-
tioning is proportional to the sum of the sizes of the programs’
slices (i.e., O (n 2)).

Partitioning
An alternative method for partitioning the components of New and
Old into classes whose members have the same execution behavior
is to use the Sequence-Congruence Algorithm described in [43,44].
This algorithm applies to the PRGs (program representation
graphs) of one or more programs. The algorithm partitions the ver-
tices of the graph(s) so that two vertices are in the same partition
only if the program components that they represent have
equivalent behaviors. (In addition to the use described here for
identifying the differences between two versions of a program, the
Sequence-Congruence Algorithm can be used as a subroutine in an
algorithm for integration problem I.1; this is discussed in Section
5.1.1.)

The Sequence-Congruence Algorithm uses a technique (which
we will call the Basic Partitioning Algorithm) adapted from [2],
which is based on an algorithm for minimizing a finite-state
machine [15]. This technique finds the coarsest partition of a
graph that is consistent with a given initial partition of the graph’s
vertices. The algorithm guarantees that two vertices v and v ′ are in
the same class after partitioning iff they are in the same initial par-
tition, and, for every predecessor u of v, there is a corresponding
predecessor u ′ of v ′ such that u and u ′ are in the same class after
partitioning.

The Sequence-Congruence Algorithm operates in two passes.
Both passes use the Basic Partitioning Algorithm, but apply it to
different initial partitions and make use of different sets of edges.
An initial partition of the PRG is created based on the operators
that are used in the vertices. The first pass refines this partition by
applying the Basic Partitioning Algorithm to the flow-dependence
subgraphs of the programs’ PRGs. The second pass starts with the
final partition produced by the first pass and refines it by applying
the Basic Partitioning Algorithm to the control-dependence sub-
graphs of the program’s PRGs. The time required by the
Sequence-Congruence Algorithm is O (n log n), where n is the size
of the programs’ PRGs (i.e., number of vertices + number of
edges).
Example. If the Sequence-Congruence Algorithm were applied to
the programs from Figure 8, the three instances of component
“rad := 3” would be put into the same initial partition. However,
the instance from New 1 would be separated from the other two
instances by the algorithm’s second pass because its control prede-
cessor (the predicate of the if statement) is not in the same partition
as the control predecessors of the instances from Old and New 2
(the Entry vertex). The fact that the component from New 1 is not
in the same final partition as the other two components means that
its behavior might be different than theirs. In this case its behavior
is indeed different; the component in New 1 only executes if vari-
able DEBUG is false, while the components in Old and New 2
always execute.

Although the instances of component “rad := 3” from Old and
New 1 are in different final partitions, the two instances of
“output(area)” from Old and New 1 , which are (transitively) flow
dependent on the instances of “rad := 3”, are in the same final par-
tition (which is appropriate since they have equivalent behaviors).

Comparison of the two methods
It is instructive to compare the two methods that have been
described above.
(1) The Sequence-Congruence Algorithm is more powerful than

the technique based on slice-isomorphism testing. For
instance, for the example programs shown in Figure 8, the
Sequence-Congruence Algorithm is able to determine that
statement output(area) has the same behavior in Old and
New 1 . The technique based on slice-isomorphism testing

places the two instances of statement output(area) from Old
and New 1 in different slice-isomorphism classes, thus indicat-
ing that the behavior of this statement is potentially different
in the two programs.

(2) The Sequence-Congruence Algorithm is more efficient than
the technique based on slice-isomorphism testing (i.e.,
O (n log n) versus expected O (n 2)).

(3) The technique based on slice-isomorphism testing has the
advantage of being extendible to handle programs with multi-
ple procedures, as described in Section 4.2.2. It might also be
possible to extend the Sequence-Congruence Algorithm to
handle procedures, however no such extension is currently
known.

4.2. Program Differencing for Multi-Procedure Programs
The criterion for when two program points have equivalent
behavior that we have used so far (i.e., two points have equivalent
behavior if they produce the same sequences of values when their
respective programs are executed on the same initial state) is not
appropriate for multi-procedure program differencing. To under-
stand this, consider creating program New by making a copy of the
program of Figure 3, and reversing the order of the two calls to
Mult3. If program points that produce different sequences of
values are considered to have inequivalent behavior, then the
behavior of the statement “result := op 1*op 2*op 3” (in procedure
Mult3) in Old differs from its behavior in New. (Because the order
of the two calls is reversed, the order of the two elements in the
sequence would also be reversed.) However, because the two calls
to Mult3 are part of independent computations, reversing their
order would normally be considered to be a semantics-preserving
transformation, and one would not expect any component of New
to be classified as a semantic change with respect to Old.

There are several different criteria for equivalent behavior that
one might use in the context of multi-procedure differencing. In
this section, we use the following criterion: Two program points
have equivalent behavior if, when their respective procedures are
called with the same actual parameters, the points produce the
same sequence of values at “top-level”; that is, if the procedures
are recursive, we are concerned only with the sequences of values
produced in the outermost invocations.

Under this criterion, reversing the order of the two calls to
Mult3 does not change the behavior of statement
“result := op 1*op 2*op 3” (as desired). In general, to produce a
semantic difference in a procedure Q under this criterion for
equivalent behavior, it is necessary to change a component of Q
itself, or a component of a procedure called (directly or transi-
tively) by Q.

It is certainly possible to use other criteria for behavioral
equivalence as the basis for a program-differencing tool. (One
alternative, in which the criterion for equivalent behavior is not
restricted to only “top-level” behavior, is explored in [8].) How-
ever, for this paper we concentrate on the simpler criterion for
equivalent behavior given above; this has the advantage that it
simplifies the discussion considerably, yet still gives the flavor of
the issues that must be addressed in algorithms for semantics-based
program differencing. In practice, it would probably be useful for
a differencing tool to support multiple criteria (with the choice of
which criterion to apply under the control of the user).

4.2.1. D.1: Finding differences when given a correspondence
between Old and New
In this section, we assume that a correspondence between the com-
ponents of two multi-procedure programs Old and New has been
provided. As with single-procedure programs, it is possible to
determine (a superset of) the components with different behaviors
by comparing slices of Old and New with respect to corresponding
points. However, under the new criterion for equivalent behavior
specified above, it is only necessary to compare b2 slices of
corresponding components, rather than full backward slices.
(Recall from Section 3.2 that a b2 slice is obtained using just the
second pass of the interprocedural slicing algorithm. As explained
in Section 3.2, a b2 slice taken with respect to a given component c
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in procedure P follows edges within P and in procedures called
from P (directly or transitively), but does not follow call or
parameter-in edges “up” to calling procedures.)

The significance of a b2 slice for program differencing stems
from the following proposition:
Proposition. Suppose b2(S 1 , p 1) is isomorphic to b2(S 2 , p 2). Let
P 1 and P 2 be the procedures in S 1 and S 2 that contain p 1 and p 2 ,
respectively. Suppose P 1 and P 2 are called with the same actual
parameters and suppose both computations terminate normally.
Then the sequence of values produced at p 1 and p 2 in the outer-
most invocations of P 1 and P 2 are equal.

In other words, when two procedure components have iso-
morphic b2 slices they are guaranteed to produce the same
sequence of values at “top-level” whenever their respective pro-
cedures are called with the same actual parameters.

Given two SDGs SNew and SOld , the directly affected points of
SNew with respect to SOld , denoted by DAPNew, Old , is defined simi-
larly to way directly affected points were defined for single-
procedure programs in Section 4.1. DAPNew, Old consists of ver-
tices of SNew for which either there exists no corresponding vertex
in SOld or whose set of incoming edges is different from the set of
incoming edges at the corresponding vertex in SOld . However, for
the purposes of identifying directly affected points in SDGs, when
the sets of incoming edges at corresponding vertices of SNew and
SOld are compared, all incoming summary, parameter-in, and call
edges are ignored. Thus, only when there are differences in the
incoming control, flow, def-order, or parameter-out edges is a ver-
tex of SNew considered to be directly affected.

Because summary edges represent transitive dependences rather
than direct dependences, changes in the set of incoming summary
edges do not represent direct modifications to the system; there-
fore, they are ignored for purposes of classifying vertices as
directly affected points.

The reason parameter-in and call edges are ignored is related to
the fact that these edges are ignored (i.e., not traversed) during a b2
slice. Because parameter-in and call edges are also ignored during
an f1 slice, we can determine the set of all vertices of SNew with dif-
ferent b2 slices by taking an f1 slice with respect to DAPNew, Old . In
other words,

{ v ∈ V (SNew) | b2(SNew , v) ≠ b 2(SOld , v) } = f1(SNew , DAPNew, Old).

4.2.2. D.2: Finding differences when not given a correspon-
dence between Old and New
If one is not given a correspondence between the components of
two multi-procedure programs Old and New, it is still possible to
identify procedure components with equivalent execution
behaviors by comparing b2 slices of the programs’ SDGs.
Although SDGs include some additional kinds of vertices and
edges that are not found in PDGs, the slice-isomorphism testing
algorithm for single-procedure programs can be extended to test b2
slices for isomorphism: For each vertex in a b2 slice, the vertex’s
incoming edges can be given a canonical total ordering, which is
the property that makes it possible to use depth-first search
(traversing edges from targets to sources) to test whether two slices
(possibly in different SDGs) are isomorphic. Thus, it is possible to
test whether two b2 slices are isomorphic in time linear in the size
of the smaller of the two slices being tested, and it is possible to
partition the components of one or more procedures into
equivalence classes in time proportional to the sum of the sizes of
their b2 slices [21].

As discussed in Section 4.2.1, when two procedure components
have isomorphic b2 slices they are guaranteed to produce the same
sequence of values at “top-level” whenever their respective pro-
cedures are called with the same actual parameters. Thus, one way
to solve differencing problem D.2. is to perform the following test:

For all points p 1 in SNew and p 2 in SOld , test whether
b2(SNew , p 1) is isomorphic to b2(SOld , p 2).

There are two reasons why it is better to take a different approach
in an actual tool for program differencing:

(i) Efficiency: the cost of the above method is proportional to the
sum of the sizes of the programs’ b2 slices (i.e., quadratic in
the size of the larger of the two SDGs).

(ii) Usefulness: in most cases, one is interested in determining
whether the components in a given procedure P 1 from SNew
have different execution behavior from the components in
some other given procedure, say P 2 from SOld . Ordinarily, it
is not important to know whether the various components in
P 1 exhibit behavior that is equivalent to that exhibited at a
point somewhere in SOld (i.e., not necessarily restricted to one
procedure P 2).

Consequently, we believe that it is more useful to have the user of
a differencing tool supply the names of two procedures, P 1 from
SNew and P 2 from SOld , in which components are to be tested for
equivalent behavior. (The facility for finding differences in two
multi-procedure programs implemented in our prototype system
takes this form.)

5. PROGRAM INTEGRATION
In this section, we discuss techniques to solve the two integration
problems introduced in Section 1:
I.1. Given a program Base and two or more variants, together with

a correspondence between the programs’ components, deter-
mine whether the changes made to create the variants from
Base are compatible. If the changes are compatible, combine
the variants to form a single, integrated program; otherwise
identify the source of the interference.

I.2. Same problem as I.1, but with no correspondence between the
components of Base and the variants.

The need to integrate several versions of a program into a com-
mon one arises in many situations:
(1) A system may be customized by a user while simultaneously

being upgraded by a maintainer. When the next release of the
system is sent to the user, he must integrate his customized
version of the system and the newly released version with
respect to the earlier release so as to incorporate both his cus-
tomizations and the upgrades.

(2) While systems are being created, program development is
often a cooperative activity that involves multiple program-
mers. If a task can be decomposed into independent pieces,
the different aspects of the task can be developed and tested
independently by different programmers. However, if such a
decomposition is not possible, the members of the program-
ming team must work with multiple, separate copies of the
source files, and the different versions of the files must ulti-
mately be integrated to produce a common version.

(3) Suppose a tree or dag of related versions of a program exists
(to support different machines or different operating systems,
for instance), and the goal is to make the same enhancement or
bug-fix to all of them. If, for example, the change is made to
the root version—by manually modifying a copy of the root
program—the process of installing the change in all other ver-
sions requires a succession of program integrations.

Anyone who has had to reconcile divergent lines of development
will recognize that it is a tedious and time consuming task to merge
programs by hand and will appreciate the need for automatic assis-
tance.

At present, the only available tools for integration implement an
operation for merging files as strings of text (the UNIX diff3 utility
is one example). This approach has the advantage that the current
tools are as applicable to merging documents, data files, and other
text objects as they are to merging programs. However, current
tools are necessarily of limited effectiveness for integrating
programs—and are even dangerous—because the manner in which
two programs are merged is not safe; one has no guarantees about
the way the program that results from a purely textual merge
behaves in relation to the behaviors of the programs that are the
arguments to the merge. For example, if one variant contains
changes only on lines 5−10, while the other variant contains
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program
P := 3.14
rad := 3
if DEBUG then rad := 4 fi
area := P* (rad*rad)
circ := 2*P*rad
output(area)
output(circ)

end

Entry

P := 3.14

rad := 3 area := P * (rad*rad)

circ := 2 * P * rad

output(circ)

output(area)

rad := 4

if DEBUG

DEBUG := InitialState(DEBUG)

Base

program
P := 3.14
rad := 3
if DEBUG then rad := 4 fi
diam := 2*P
area := P* (rad*rad)
circ := 2*P*rad
output(diam)
output(area)
output(circ)

end

Entry

P := 3.14

rad := 3

area := P * (rad*rad)

circ := 2 * P * rad

output(circ)

output(area)

rad := 4

if DEBUG

DEBUG := InitialState(DEBUG)

diam := 2 * rad

Variant A

output(diam)

program
P := 3.1416
rad := 3
if DEBUG then rad := 4 fi
area := P* (rad*rad)
circ := 2*P*rad
output(area)
output(circ)

end

Entry

rad := 3 area := P * (rad*rad)

rad := 4

if DEBUG

DEBUG := InitialState(DEBUG)
output(circ)

output(area)

circ := 2 * P * radP := 3.1416

Variant B

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 9. An example of the first part of Step 1 of the HPR Algorithm. Programs Base, A, and B, and their PDGs are shown. Shading is
used to indicate the affected points of A and B with respect to Base.

changes only on lines 15−20, diff3 would deem these changes to be
interference-free; however, just because changes are made at dif-
ferent places in a program is no reason to believe that the changes
are free of undesirable interactions. The merged program pro-
duced by such a tool must, therefore, be checked carefully for
conflicts that might have been introduced by the merge.11

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
11Several managers in industry have told us that their mechanism to avoid
integration conflicts is based on the modular structure of systems. They as-
sign overall responsibility for a given module of a system to a particular
programmer, and institute a policy that any changes to a module must be
cleared with the person responsible. However, this assumption is true only
if all changes preserve the module’s semantics (i.e., they change the way
the module performs its task without changing its functionality). If
modifications do not preserve the module’s semantics, the notion that
module boundaries protect against interference—even in conjunction with

There has been related work on integrating functions [6], logic
programs [25], and specifications [11]; however, different models
of “integration” have been used in each case. For example, in
Berzins’s work on integrating functions [6], two variant programs,
A and B, are merged without regard to Base. Thus, his work treats
only the integration of program extensions, not program
modifications, where the distinction between the two is as follows:

A program extension extends the domain of a partial function
without altering any of the initially defined values, while a
modification redefines values that were defined initially [6].

The function that results from the merge preserves the (entire)
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
the above policy—is as flawed as the notion used in diff3. Both rely on the
incorrect assumption that “disjoint changes are interference free.”
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behavior of both; functions A and B cannot be merged if they
conflict at any point where both are defined.

The 1−1 join operation defined by Lakhotia and Sterling is also
a two-way merge [25]. However, in Lakhotia and Sterling’s work
there is no notion of interference, and the characterization of the
semantic properties of the merged program was left as an open
question in [25]. Feather’s work on integrating specifications [11]
does take Base into account, but although his integration algorithm
preserves syntactic modifications, it does not guarantee any seman-
tic properties of the integrated specification.

The alternative that we have pursued is to create a semantics-
based tool for program integration that makes use of knowledge of
the programming language to determine whether the changes made
to Base to produce variants A and B have undesirable semantic
interactions. Only if there is no such interference should the tool
produce a merged program.

In version I.1 of the integration problem, we assume that we are
furnished a way to identify corresponding components of Base, A,
and B. As explained in Section 4, this correspondence could be
established either by using a special editor to create the variants
from (copies of) Base, where the editor keeps track of the “migra-
tion” of components as variants A and B are edited, or by first
applying a syntactic matching algorithm to the three programs,
such as that described in [45].

5.1. Program Integration for Single-Procedure Programs
While our long-term goal is to design a semantics-based program-
integration tool for a full-fledged programming language, our early
work used a simplified model of program integration so as to make
the problem amenable to theoretical study [18]. This model
possesses the essential features of the problem, and thus permitted
us to conduct our studies without being overwhelmed by inessen-
tial details.

The original model of semantics-based program integration has
the following three requirements:
(1) Programs are written in a simplified programming language

that has only assignment statements, output statements, if-
then-else statements, and while loops. The language does not
include input statements; however, a program can use a vari-
able before assigning to it, in which case the variable’s value
comes from the initial state.

(2) When an integration algorithm is applied to base program
Base and variant programs A and B, and if integration
succeeds—producing program M—then for any initial state σ
on which Base, A, and B all terminate normally, M must have
the following properties:
(i) M terminates normally on σ.
(ii) For any component c in variant A whose behavior is dif-

ferent in A and Base, component c is in M and its
behavior in M agrees with component c in A.12

(iii) For any component c in variant B whose behavior is dif-
ferent in B and Base, component c is in M and its
behavior in M agrees with component c in B.

(iv) For any program component c that has the same behavior
in Base, A, and B, component c is in M and also exhibits
that same behavior.

(3) Program M is to be created only from components that occur
in programs Base, A, and B.

An informal statement of property (2) is: changes in the behavior
of A and B with respect to Base must be preserved in the integrated
program, along with the behavior that is the same in Base, A, and
B.

Properties (1) and (3) of the integration model are syntactic res-
trictions that limit the scope of the integration problem. Property
(2) defines the model’s semantic criterion for integration and
interference. Any program M that satisfies Properties (1), (2), and
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
12 For the purposes of this section we use the definition of behavior from
Section 1, namely the sequence of values produced at a program point.

(3) integrates Base, A, and B; if no such program exists then A and
B interfere with respect to Base. However, Property (2) is not
decidable, even under the restrictions given by Properties (1) and
(3); consequently, any program-integration algorithm will some-
times report interference—and thus fail to produce an integrated
program—even though there is actually no interference (i.e., even
when there is some program that meets the criteria given above).

5.1.1. I.1: Program integration given a correspondence among
components of Base, A, and B
The first algorithm that meets the requirements of the model given
above was formulated by Horwitz, Prins, and Reps [18]. That
algorithm—which we call the HPR algorithm—is the first algo-
rithm for semantics-based program integration. The HPR algo-
rithm represents a fundamental advance over text-based program-
integration algorithms (such as the UNIX utility diff3) by providing
the first theoretical foundation for building a semantics-based
program-integration tool. Changes in behavior rather than changes
in text are detected, and are preserved in the integrated program.
Although in general it is undecidable to determine exactly the set
of components with changed behavior, the HPR algorithm com-
putes a safe approximation to this set by using slicing and dif-
ferencing operations on the program dependence graphs of pro-
grams Base, A, and B.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Entry

rad := 3

rad := 4

if DEBUG

DEBUG := InitialState(DEBUG)

diam := 2 * rad

Entry

P := 3.1416

rad := 3 area := P * (rad*rad)

circ := 2 * P * rad

output(circ)

rad := 4

if DEBUG

DEBUG := InitialState(DEBUG)

Entry

rad := 3

rad := 4

if DEBUG

DEBUG := InitialState(DEBUG)

∆ A, Base

∆ B, Base

A,Base,B

output(area)

output(diam)

Pre

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 10. Step 1 of the HPR algorithm, continued. The sub-
graphs ∆A, Base , ∆B, Base , and PreA, Base, B are shown.
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Given PDGs GBase , GA , and GB (for programs Base, A, and B,
respectively), the HPR algorithm performs three steps. The first
step identifies three subgraphs that represent the changed behavior
of A with respect to Base, the changed behavior of B with respect
to Base, and the behavior that is the same in all three programs.
The second step combines these subgraphs to form a merged
dependence graph M. The third step determines whether A and B
interfere with respect to Base; if there is no interference, an
integrated program is produced from graph M.

Step 1: Determining changed and preserved slices
The affected points of variants A and B with respect to Base (as
defined in Section 4.1.1) are used to identify subgraphs ∆A, Base and
∆B, Base of GA and GB that represent the variants’ changed
behaviors with respect to Base:

APA, Base =df { v ∈ V (GA) | b (GBase ,v) ≠ b (GA ,v) }
APB, Base =df { v ∈ V (GB) | b (GBase ,v) ≠ b (GB ,v) }

∆A, Base =df b (GA ,APA, Base)
∆B, Base =df b (GB ,APB, Base).

A vertex that has the same slice in all three programs is
guaranteed to exhibit the same behavior. Thus, we define the
preserved points of GBase (with respect to GA and GB), denoted by
PPA, Base, B , to be the subset of vertices of GBase with identical slices
in GBase , GA , and GB:

PPA, Base, B =df { v ∈ V (GBase) | b (GA ,v) = b (GBase ,v) = b (GB ,v) }.

Thus, the slices common to Base, A, and B are captured by the
slice b (GBase ,PPA, Base, B), and so we define PreA, Base, B—the pro-
jection of Base that exhibits behavior common to all three
programs—as follows:

PreA, Base, B =df b (GBase , PPA, Base, B).

Example. Figure 9 shows three programs: Base, A, and B, and
their PDGs. The affected points of GA and GB are shown as
shaded vertices. (Base is the program from Figure 2 that computes
a circle’s area and circumference; variant A adds the computation
of the diameter; variant B changes the initialization of variable P.)
Figure 10 shows the subgraphs that represent ∆A, Base , ∆B, Base , and
PreA, Base, B .

Step 2: Forming the merged graph
The merged graph GM is formed by taking the graph union of the
slices that characterize the changed behavior of A, the changed
behavior of B, and the behavior of Base preserved in both A and B.
The given component-correspondence relation is used to determine
which vertices and edges from the three slices are “identical” for
the purposes of the union; that is, if vertex v (or edge e) occurs in
one slice, and a corresponding vertex (edge) occurs in another
slice, only one copy of the vertex (edge) is included in the merged

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Entry

P := 3.1416

rad := 3

area := P * (rad*rad)

circ := 2 * P * rad

output(circ)

output(area)

rad := 4

if DEBUG

DEBUG := InitialState(DEBUG)

diam := 2 * rad

output(diam)

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 11. The merged graph: ∆A, Base ∪ g ∆B, Base ∪ g PreA, Base, B .

graph.

GM =df ∆A, Base ∪ g ∆B, Base ∪ g PreA, Base, B .

Example. Figure 11 shows the merged graph for the example
integration problem.

Step 3: Testing for interference
There are two possible ways in which the graph GM can fail to
represent a satisfactory integrated program; we refer to them as
“Type I interference” and “Type II interference.” The criterion for
Type I interference is based on a comparison of slices of GA , GB ,
and GM . The slices b (GA ,APA, Base) and b (GB ,APB, Base) represent
the changed behaviors of A and B, respectively. There is Type I
interference if GM does not preserve these slices; that is, there is
Type I interference if either

b (GM ,APA, Base) ≠ b (GA ,APA, Base) or
b (GM ,APB, Base) ≠ b (GB ,APB, Base).

The final step of the HPR algorithm involves reconstituting a
program from the merged program dependence graph. However, it
is possible that there is no such program—the merged graph can be
an infeasible program dependence graph; this is Type II interfer-
ence. (See [18] or [3] for a discussion of reconstructing a program
from the merged program dependence graph and the inherent
difficulties of this problem.) If neither kind of interference occurs,
one of the programs that corresponds to the graph GM is returned
as the result of the integration operation.
Example. The example integration problem has neither Type I nor
Type II interference. One of the programs that corresponds to the
merged graph is shown in Figure 12.

One of the most important aspects of the HPR algorithm is that
it provides semantic guarantees about how the behavior of the
integrated program relates to the behaviors of Base, A, and B. In
particular, it has been shown that the HPR algorithm meets the
semantic criterion for program integration given at the beginning
of Section 5.1 [32,44].

Accommodating Semantics-Preserving Transformations
One limitation of the HPR algorithm is that it incorporates no
notion of a semantics-preserving transformation. This limitation
causes the algorithm to be overly conservative in its definition of
interference. For example, if one variant changes the way a com-
putation is performed (without changing the values computed)
while the other variant adds code that uses the result of the compu-
tation, the HPR algorithm would classify those changes as interfer-
ing. This section discusses a different integration algorithm—
developed by Yang, Horwitz, and Reps, and called the YHR
algorithm—that is an improvement on the HPR algorithm in that it
is capable of accommodating semantics-preserving transforma-
tions.
Example. Figure 13 shows two example integration problems that
illustrate the limitations of the HPR algorithm with regard to
semantics-preserving transformations. The HPR algorithm will

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
program

P := 3.1416
rad := 3
if DEBUG then rad := 4 fi
diam := 2*P
area := P* (rad*rad)
circ := 2*P*rad
output(diam)
output(area)
output(circ)

endhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 12. The result of integrating programs Base, A, and B from
Figure 9.
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Base Variant A Variant B Integrated Programiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
program
P := 3.14
rad := 3
if DEBUG

then rad := 4
fi
area := P*(rad*rad)
output(area)

program
c PI := 3.14 cdddddddddiiiiiiiii
if DEBUG

then rad := 4
else c rad := 3 cddddddddiiiiiiii

fi
c area := PI*(rad*rad) cdddddddddddddddddddiiiiiiiiiiiiiiiiiii
output(area)

program
P := 3.14
rad := 3
if DEBUG

then rad := 4
fi
area := P*(rad*rad)
c height := 10 cdddddddddddiiiiiiiiiii
c vol := height*area cddddddddddddddddiiiiiiiiiiiiiiii
output(area)
c output(vol) cdddddddddddiiiiiiiiiii

program
PI := 3.14
if DEBUG

then rad := 4
else rad := 3

fi
area := PI*(rad*rad)
height := 10
vol := height*area
output(area)
output(vol)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

program
k := 0; i := 1
while i≤100 do

j := i*2
while j<1000 do

k := k+i*10+j
j := j+1

od
i := i+1

od
output(k)

program
k := 0; i := 1
c twoi := 2 cddddddddiiiiiiii
while i≤100 do

c j := twoi cddddddddiiiiiiii
while j<1000 do

k := k+i*10+j
j := j+1

od
c twoi := twoi+2 cdddddddddddddiiiiiiiiiiiii
i := i+1

od
output(k)

program
k := 0; i := 1
while i≤100 do

j := i*2
c teni := i*10 cdddddddddddiiiiiiiiiii
while j<1000 do

c k := k+teni+j cddddddddddddiiiiiiiiiiii
j := j+1

od
i := i+1

od
output(k)

program
k := 0; i := 1
twoi := 2
while i≤100 do

j := twoi
teni := i*10
while j<1000 do

k := k+teni+j
j := j+1

od
twoi := twoi+2
i := i+1

od
output(k)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Figure 13. Two example integration problems that illustrate the limitations of the HPR algorithm with regard to semantics-preserving
transformations. Modifications in variants A and B are enclosed in boxes. In both cases the HPR algorithm would report interference even
though there is no interference according to the integration criteria stated in Section 5.1. An integrated program that satisfies the criteria is
shown in each case.

report interference in both cases; however, there is no interference
according to the integration criteria given in Section 5.1, and an
integrated program that satisfies the criteria is shown in each case.
In the first example, variant A changes the computation of area by
renaming variable P to PI, and moving the assignment rad := 3
inside the conditional, while variant B adds an assignment to vari-
able vol that uses the value of area. In the second example, vari-
ants A and B both perform semantics-preserving transformations:
variant A changes the way j is computed by performing a reduction
in strength (replacing a multiplication with an addition), while
variant B changes the assignment to k (which uses the value of j)
by moving a loop-invariant computation outside the loop.

The limitations of the HPR algorithm illustrated in Figure 13 are
due to the way the HPR algorithm identifies affected points, and to
the way program fragments are extracted from Base, A, and B, and
combined to form the merged program. For example, consider the
first integration problem of Figure 13. The change made to Base to
create variant B was the addition of the computation of vol. This
new code must be included in the merged program; however, the
HPR algorithm would extract from variant B the entire program
fragment needed to compute the value of vol (i.e., the entire slice
of the program with respect to the new components). This frag-
ment includes the statement “area := P* (rad*rad)”, which is
undesirable since the way area is computed (though not its value)
has been changed in variant A (by renaming P to PI and by moving
one assignment to rad inside the conditional). It would be prefer-
able to extract from variant B only the assignments to height and
vol, combining this fragment with the changed fragment from A.
However, to do this requires being able to recognize that the value
of area is the same in variant A as in Base, which the HPR algo-
rithm is unable to do.

The YHR algorithm is an integration algorithm designed to
overcome these limitations of the HPR algorithm. The important
differences between the two algorithms are the following:
(1) The HPR algorithm uses comparison of slices to identify the

affected points of variants A and B with respect to Base. In

contrast, the YHR algorithm is parameterized in terms of a
method for identifying congruent components of Base, A, and
B. (A precise definition of congruence can be found in [46];
roughly, two components are congruent if they and all of their
corresponding control dependence ancestors have equivalent
behavior.) The partitioning algorithm discussed in Section
4.1.2 is one method that can be used to identify congruent
components. Congruent components could also be identified
by the programmer, or by the editor front-end of a program-
transformation system.

(2) The HPR algorithm includes the slice with respect to every
affected point in the merged graph. In contrast, the YHR algo-
rithm uses a new operation, called limited slicing, to extract
only partial slices with respect to affected points.

(3) The HPR algorithm uses program dependence graphs to
represent Base, A, and B. In contrast, the YHR algorithm uses
program representation graphs. The φ vertices in program
representation graphs are crucial to the success of the YHR
algorithm. Suppose Base includes a loop or conditional in
which the value of some variable x is computed, and variant A
changes the way x is computed, without changing the final
value of x. Further suppose that B adds a new component that
uses the final value of x. The φ-exit or φ-if vertex “x := x” at
the end of the code that computes x is a point with identical
behaviors in Base, A, and B. This point provides a “stopping
place” for the limited slice in B with respect to the new com-
ponent, and permits A and B to be integrated successfully.

Given sufficiently precise congruence information, the YHR
algorithm would successfully integrate both examples shown in
Figure 13. However, the partitioning algorithm of Section 4.1.2 is
only powerful enough to permit the YHR algorithm to succeed on
the first example. To permit the YHR algorithm to succeed on the
second example, either more powerful congruence-identifying
techniques are needed, or information about where semantics-
preserving transformations have been applied would have to be
supplied.
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Given program representation graphs for programs Base, A, and
B, the YHR algorithm performs the following steps:
(1) Use an auxiliary method to obtain congruence information for

the components of the three programs.
(2) Use the results of Step (1) to classify the vertices of each

program’s PRG to reflect how the behavior and text of the ver-
tex in that program relates to the behavior and text of the
corresponding vertices in the other two programs (as in the
HPR algorithm, the YHR algorithm assumes that a correspon-
dence between the vertices of Base, A, and B is given).

(3) Use the classification of Step (2) and the limited slicing opera-
tion to extract subgraphs that represent the changed and
preserved computations of A and B with respect to Base.

(4) Combine the subgraphs to form a merged graph.
(5) Determine whether the merged graph represents a program; if

so, produce the program.
The algorithm may determine that the variant programs interfere in
either Step (2), Step (3), or Step (5).

Details of the YHR algorithm can be found in [44,46].

5.1.2. I.2: Integration without a component-correspondence
relation
A significant limitation of the HPR and YHR algorithms is that
neither algorithm can perform integrations unless a correspondence
relation on the components of Base, A, and B is supplied. If the
correspondence relation is supplied by a special editor (as is the
case with our implementation), integration can only be performed
on program variants created within the system; program variants
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program
end

program
    x := 1
end

program
    sum := 0
end

program
    x := 1
    while x < 11 do
        x := x+1
    od
end

program
    x := 1
    while x < 11 do
        x := x+1
    od
    output(x)
end

program
    sum := 0
    x := 1
    while x < 11 do
        sum := sum + x
        x := x+1
    od
end

program
    sum := 0
    x := 1
    while x < 11 do
        sum := sum + x
        x := x+1
    od
    output(sum)
end

A
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Figure 14. The shaded region indicates the set in P that represents
DC (A). Here, to keep the figure comprehensible, elements of the
partial order are shown as programs, although the “is-a-slice-of”
relation depicted ( ≤ ) is really a partial order on the programs’
PDGs.

created outside the system using ordinary text editors such as vi
and emacs cannot be integrated.

We recently made progress towards the goal of being able to
integrate programs in the absence of a known correspondence rela-
tion on the components of Base, A, and B. This advance was an
unanticipated result of our recent work on how to establish the
algebraic properties of program integration [37,38], which intro-
duced a lattice-theoretic framework for studying program integra-
tion. One instance of this framework yields an integration method
that is a very close relative of the HPR algorithm. However, there
is a slightly different instance of that framework that offers the
possibility of eliminating the need for a component-
correspondence relation in a program-integration system.

This material is organized as follows: we first summarize the
lattice-theoretic reformulation of the HPR algorithm; we then
describe how these ideas offer the possibility of a solution to the
problem of performing integrations without a component-
correspondence relation.

A lattice-theoretic framework for program integration
In [37,38], the HPR algorithm is reformulated as an operation in a
Brouwerian algebra constructed from sets of dependence graphs in
which vertices are tagged to indicate the corresponding vertices of
Base, A, and B. A Brouwerian algebra is a particular kind of lat-
tice; it has a greatest element dcd , and, in addition to the binary
operations join ( ciic ) and meet ( cddc ), it has a third binary operation,
called “pseudo-difference,” denoted by .− , which is characterized
by the law x .− y icdidii z iff x icdidii y ciic z.13 Thus, the elements of a
Brouwerian algebra obey the following nine axioms:
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Idempotency Commutativity Associativityiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
x ciic x = x x ciic y = y ciic x (x ciic y) ciic z = x ciic (y ciic z)
x cddc x = x x cddc y = y cddc x (x cddc y) cddc z = x cddc (y cddc z)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Absorptivity Pseudo-differenceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
x ciic (x cddc y) = x x .− y icdidii z iff x icdidii y ciic z
x cddc (x ciic y) = xiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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The integration of elements x and y with respect to element base,
denoted by x [base ]y, is defined by

x [base ]y =df (x .− base) ciic (x cddc base cddc y) ciic (y .− base).

The reason these definitions are of interest is because there is a
Brouwerian algebra in which the integration operation x[base]y is
closely related to the operation of integrating via the HPR algo-
rithm. This Brouwerian algebra is developed from a partial order
on dependence graphs, denoted by ≤ , that represents the relation
“is-a-slice-of.”14 We say that a dependence graph g is a single-
point slice iff there exists a vertex v ∈ V (g) such that b (g, v) = g.
Notice that if x and y are single-point slices, y ≤ x holds iff there
exists a vertex v such that y = b (x, v) (i.e., if y is a single-point
subslice of x). Let G 1 denote the set of all program dependence
graphs that are single-point slices. (The relation ≤ on elements of
G 1 is illustrated in Figure 14.) Given a set A of single-point slices,
the downwards −closure of A, DC (A), is defined to be the set of
single-point slices that are dominated by members of A:

DC (A) =df { y ∈ G 1 | ∃ x ∈ A. (y ≤ x) }.

It follows that DC (A ∪ B) = DC (A) ∪ DC (B) and that
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
13The symbol icdidii denotes the partial order on elements given by x icdidii y iff
x cddc y = x (or, equivalently, x icdidii y iff x ciic y = y).
14We extend the definition of slicing with respect to a vertex set (see foot-
note 10 of Section 4.1.1) to that of slicing with respect to a PDG as fol-
lows: let x and y be two PDGs; the slice of x with respect to y, denoted by
b (x, y), is defined to be the slice b (x, V (y)), where V (y) denotes the vertex
set of y. We say that y is a slice of x iff b (x, y) = y. The symbol ≤ denotes
the partial order “is-a-slice-of” on PDGs (i.e., y ≤ x iff y is a slice of x).
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DC (A∩B) = DC (A) ∩ DC (B). A set A is said to be downwards
closed iff DC (A) = A.

In [37,38], a program is represented by the set of all of its
single-point slices. P, the domain of program representations, is
taken to be the collection of all downwards-closed sets of single-
point slices. The elements of P are ordered by “subset-of.” The
shaded region of Figure 14 illustrates the element of P that
represents the program

program
sum := 0
x := 1
while x < 11 do

sum := sum + x
x := x + 1

od
output(sum)

end

Let dcd denote the set of all single-point slices, and |− the empty set.
Let ∪ , ∩, and − denote the set-theoretic union, intersection, and
difference operators. P is closed with respect to ∪ and ∩. P is not
closed under −, but is closed under the pseudo-difference operator.− defined as follows:

X .− Y =df DC (X −Y).

Figure 15 illustrates the operation of pseudo-difference on two
arbitrary elements of P. In general, an element of P can contain
multiple maximal elements; these are indicated by the multiple
peaks of sets X and Y in Figure 15. The value of X .− Y is the down-
wards closure of X − Y; thus, X .− Y includes both of the shaded
regions shown in Figure 15.

One can show that (P, ∪ , ∩, .− , dcd) is a Brouwerian algebra
[37,38]. One can also show that the HPR integration algorithm
corresponds very closely to the integration operation in
(P, ∪ , ∩, .− , dcd), namely

(x .− base) ∪ (x ∩ base ∩ y) ∪ (y .− base).

To be more precise, let Rep : PDG → P be the function that maps a
PDG G to the (downwards-closed) set of all single-point slices of
G:

Rep =df λ pdg . { s ∈ G 1 | s ≤ pdg }.

The relationship between the integration operation in
(P, ∪ , ∩, .− , dcd) and the HPR algorithm is captured by the follow-
ing proposition:
Proposition. If the integration of PDGs A and B with respect to
Base via the HPR algorithm passes the Type I interference test,
then

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
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Figure 15. The value of X .− Y is the downwards closure of X − Y.
Thus, X .− Y includes both of the shaded regions.

Rep (∆A, Base ∪ g PreA, Base, B ∪ g ∆B, Base)
= Rep (A)[Rep (Base)]Rep (B).

A lattice for integration without tags
In the Brouwerian algebra (P, ∪ , ∩, .− , dcd), the elements are
downwards-closed sets of tagged single-point slices. However, it
is possible to construct Brouwerian algebras whose elements are
sets of dependence graphs that do not have tags on their
components—for example, the lattice whose elements are
downwards-closed sets of untagged single-point slices is also a
Brouwerian algebra. Representations of such lattice elements can
be easily constructed for programs that have been created with
ordinary text editors.

Working with sets of untagged single-point slices has several
consequences:
(1) Because slice vertices no longer have tags that can be used to

identify corresponding components in different graphs, we
must work with the notion of isomorphism between single-
point slices. However, as discussed in Section 4.1.2, it is pos-
sible to test in linear time whether two single-point slices are
isomorphic. Furthermore, by using hashing techniques the
slice-set manipulations needed to perform operations in the
algebra of downwards-closed sets of untagged single-point
slices can be performed in linear expected time (i.e., expected
time linear in the sum of the sizes of the argument sets).

(2) The class of integration problems that can be handled success-
fully (i.e., without interference being reported) in the lattice
whose elements are sets of untagged slices is strictly larger
than the class that can be handled in the lattice whose ele-
ments are sets of tagged slices. (The latter coincides with the
class handled by the HPR algorithm.)

(3) The integration algorithm based on downwards-closed sets of
untagged slices can produce a different answer than the algo-
rithm based on downwards-closed sets of tagged slices (both
in terms of the final program that is the result of an integra-
tion, as well as in the notion of when an integration fails due
to interference). The reason is that more programs map to the
same lattice element. In the lattice of downwards-closed sets
of untagged slices, if a program has multiple slices that are
isomorphic, the corresponding slice set will have only one
copy of the duplicated slice. For example, we show below
two programs and the set of untagged slices to which both
programs correspond:

program
[1] x := 0
[2] y := x
[3] w := x
end

program
[1] x := 0
[2] y := x
[4] x := 0
[3] w := x
end

, , ,I program
J end
K
J
L

program
x := 0

end

program
x := 0
y := x

end

program M
x := 0 J
w := x N

end J
O

Because the two occurrences of x := 0 in the second program
have different tags (indicated by [1] and [4]), the two pro-
grams correspond to different elements in the lattice of
downwards-closed sets of tagged slices:

, , ,I program
J end
K
J
L

program
[1] x := 0
end

program
[1] x := 0
[2] y := x
end

program M
[1] x := 0 J
[3] w := x N
end J

O
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, , , ,I program
J end
K
J
L

program
[1] x := 0
end

program
[1] x := 0
[2] y := x
end

program
[4] x := 0
end

program M
[4] x := 0 J
[3] w := x N
end J

O

Nevertheless, for both lattices, whenever the set that results
from evaluating A [Base ]B is feasible, the corresponding pro-
gram meets the semantic criterion for integration given in
Section 5.1. In other words, integration in the lattice whose
elements are downwards-closed sets of untagged single-point
slices also qualifies as an algorithm for semantics-based pro-
gram integration.

Unfortunately, using the lattice whose elements are sets of
untagged single-point slices for program integration does not com-
pletely solve the problem of integration in the absence of a
component-correspondence relation. What is lacking is an algo-
rithm for reconstituting the resulting program from the set of slices
that result from an integration. It is an open question whether a
practical method for this problem exists; this question is the subject
of on-going research.

5.2. Program Integration for Multi-Procedure Programs
In this section we discuss a solution to integration problem I.1
(integration given a component-correspondence relation) for
multi-procedure programs. There is currently no known solution
to problem I.2 (integration without a component-correspondence
relation) for multi-procedure programs; this problem is the subject
of on-going research.

We first consider two straightforward extensions of the HPR
algorithm to handle multi-procedure integration; however, neither
algorithm proves to be satisfactory. The first algorithm fails to
satisfy Property 2(i) of the integration model from the beginning of
Section 5.1; the second algorithm does satisfy Property 2(i) of the
integration model, but is unacceptable because it reports interfer-
ence in cases where there is an intuitively acceptable integrated
program. The latter example leads us to reformulate the integra-
tion model to capture better the goals of multi-procedure integra-
tion. After discussing the revised model for multi-procedure
integration, we outline our multi-procedure integration algorithm.
Details can be found in [7].

5.2.1. Straightforward extensions of the HPR algorithm
Our first candidate algorithm for multi-procedure integration
applies the HPR algorithm separately to each of the procedures that
make up a program (i.e., for each procedure P in Base, A, and B,
variant A and variant B’s versions of P are integrated with respect
to Base’s version of P). However, this technique is unsatisfactory
because there are many examples in which an integrated program
is produced, but that program fails to terminate normally on an ini-
tial state on which Base, A, and B all terminate normally (that is,
the technique produces an integrated program that violates condi-
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Base Variant A Variant B Integrated Programiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
procedure Main

x := 1
call P(x)
output(x)

end

procedure P(a)
a := a +1

end

procedure Main
x := 1
call P(x)
output(x)

end

procedure P(a)
c a := a −1 cddddddddiiiiiiii

end

procedure Main
x := 1
call P(x)
c x := 1/x cddddddddiiiiiiii
output(x)

end

procedure P(a)
a := a +1

end

procedure Main
x := 1
call P(x)
x := 1/x
output(x)

end

procedure P(a)
a := a −1

end
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 16. This example illustrates how using the HPR algorithm to integrate individual procedures can lead to a violation of property 2(i)
of the integration model of Section 5.1. Although programs Base, A, and B all terminate normally, the integrated program performs a divi-
sion by zero and thus fails to terminate normally. (The boxes indicate the modifications made to variants A and B.)

tion 2(i) of the integration model given in Section 5.1).
Example. Figure 16 shows programs Base, A, and B, and the
integrated program that is produced by applying the HPR algo-
rithm to the three versions of Main and to the three versions of P
(the changes made to A and B are shown enclosed in boxes). This
example motivates the need for a multi-procedure integration algo-
rithm to take into account potential interactions between
modifications that occur in different procedures in the variants.

The need to determine the potential effects of a change made in
one procedure on components of other procedures suggests the use
of interprocedural slicing. Thus, our second candidate algorithm
for multi-procedure integration is a direct extension of the HPR
algorithm: it performs the steps of the HPR algorithm exactly as
given in Section 5.1.1, except that each intraprocedural slicing
operation is reinterpreted as an interprocedural slicing operation.

Although this reinterpretation does yield a multi-procedure
integration algorithm that satisfies the integration model from Sec-
tion 5.1, the algorithm obtained is unsatisfactory because it fails
(i.e., reports interference) on many examples for which, intuitively,
integration should succeed. This is illustrated by the example
shown in Figure 17, on which the direct extension of the HPR
algorithm reports interference. Because the backward slices
b (SBase , { x := x + 1 }), b (SA , { x := x + 1 }), and b (SB , { x := x + 1 })
are pairwise unequal, the statement “x := x + 1” is an affected point
in both variants; therefore, the slices b (SA , { x := x + 1 }) and
b (SB , { x := x + 1 }) are both included in the merged SDG SM .
However, because both slices are included in SM , they are both
“corrupted” in SM ; that is, although b (SA , { x := x + 1 }) and
b (SB , { x := x + 1 }) are sub-graphs of SM , neither
b (SA , { x := x + 1 }) nor b (SB , { x := x + 1 }) is a sub-slice of SM .
For example, the slice b (SB , { x := x + 1 }) includes actual-in vertex
“xin := b” for the second call on Incr, which has an incoming
dependence edge from statement “b := 4.” The slice
b (SA , { x := x + 1 }) also includes actual-in vertex “xin := b” for the
second call on Incr, but with an incoming dependence edge from
“b := 2.” Therefore, in the slice b (SM , { x := x + 1 }), actual-in ver-
tex “xin := b” for the second call on Incr has incoming dependence
edges from both “b := 4” and “b := 2.” Consequently, graph SM is
found to have Type I interference, and the integration algorithm
reports interference.

Further examination of the example in Figure 17 reveals that
extending the programming language with procedures and call
statements has introduced the same issue about the appropriate cri-
terion for “changed behavior” that was discussed in the case of
multi-procedure differencing in Section 4.2. It is certainly true that
statement “x := x + 1” produces three different sequences of values
in Base, A, and B. However, statement “x := x + 1” in variant A
exhibits different behavior from Base only on the first invocation
of Incr, and statement “x := x + 1” in B exhibits different behavior
from Base only on the second invocation of Incr. Thus, for this
example it would seem desirable for the integration algorithm to
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Base Variant A Variant B Proposed Integrated Systemiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
procedure Main

a := 1
b := 2
call Incr (a)
call Incr (b)
output(a, b)

end

procedure Incr (x)
x := x + 1

return

procedure Main
c a := 3 cddddddiiiiii
b := 2
call Incr (a)
call Incr (b)
output(a, b)

end

procedure Incr (x)
x := x + 1

return

procedure Main
a := 1
c b := 4 cddddddiiiiii
call Incr (a)
call Incr (b)
output(a, b)

end

procedure Incr (x)
x := x + 1

return

procedure Main
a := 3
b := 4
call Incr (a)
call Incr (b)
output(a, b)

end

procedure Incr (x)
x := x + 1

return
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Figure 17. The program shown on the right incorporates the changed behaviors of both A and B as well as the preserved behavior of Base,
A and B. However, a direct extension of the HPR algorithm that uses interprocedural slicing operations in place of intraprocedural slicing
operations would report interference on this example. (The boxes indicate the modifications made to variants A and B.)

succeed and return the program labeled “Proposed Integrated Pro-
gram” in Figure 17; when this program is executed, it exhibits the
changed behavior from variant A during the first invocation of Incr
in addition to the changed behavior from variant B during the
second invocation of Incr.

However, the program labeled “Proposed Integrated Program”
in Figure 17 fails to meet Property (2) of the integration model
from Section 5.1 (because the sequences of values produced at
statement “x := x + 1” in Base, A, and B are pairwise unequal).
This example suggests that the integration model from Section 5.1,
which was originally introduced as a model for the integration of
single-procedure programs, needs to be revised to characterize
better the goals of multi-procedure integration. In particular, the
integration model should capture the notion of changed execution
behavior at a finer level of granularity.

In Section 4.2 we used a simplified criterion for equivalent
behavior based on the “top-level” sequence of values produced at a
point. For program integration, we use a more restrictive criterion
based on the concept of roll-out [28]—the exhaustive in-line
expansion of call statements to produce a program without pro-
cedure calls (in the presence of recursion, roll-out leads to an
infinite program). The criterion used for program integration, and
a multi-procedure integration model are presented in [7]. Roughly,
the multi-procedure integration model requires that the rolled-out
version of the integrated program must capture all of the changed
and preserved behaviors of the rolled-out versions of the variants
with respect to the rolled-out version of Base.

It should be stressed that our multi-procedure integration algo-
rithm does not actually perform any roll-outs; the algorithm works
on SDGs, which are finite representations of programs. Roll-out is
simply a conceptual device introduced to formulate a satisfactory
model of program integration.

A “rolled-out” program contains many occurrences—possibly
an infinite number—of each statement in the original program. In
the (possibly infinite) program obtained by roll-out, different
occurrences of a given component of some procedure P correspond
to invocations of P in different calling contexts. Consequently,
one occurrence of a given component can have a different behavior
in roll −out(A) than in roll −out(Base), while another occurrence
of the component has a different behavior in roll −out(B) than in
roll −out(Base) without there being interference.

Example. For each of the programs shown in Figure 17, the
(finite) program obtained using roll-out contains two different
occurrences of statement “x := x + 1,” corresponding to the first and
second invocations of procedure Incr. The change made in Variant
A affects the behavior only at the first occurrence of “x := x + 1;”
the change made in Variant B affects the behavior only at the
second occurrence of “x := x + 1.” When the program labeled
“Proposed Integrated Program” in Figure 17 is rolled out, the
resulting program captures both changes; when the program is exe-
cuted, it exhibits the changed behavior from variant A at the first
occurrence of “x := x + 1” as well as the changed behavior from
variant B at the second occurrence of “x := x + 1.”

To satisfy the new multi-procedure integration model, we
developed an algorithm that is similar to the HPR algorithm in that
it identifies slices of the programs’ system dependence graphs that
represent changed and preserved behavior, combines the graphs to
form a merged SDG, and tests the merged graph for interference.
However, these steps are defined so as to be consistent with the cri-
terion for equivalent behavior based on roll-out. For example, the
set of affected points is divided into two parts: the strongly
affected points of variant A with respect to Base (denoted by
SAPA, Base) are those points with different behavior in Base and A
according to the criterion discussed in Section 4.2—the points may
produce different sequences of values when their respective pro-
cedures are called with the same actual parameters. The weakly
affected points of A with respect to Base (denoted by WAPA, Base)
are those points that may produce different sequences of values in
A because a new call was added, or because the actual parameters
of an existing call were changed. The subgraph of A’s SDG that
captures the changed behavior of A with respect to Base (namely,
∆A, Base) is computed using different kinds of backward slices with
respect to A’s strongly and weakly affected points:

∆A, Base =df b ( SA , SAPA, Base) ) ∪ b2( SA , WAPA, Base)

The preserved points of Base with respect to A and B are those
points with equivalent behaviors according to the criterion of Sec-
tion 4.2:

PreA, Base, B =df b2(SBase , { v | b2(SA , v) = b2(SBase , v) = b2(SB , v) })

The merged SDG is formed by taking the union of the three graphs
that represent the variants’ changed and preserved behaviors:

SM =df ∆A, Base ∪ g ∆B, Base ∪ g PreA, Base, B

The details of the multi-procedure integration algorithm can be
found in [7].

6. IMPLEMENTATION
The techniques for slicing, differencing, and integration that are
described in this paper—as well as a few others not described—
have been implemented in a prototype system, called the Wiscon-
sin Program Integration System [34]. The Wisconsin Program
Integration System is coupled to a program editor created using the
Synthesizer Generator, a meta-system for creating interactive,
language-based program editors [33]. Program analysis is carried
out according to the editor’s defining attribute grammar; the infor-
mation gathered in this way is used to construct system depen-
dence graphs. Commands are available in the editor to invoke the
operations of slicing, differencing, and integration. The results of
the slicing and differencing operations are displayed on the screen
by highlighting appropriate components of the programs in a con-
trasting color (or, on black-and-white monitors, in a contrasting
typeface). When an integration command is invoked, the integra-
tion algorithm is applied to the system dependence graphs that
correspond to the programs indicated by the user. The system
reports whether the variant programs interfere, and—if there is no
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interference—the integrated program is constructed and placed in a
new editing buffer. When interference is detected (i.e., integration
fails), the system provides an interactive facility to help the user
diagnose the cause of interference [35].

The Wisconsin Program Integration System can be obtained by
contacting the authors. It is being distributed under license by the
Computer Sciences Department at the University of
Wisconsin−Madison. The distribution consists of the source code
for the system together with a reference manual that documents
how to use the system [36]. The system is written in C and SSL
(the specification language of the Synthesizer Generator) and runs
under UNIX on a variety of workstations. Further information
about configuration requirements is available on request from the
authors.
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