
Guard: A Relative Debugger

Rok Sosi�c and David Abramson

fsosic, davidag@cit.gu.edu.au
School of Computing and Information Technology

Gri�th University

Brisbane, QLD 4111

Australia

(to appear in Software - Practice and Experience)

Abstract

A signi�cant amount of software development is evolutionary, involving the modi�ca-

tion of already existing programs. To a large extent, the modi�ed programs produce the

same results as the original program. This similarity between the original program and the

development program is utilized by relative debugging.

Relative debugging is a new concept that enables the user to compare the execution of

two programs by specifying the expected correspondences between their states. A relative

debugger concurrently executes the programs, veri�es the correspondences, and reports any

di�erences found. We describe our novel debugger, called Guard, and its relative debug-

ging capabilities. Guard is implemented by using our library of debugging routines, called

Dynascope, which provides debugging primitives in heterogeneous networked environments.

To demonstrate the capacity of Guard for debugging in heterogeneous environments, we

describe an experiment in which the execution of two programs is compared across Internet.

The programs are written in di�erent programming languages and executing on di�erent

computing platforms.

Keywords: Debugging, Programming Tools, Program Development, Relative Debugging.

1 Introduction

A large portion of software development is based on the evolution of computer programs. In-

stead of developing new programs, existing programs are modi�ed. Some evolutionary software

development activities are: redesign of programs in order to improve their performance or add

new functionality; porting of programs to new computing platforms; and development of par-

allel programs from sequential code. These activities are similar in that they do not change

the basic program functionality. The problems of debugging software under these conditions

are signi�cant and represent a major cost to the software industry. Since the original program

version and the development version perform essentially the same task, it is possible to use the

original program version as a speci�cation for the development version. The execution of the

development version can be compared with the execution of the original version. Any di�er-

ences between the programs can indicate an error in the development version. The usage of a

trusted original version of the program to test the development version can signi�cantly speed

up software testing by automating large parts of the testing process.

1

One of the existing approaches is to compare the programs' source code [14]. Although

it is capable of handling a wide range of programming constructs, this approach is inherently

limited. In general, the exact program execution cannot be predicted from the source code.

A more powerful approach is to use the original version as an executable speci�cation for the

development version. This approach is provided by our novel debugging technique, called relative

debugging [2].

In relative debugging, the debugger controls the execution of two programs. The programs

are executed concurrently. The execution is interrupted at speci�ed points and the debug-

ger compares sections of program states. If the sections di�er, the di�erences are reported.

Otherwise, the execution continues. The comparison points and the sections to be compared

are speci�ed by the user. Automatic methods to derive these points and the sections are not

addressed here.

Although the signi�cance of comparing the execution of two programs has been recognized for

a long time, there are almost no supporting tools. In its most elementary form, the comparison

is performed manually by running two programs side by side, possibly under control of two

separate debuggers. Each program requires its own terminal or a window. The user manages

the execution of programs and visually compares the values of data structures that are printed

on the screen. This approach is extremely tedious and error prone. It provides only limited

insight, especially if the programs contain large data structures or execute for a long time. The

approach prevents automatic methods for visualizing di�erences, which are capable of exposing

subtle errors.

Some of the limitations of the manual approach can be avoided if parts of the program's

state are saved to a �le at regular intervals [12]. This approach requires modi�cations to the

program source code to insert state saving routines. The �les, produced by the two programs, are

compared using a �le comparison utility, such as diff on Unix. One limitation of this technique is

that the required disk space grows linearly with the program execution time. Another limitation

is that �le comparison utilities usually compare �les on a character by character basis without

taking into account type information. This approach can present a problem with oating point

numbers, which use an inexact representation.

Debugging technology is ideally suited for building a tool to support the process of software

evolution by providing necessary primitives for comparing program execution. Debuggers can

control the program execution, access the program's state and the relevant type information,

and do not require source code [6, 8, 18, 25, 26, 27, 34, 35]. These capabilities of debuggers can

overcome the limitations of the manual and the �le comparison approaches.

This paper describes our relative debugger, called Guard 1. In addition to ordinary debugging

commands, Guard provides new commands for relative debugging. We discuss some conceptual

issues in relative debugging in Section 2. These issues include the speci�cation of comparison

points, control of processes, debugging approaches, and the comparison of data structures. Novel

capabilities of Guard, speci�c to relative debugging, are described in Section 3. These capabilities

include: process invocation and control; imperative and declarative debugging; the display of

di�erences; automatic generation of assertions; and execution traces. The implementation of

1patent pending

2

Guard is described in Section 4. By using our library of debugging primitives, called Dynascope

[31], Guard is capable of operating in multi lingual, heterogeneous networked environments. We

demonstrate this capability by running Guard on a Silicon Graphics computer and by comparing

the execution of two programs written in two di�erent programming languages, C and Fortran,

and running on two di�erent platforms, Sun and NeXT. We conclude by describing some future

possibilities for relative debugging.

2 Issues in Relative Debugging

The use of relative debugging is simple. The programmers identify important data structures

in the development program. Next, they establish the corresponding data structures in the

original program. Finally, they specify locations in both programs at which the correspondence

between the data structures is expected. Both programs are run under the control of a relative

debugger. If no di�erences are found, then the programs produce expected results and the

development version is assumed to be correct. If the debugger �nds any di�erences, these are

reported. The programmers can repeat the process of program comparison by re�ning locations

at which the data structures are compared or by specifying additional data structures to be

compared. The process continues until a faulty section of the code is identi�ed. This approach

is capable of �nding errors in a very short time. For example, we were able to locate an error

in a Fortran program with 15,000 lines of code in just three iterations through the program

comparison process with a total of eight assertions [2]. In another experiment, a person with no

prior knowledge of a 30,000 line program was able to identify divergence between two versions

of the program in less than an hour [1]. It is interesting that the two versions were assumed to

be functionally equivalent by the authors of the program.

Although relative debugging is conceptually simple, a relative debugger involves signi�cant

challenges, demanding new approaches and techniques. The debugger must be able to control

and synchronize concurrent execution of two programs. This control requires that processes are

interrupted at predetermined points. After the processes are interrupted, the debugger accesses

variables from both programs and compares their values. These comparisons can be nontrivial.

For example, dynamic data structures with pointers are laid out di�erently for each program.

In addition, the inexact nature of the oating point arithmetic must be taken into account.

The programs can be written in di�erent languages, which use di�erent representations of data

structures. For example, an array can be stored in a row major or in a column major form or

even laid out in a more complex arrangement to minimize communication e�ects. The debugger

must be able to establish a correspondence between di�erent representations of data structures.

After a comparison is performed, the debugger must report its results to the user. The method

for reporting the results can be textual or graphical, depending on the number of di�erences.

The following parts of this section describe some of the issues in relative debugging in detail.

The issues addressed are the speci�cation of comparison points, control of processes, debugging

approaches, and the comparison of data structures.

3

(A,i)

(B,j)

(C,k)

(D,l)

program X program Y

(A,i)

(B,j)

(C,k)

(D,l)

program X program Y

(a) simple process control (b) complex process control

Figure 1: Control of Processes

2.1 Specifying Comparisons

The relative debugger veri�es that two processes are producing similar results. The debugger

accomplishes this veri�cation by continually interrupting the processes and comparing some of

their variables. The interruption points and variables to be compared are speci�ed by the user.

We call interruption points with the corresponding variables containers. A container de-

scribes a location, at which the program is interrupted, and a variable, whose value is signi�cant

at that point. The location can be speci�ed by a line in the source code or by an address. The

variable description consists of the access information, which can be either the variable name or

its address, and the type. The type can be supplied by the user or extracted from the debugging

information produced by the compiler. For each container, the location must be within the valid

scope for the variable. The same location or the same variable can be speci�ed in more than

one container.

In relative debugging, the user states the relationships between containers from di�erent

programs. The simplest relationships might require that variables contain the same values. More

complex relationships might compare only portions of variables. The most generic relationships

would allow arbitrarily complex mappings for establishing the correspondence between variables.

2.2 Control of Processes

After the containers are de�ned and their relationships are speci�ed, the user starts a debugging

session. During the session, the relative debugger initiates the two programs and sets breakpoints

at the union of all container locations. The execution of both programs is resumed and the

debugger waits for both programs to reach breakpoints. When the breakpoints are reached, the

containers with these breakpoints as locations are identi�ed. The debugger copies the variables

from programs to containers and veri�es that the speci�ed relationships between containers are

satis�ed. If any of the relationships is violated, then the debugger reports an error. Otherwise,

programs resume the execution until a new set of breakpoints is detected.

The control of processes in relative debugging is nontrivial. A fundamental issue is the re-

lationship between container comparisons and breakpoints. If the order in which breakpoints

are encountered by the programs corresponds to the order in which containers are to be com-

pared, then control of processes is straightforward. This case is illustrated in Figure 1(a). Two

containers are speci�ed for program X. The �rst container (A,i) has location A and variable i.

4

The second container has location B and variable j. Containers (C,k) and (D,l) are speci�ed

for program Y. Containers to be compared are (A,i) with (C,k) and (B,j) with (D,l). After

the programs encounter breakpoints A and C, the container comparison can be performed and

the programs can resume their execution.

An example of complex process control is shown in Figure 1(b). In this case, containers to

be compared do not match the order in which breakpoints are encountered. Such cases might

arise, whenever the control structure of the development program is di�erent from the original

program. Program X will reach breakpoint A and program Y will reach breakpoint C. At this

point, no container comparisons could be performed, because the matching containers are not

yet available. If the program execution is resumed, then containers (A,i) and (C,k) could be

overwritten with some other value by the time programs reach breakpoints B and D. A solution

is to keep the values of variables i and k, until they are consumed by a comparison. As a result,

each container must maintain a queue of variable values. Whenever a breakpoint is encountered,

the value of the corresponding variable is placed in the container's queue. When both containers

in a comparison have at least one value in their queues, the comparison is performed and values

are removed from the queues. This approach supports complex control of processes, because

containers can be compared in any order. In practice, a limit is put on the queue length, which

prevents a potential memory overow by one of the processes. In the worst case, which is rare

in practice, the storage requirements for containers might grow linearly with the execution time.

2.3 Debugging Approaches

Relative debugging involves executing the programs, interrupting them at relevant locations and

performing the comparisons of corresponding data structures.

In the simplest approach, these operations can be issued manually. This approach is similar

to traditional debugging techniques. The user implants breakpoints, which determine locations

of interest. After the program hits a breakpoint, it is interrupted and its state is inspected.

Program execution and state inspection are repeated, until an error is detected.

Relative debugging can be performed in a similar way by manually controlling program

execution. Before the execution, the user implants breakpoints in both programs, the reference

version and the development version. The breakpoints are placed at locations, at which some

variables in both programs are expected to contain similar values. After the programs encounter

breakpoints during the execution, breakpoint positions are veri�ed for correspondence and the

relevant variables are compared. If the breakpoints occur at unexpected locations, or the data

structures di�er, an error is found. Otherwise, the programs resume their execution and the

process is repeated.

This manual control of programs is called an imperative approach, because the order in

which breakpoints and the comparisons are issued is controlled explicitly by the user. However,

the imperative approach is unsuitable for complex programs. Because several commands must

be issued for each comparison performed, it can become time consuming and tedious. For

example, if variables to be compared are in a loop, the user must provide commands to implant

breakpoints, compare variables, and resume the execution of programs for each loop iteration. If

the loop is repeated many times, then this manual approach becomes impractical. One solution

5

function Compare (A,B) : f di�erent, equal g
begin

if not EqualTypes(A,B) then return(di�erent);
if TypeSimple(A) then return(CompareSimple(A,B));
if TypeComposite(A) then return(CompareComposite(A,B));
if TypePointer(A) then return(ComparePointer(A,B));

end;

Figure 2: Comparing Generic Variables A and B

could be to place the commands in a script �le, one sequence of commands for each loop iteration.

A problem with this solution is that it is capable of handling only loops with a predetermined

number of iterations.

An alternative to the imperative approach is a declarative approach. In the declarative

approach, the user does not issue debugging commands explicitly for each comparison. Instead,

the user speci�es assertions, which establish a relationship between containers in two programs.

After the assertions are set, a single debugging command is issued by the user, regardless of

the number of containers and assertions. The command automatically sets all the necessary

breakpoints, controls the execution of processes, and performs relevant variable comparisons,

using the process control approach described in Section 2.2. If an assertion is not satis�ed during

the execution, the debugger reports relevant data structures and exits the declarative mode.

The declarative approach enables the user to specify the correspondence between programs in

a natural and e�cient way, which greatly increases the power of relative debuggers.

The imperative and declarative approaches both require the comparison of variables. Al-

though one approach is manual and one automatic, they use the same comparison method. The

method is described in the next section.

2.4 Comparing Data Structures

The relative debugger compares variables from di�erent programs by copying their values to

its own address space and performing the comparisons. The comparison is done in a recursive

fashion. Data structures are decomposed into basic elements, which are compared directly.

Pointers are compared indirectly by comparing their references. If any two basic elements are

found di�erent, then the variables are declared di�erent. The details are described below.

For the comparison purposes, types of data structures are de�ned as being either simple,

composite or pointers. Simple types are basic types, such as integer, oating point and character,

from which all other types are constructed. These types are usually directly supported by the

underlying hardware. Composite types, which can be arrays or records, contain one or more

elements. In the case of arrays, the elements have the same type. They are accessed by index.

In the case of records, the elements can have di�erent types. They are accessed by their names.

Pointers contain addresses of other elements.

To compare two variables, the relative debugger uses function Compare (see Figure 2).

Compare takes two input parameters, A and B. The parameters specify the variables to be com-

6

function CompareSimple (A,B) : f di�erent, equal g
begin

if TypeInteger(A) then return(CompareInt(A,B));
if TypeCharacter(A) then return(CompareChar(A,B));
if TypeFloat(A) then return(CompareFloat(A,B));

end;

Figure 3: Comparing Simple Variables A and B

pared, their types, and the programs in which they reside. A and B can be in two di�erent

programs. It is assumed that the programs containing variables are interrupted and that the

debugger has access to type information and data space for both programs. Compare returns

equal, if the values of A and B are the same. Otherwise, it returns di�erent.

Compare �rst veri�es that A and B have the same type. Next, it calls CompareSimple,

CompareComposite or ComparePointer, depending on the type of A and B. These functions

compare simple, composite or pointer types, respectively.

CompareSimple is shown in Figure 3. It determines the type and calls the corresponding

comparison procedure. Comparison procedures access the variables, copy their values to the

relative debugger, and perform the comparison. Because integer and character arithmetic is

exact, CompareInt and CompareChar are straightforward in principle. In practice, however, the

debugger must take into account di�erent character sets and di�erent integer representations,

such as di�erent byte ordering schemes, di�erent sizes of integers in heterogeneous systems,

and di�erent representations of negative numbers. Before a comparison can be performed,

values must be converted to a canonical form, understood by the debugger. In addition to

di�erent representations, oating point comparisons, performed by CompareFloat, have to take

into account the inexact nature of oating point arithmetic. Mathematically equivalent, but

computationally di�erent sequences of oating point operations usually produce di�erent results.

This inequality is accommodated by a user speci�ed tolerance value. If the di�erence is less than

the tolerance, then the numbers are considered equal, otherwise they are di�erent.

CompareComposite performs a comparison of composite variables. It simply checks whether

the variables are either arrays or records. In the case of arrays, these are traversed from the �rst

element to the last and the comparisons between the corresponding elements are performed.

Indexes, which are used to access arrays, represent a natural way to establish a correspondence

between elements of two arrays. In the case of records, the correspondence might be nontrivial.

The problem is similar to the problem of determining type equivalence in compilers [4]. One

solution is to compare record �elds in their order of occurrence by default and to allow users to

de�ne other correspondence orders.

Pointer comparisons are more complicated than comparisons of other types. Pointer values

between programs will in general di�er in value because of di�erent heap management techniques.

Other data structures are compared by comparing the values of the corresponding elements.

With pointers, their references are compared instead. A minimal or a maximal approach can be

taken for comparing pointers. In the minimal approach, only the immediate pointer references

7

function ComparePointer (A,B) : f di�erent, equal g
begin

if InTable(A) or InTable(B) then
if InTable(A) and InTable(B) then return(equal)
else return(di�erent);

Add(A); Add(B);
return(Compare(�A,�B));

end;

Figure 4: Comparing Dynamic Data Structures A and B

are compared. In the maximal approach, the entire data structure, to which the pointer is

pointing, is traversed and the corresponding elements are compared. We describe here the more

general, maximal approach.

ComparePointer is shown in Figure 4. To prevent an in�nite loop while traversing pointers

connected in a cycle, a table of already visited pointers is maintained. This table is initialized,

before the pointer comparison starts. ComparePointer uses function InTable to check if a

pointer is in the table and procedure Add to add a pointer to the table. The reference of pointer

A is denoted by �A. ComparePointer �rst checks, if the pointers have been visited before. If

both of them have been visited, then their references are equal. If only one of the pointers

have been visited, then the dynamic data structures are di�erent. If none of the pointers have

been visited, then the pointers are added to the table and their references are compared. This

approach veri�es that elements in both data structures are connected in the same way and that

they contain same values.

3 Relative Debugging in Guard

This section describes facilities for relative debugging in Guard, our relative debugger. Guard

also supports traditional debugging commands. Because these commands are commonly found

in most debuggers, they are not discussed in any detail. Facilities for relative debugging pro-

vide process control; imperative and declarative debugging for comparing program execution;

methods for displaying di�erences; support for automatic generation of assertions; and execution

traces. The most important of these features are described below.

3.1 Process Invocation and Control

To provide the control of multiple processes, Guard supports process names. Each process has

a name, which is used to identify the process. The name is assigned by the user at the process

activation time. There are two methods to activate a process.

The user can attach to an existing process or invoke a new process:

attach <process_name> <process_id> <computer_name> <user_name>

invoke <process_name> <command_line> <computer_name> <user_name>

8

<process name> is a user assigned logical name, which identi�es the process in subsequent

commands. The target process is speci�ed either by its process identi�cation number or a

command line to start the process. <computer name> and <user name> specify the execution

environment. <computer name> speci�es the computer, <user name> speci�es the user name.

attach and invoke are the only two commands that require the name of the target computer.

Other commands require only logical process names. The process can execute on the same

machine as the debugger or on a remote machine, connected to the debugger's machine by

a network. The only features of debugging commands that distinguish remote debugging from

local debugging are machine and user parameters in invoke and attach commands. If these two

parameters are empty, programs are invoked on the local machine, otherwise they are invoked

on remote machines.

3.2 Imperative Debugging

Guard implements both imperative and declarative relative debugging as discussed in Section 2.3.

The elementary imperative command is compare. It can be issued when the processes are

interrupted, usually after both processes encountered a breakpoint. Compare takes two variables,

possibly from two di�erent processes, and reports any di�erences in their values:

compare <process_1>::<variable_1> <process_2>::<variable_2>

During the execution of compare, the relative debugger copies the values of both compared

variables from the programs into its internal bu�ers and performs the comparison. If the two

values di�er, Guard reports the results by printing a textual report or by visualizing di�erences

directly or through an external visualizing program. The comparison takes into account type

declarations in the corresponding source programs. If present, the type information can be

extracted directly from the executable �les. Otherwise, it can be supplied by the user.

The existing version of Guard supports simple types and arrays, because we have con-

centrated on numerical programs, which contain only simple types and arrays. The compare

command is being extended to handle more complex types, such as records and dynamically

allocated data structures, using the approach described in Section 2.4.

The inequality of oating point numbers is handled by a user speci�ed threshold. The thresh-

old can be either global or speci�ed for a particular comparison. Furthermore, the threshold can

be relative or absolute. Our experience in using Guard shows that both methods of calculating

the threshold are necessary.

In comparing arrays, additional complexity is provided by di�erent array representations in

di�erent languages. For example, multidimensional arrays can be laid out in a row major or a

column major order. Also, the �rst element can start with a di�erent index: with 0 in C, with

1 in Fortran, and with a user speci�ed value in Pascal. To indicate di�erent array layouts, the

user can associate one of the prede�ned language types with each process. Guard then uses this

information in determining array layouts.

It is often desirable to compare only limited array sections. This partial array comparison

is supported by array slices, which span only a partial array range. Such slices can be speci-

�ed by the user in the compare command by giving the comparison range. Additional array

transformations, supported by Guard, include index permutations and pointers to arrays.

9

1. # start process "f": the program in Fortran

2. invoke f fshallow machine1.cit.gu.edu.au user1

3. # start process "c": the program in C

4. invoke c cshallow machine2.harvard.edu user2

5. # specify language for processes "f" and "c"

6. set language f fortran

7. set language c c

8. # specify the dimensions of array P in the Fortran program

9. declare float f::p [301][301]

10. # specify the dimensions of array pr in the C program

11. declare float c::pr[300][300]

12. # specify difference threshold for floating point numbers

13. eps absolute float .01

14. # set breakpoints in "f" and "c"

15. breakpoint f::fshallow.f:87

16. breakpoint c::cshallow.c:63

17. # continue with the execution of "f" and "c"

18. continue f

19. continue c

20. # breakpoints were encountered, compare the array values

21. compare f::p[1..300][1..300] c::pr[0..299][0..299]

...

... # lines 18.-21. must be repeatedly typed in by the user

... # for each loop iteration

...

Figure 5: Imperative Debugging

The comparison of arrays is illustrated by the following example. Structures to be compared

are array P in a Fortran program and array pr in a C program. P is de�ned in Fortran as:

DIMENSION P(301,301)

pr is de�ned in C as:

float pr[300][300];

Array dimensions in Fortran are larger by one because the code is optimized for pipelining in

vector processors. A complete script of Guard commands is shown in Figure 5. The script

compares the corresponding sections of arrays P in Fortran and pr in C. The last line of the

script contains a compare command. Array layouts are determined by the set language com-

mands. Slices are determined by specifying the processes, variables and ranges to be compared,

f::p[1..300][1..300] and c::pr[0..299][0..299]. From the speci�cation of array layouts

and slices, the positions of individual array elements are calculated. The elements are then

accessed and compared.

With the compare command, the notion of a container does not exist. All the program

control and comparisons are managed explicitly by the user, which can be tedious in some cases.

A common place to compare variables is within a loop. The compare command will perform

10

...

... # same as lines 1.-13. in imperative debugging

...

14. # make an assertion

15. assert f::p [1..300][1..300]@fshallow.f:87 =

16. c::pr[0..299][0..299]@cshallow.c:63

17. # verify the assertions for processes "f" and "c"

18. verify f c

Figure 6: Declarative Debugging

only a single comparison, so the user must continually issue commands for each loop iteration.

Imperative debugging is thus suited only for simple programs. For more complicated programs,

declarative debugging provides a signi�cantly better alternative.

3.3 Declarative Debugging

Declarative commands, which are based on containers, signi�cantly simplify relative debugging.

These commands are assert and verify. assert provides an assertion, specifying containers

to be compared:

assert <process_1>::<container_1> = <process_2>::<container_2>

Each container is composed of a variable to be compared and a breakpoint location. An arbitrary

number of assertions can be speci�ed by the user. After all the assertions are set, they are veri�ed

by a single verify command. Without any further user intervention, the verify command sets

all the breakpoints, manages the process execution, and performs the relevant comparisons when

breakpoints are encountered. The same method for comparing variables is used by verify and

compare. The verify command terminates and returns control to the user, if: the pair of

breakpoints encountered does not have at least one corresponding assertion; comparisons detect

di�erences; or programs terminate.

Our existing version of Guard supports only simple control of processes. When the processes

encounter breakpoints, an error is reported if only one of the containers in an assertion is

available. If both containers are available, then the comparison is performed and the process

execution is resumed, if no di�erences are found. This simple control of processes is su�cient in

a majority of cases.

The example in Figure 5, can be rewritten with assertions. Commands for imperative de-

bugging in lines 14.-21. can be replaced with commands for declarative debugging in Figure 6.

A signi�cant advantage of relative debugging is that a single verify command is required to

perform the comparison every time process f reaches line 87 in �le fshallow.f and process c

reaches line 63 in �le cshallow.c. If imperative debugging is used instead, several commands

must be issued explicitly for each comparison performed.

11

3.4 Displaying the Di�erences

If programs satisfy assertions, then no di�erences are reported by Guard. However, if Guard

�nds any di�erences, these are reported to the user. The report of di�erences can be textual or

graphical.

Text is used to report the di�erences between simple variables. A similar approach is used

for arrays. Assertions with arrays involve comparisons of corresponding elements. If any di�er-

ences are detected, a list of pairs of array elements is printed, together with their indexes and

di�erences. However, such a report is not appropriate for all programs and can be prohibitively

long for large arrays. The user can select to print out only some of the di�erences or switch o�

the printing completely. The di�erence report can be also redirected to a �le. This redirection

capability is especially useful, when di�erences are post processed with a visualization package,

capable of performing advanced multidimensional visualizations of large quantities of data. It

is possible to combine several consecutive visualizations of di�erences into an animation. Ani-

mations of di�erences proved extremely helpful in analyzing numerical computer models, where

slight algorithm modi�cations can signi�cantly alter the result. A case study of using Guard on

a real program, a large-scale weather model, is described elsewhere [1].

Guard itself provides a simple, but powerful two dimensional visualization of array dif-

ferences. Arrays are represented by a rectangle on the screen, so that each screen location

corresponds to one pair of array elements. If the elements from the two arrays are equal, the

corresponding location on the screen is white, otherwise, the location is black. The mapping

of a two dimensional array on a rectangle on the screen is obvious. If an array is only one

dimensional, then it can be broken into several intervals to form a rectangle on the screen. If

an array has more than two dimensions, then redundant dimensions can be collapsed into two

dimensions.

Guard visualization utilizes the human capabilities for pattern recognition to give an e�ective

way of detecting and diagnosing anomalies in the program behavior. An example of a graphical

display of di�erences between two programs is shown in Figure 7. The two programs being

compared are written in Fortran and C and calculate shallow water equations [3]. The largely

black section at the bottom demonstrates that the arrays almost completely di�er in that region.

From the picture, it was quickly determined that one of the loops terminated prematurely, so

a large portion of the array had not been updated. The elaborate pattern in the top region

shows di�erences in oating point values between the Fortran and the C version. Although

both programs compute correct values in the top region, the di�erences are produced by inexact

oating point arithmetic. The pattern at the top disappears, if the threshold value is increased.

To assist with the threshold value, an array comparison always produces a short summary of

di�erences. The summary contains two numbers, the maximum di�erence and the total di�er-

ence. The maximum di�erence is the largest di�erence found across all the element comparisons

performed. The total di�erence is the sum of all di�erences between the corresponding pairs of

elements. By observing these numbers, the user can obtain a quick estimate of the di�erences

without analyzing detailed numbers.

12

Figure 7: Premature Loop Termination

3.5 Automatic Generation of Assertions

Relative debugging is commonly performed as an iteration of several steps. First, the assertions

are speci�ed. Although the user can specify the assertions interactively, a script �le is usually

used instead. The programs are started to detect any potential di�erences. After the di�erences

are detected, their source is investigated. As a result, the source code of one of the programs

is modi�ed and the script is run again. Because assertions in the script rely on locations in

the source �le, they must be updated every time the position of these locations changes due

to user modi�cations. In general, the script �le with assertions must be updated after every

compilation.

Guard can automate this process of generating script �les, so that no user intervention is

required. The underlying mechanism is a list of containers, which can be generated at compile

time. No modi�cations to the compiler or other system tools are required for list generation.

By using a Guard command during debugging, lists from di�erent programs can be combined

to form assertions, which can be used exactly as regular, user speci�ed assertions.

Automatic generation of assertions is illustrated in Figure 8. A container is speci�ed in the

source code by a pragmatic comment, which contains the name of this container and the variable

to be compared. During each compilation of the program, a simple preprocessor traverses the

source code and extracts the list of containers, one container per pragmatic comment. Each

element in the list contains the container name, its location and the variable name. The container

and the variable names are speci�ed in the pragmatic comment by the user. The location is

determined by the preprocessor as the line number of the corresponding pragmatic comment in

13

Program 1 with pragmatic
comments

Program 2 with pragmatic
comments

preprocessor

containers

script with assertions

containers

preprocessor

build command in Guard

Figure 8: Automatic Generation of Assertions

200. ...

201. do 300 j=1,n

202. do 200 i=1,m

203. uold(i,j) = u(i,j)+alpha*(unew(i,j)-2.*u(i,j)+uold(i,j))

204. u(i,j) = unew(i,j)

205. 200 continue

206. 300 continue

207. C$CONTAINER test1 uold

208. C$CONTAINER test2 u

209. ...

Figure 9: Speci�cation of Containers in Fortran

the source code.

Guard uses the build command to combine two container lists:

build <process_1>::<file_1> <process_2>::<file_2>

The command takes two �les with containers, forms assertions, and associates them with pro-

cesses. Each assertion requires the matching of two containers. This matching is based on

container names, speci�ed in pragmatic comments by the user. Containers with the same name,

but from two di�erent �les, are joined in a single, complete assertion. The naming assures that

correct containers are matched regardless of the di�erent source code organization of the two

programs. The matching is preserved even when source code is completely reorganized.

The generation of assertions is illustrated on two programs written in Fortran and C. A

section of the Fortran program, augmented with pragmatic comments for specifying assertions,

is shown in Figure 9. The corresponding section in the C program is shown in Figure 10.

Array uold in Fortran corresponds to array vold in C and array u corresponds to array v.

Although the programs have di�erent structure, their results are expected to be similar. This

expectation is speci�ed in pragmatic comments with containers test1 and test2, de�ned in

both programs. From lists of containers, generated automatically during the compilation phase,

the build command in Guard will generate the following assertions:

14

267. ...

268. for (j = jstart; j <= jend; j++){

269. for (i = 0; i < m; i++){

270. vold[i][j] = v[i][j]+alpha*(vnew[i][j]-2.*v[i][j]+vold[i][j]);

271. }

272. }

273. /*$CONTAINER test1 vold */

274.

275. for (j = jstart; j <= jend; j++){

276. for (i = 0; i < m; i++) v[i][j] = vnew[i][j];

277. }

278. /*$CONTAINER test2 v */

279. ...

Figure 10: Speci�cation of Containers in C

assert f::uold@fshallow.f:207 = c::vold@cshallow.c:273

assert f::u@fshallow.f:208 = c::v@cshallow.c:278

There is no di�erence between these assertions and user speci�ed assertions. Both types of

assertions can be arbitrarily mixed and veri�ed with a single verify command.

Automatic generation of assertions is bene�cial in several ways. It simpli�es program main-

tenance by removing tedious manual construction of assertions. The user must maintain only

pragmatic comments in the source code, which change infrequently. An additional advantage is

that containers can be speci�ed independently for each program. The build command in Guard

takes into account only containers with a matching pair, other containers are ignored.

3.6 Execution Traces

For debugging purposes, it is sometimes impractical or impossible to execute a real program.

The program might require a machine or an environment that is not operational or the program

itself might be unavailable. In such cases, the user can use execution traces, provided by Guard.

With execution traces, the program is run only once and the information about its execution is

stored as an execution trace on a disk. The trace can be used later to supply variable values

instead of running the original program.

An execution trace can be generated by Guard during any debugging session. Independently

for each process being debugged, the user can turn on or o� the generation of an execution trace.

If the execution trace is turned on, then Guard will output the trace to a �le. The �le contains

all the information, necessary to perform a debugging session for that particular process. The

trace consists of containers and the values of their corresponding variables as encountered during

the execution. As long as the set of containers and the input values remain the same, the trace

can transparently replace the original process at a debugging session.

The generation and the use of traces in Guard is seamlessly integrated with other com-

mands. The tracing capability is added with no change to any of the existing commands. Trace

generation is controlled by the traceon and traceoff commands:

15

traceon <process_name> <file_name>

traceoff <process_name>

When the tracing is turned on, the relative debugger automatically saves the trace in tracing

�le <file name>. The trace contains the values of all the variables, used in any comparison or

assertion.

Normally, Guard executes two programs concurrently. However, an execution trace belongs

to a single program, so it is desirable to be able to run only that program to produce its execution

trace. To provide this capability, Guard supports empty processes. Instead of using the invoke

command, the second process can be declared empty:

empty <process_name>

Guard ignores all commands for an empty process, except comparisons. If a comparison is

performed between an empty and a nonempty process, then the trace will be generated for the

nonempty process, if requested. A comparison with an empty process reports no di�erences, so

the trace generation is transparent to the user. Using empty processes, a trace can be generated

by running a single process without any changes in assertions.

The trace is used during a debugging session through ghost processes. For a ghost process,

Guard reads its execution information from a trace �le, instead of running a real process. A

ghost process is created by a ghost command:

ghost <process_name> <file_name>

For each comparison performed, the container and the value of its variable are read from the

trace as if they would be generated by a real process. If the types of structures to be compared

do not match or if di�erences in values are detected, Guard will print an error message and

display di�erences.

The generation and the use of traces does not require any signi�cant changes in the script

�les. The user speci�es a set of assertions and generates the relevant trace to the disk. As long

as the set of assertions remains the same, the trace of the reference program can be used in

verifying the assertions for the development program. Another trace must be generated only

when the set of assertions changes. Because there is no need to execute a real process, execution

traces can simplify and speed up relative debugging.

4 Implementation of Guard

4.1 Implementation Issues

Relative debugging requires several advanced capabilities, some of which are not normally avail-

able in traditional debuggers. The most important novel capabilities are concurrent control of

at least two processes and the capability to operate in a distributed and heterogeneous environ-

ments.

Debuggers usually use specialized debugging primitives. The primitives, provided by the

operating system, allow debuggers to control other processes and to manipulate their internal

state [7, 16]. Guard could use these primitives to carry out debugging operations. This approach

would require a fairly straightforward extension to existing debuggers.

16

However, one of the main powers of relative debugging is the ability to debug programs

in a distributed and heterogeneous environments, with programs running on di�erent types of

machines. Standard debugging primitives provide very little support for distributed debugging.

These primitives are highly system dependent, so it is nontrivial to implement debuggers for

heterogeneous environments [21, 22, 26].

To successfully operate in a distributed and heterogeneous environment, Guard uses a dif-

ferent approach. To carry out its debugging operations, it utilizes a system, called Dynascope.

Dynascope provides debugging servers, which can be accessed through a system independent

debugging interface [31]. These servers implement primitives for building debuggers and other

similar applications in distributed and heterogeneous environments. Dynascope is described in

the next section.

4.2 Dynascope

Dynascope implements debugging servers, which can be used to build sophisticated debugging

and monitoring applications. Such applications are becoming crucial in dealing with increasingly

complex software [5, 9, 10, 11, 13, 15, 17, 19, 20].

By hiding system dependencies, Dynascope provides a procedural interface, which is indepen-

dent of the underlying operating system. Debugging primitives can be executed in distributed

and heterogeneous environments. All the necessary communication between processes in a dis-

tributed environment is handled internally by Dynascope and is transparent to the user.

Dynascope implements the primitives for: process control; state access; breakpoint handling;

tracing; and dynamic loading and linking. Some of the Dynascope primitives are shown in

Figure 11. The Dynascope interface is described in detail elsewhere [31].

Although powerful debugging primitives usually require interpreted environments [17, 23,

24, 29, 32, 33], Dynascope operates in traditional, compiled environments. It is compatible with

existing compilers, linkers, and other development tools. Dynascope has no special provisions

for optimized code. It always retrieves variable values from the program's address space in the

main memory. If the right value is kept in a register, but not in the main memory, then an

incorrect value will be retrieved.

The structure of Dynascope is shown in Figure 12. Dynascope consists of two components for

building debuggers, the client library and the debugging server. The client library is associated

with each debugger, the debugging server with each program being debugged. The communica-

tion between the client library and the debugging server is carried out using standard operating

system features, such as signals, sockets, and the TCP/IP protocol.

The client library provides a set of procedures, which are called by the debugger to carry

out the debugging operations. The library is linked with the debugger in a single executable

program. The library handles requests from the debugger by: establishing a connection between

the debugger and the debugging server; sending debugging requests to the server; and receiving

the results.

The debugging server carries out requests from the client library by controlling and accessing

the program. Debugging requests are serviced by accessing the user program and by utilizing

standard object formats and debugging information. Two designs of the debugging server have

17

Process Control: Breakpoints:

invoke - start a new process setbreak - set a breakpoint

attach - attach to an existing process delbreak - delete a breakpoint

detach - detach from the process waitbreak - wait for a breakpoint

kill - terminate the process

execute - execute the process Tracing:

connect - stop the process

trace - trace on and off

getevent - get a tracing event

State Access: ldfilter - load an event filter

rmfilter - remove a filter

getmem - read memory initfilter - initialize a filter

putmem - set memory

getstate - read processor state Dynamic Loading and Linking:

putstate - set processor state

getsym - get symbol value ldobject - load an object file

time - get execution time rmobject - remove an object file

lineaddr - get line address link - link a symbol

Figure 11: Dynascope Primitives

program

debugger

debugging
server

client
library

communication
channel

Dynascope

Figure 12: The Structure of Dynascope

18

DEC IBM NeXT SGI Sun
Operation Alpha SP/2 NeXTst. Turbo Challenge SPARCst. 5

Attach 31.4ms 47.3ms 99ms 53.7ms 57.9ms

Null Command 140�s 100�s 320�s 240�s 255�s

Max. Throughput 36.2Mb/s 40.2Mb/s 4.27Mb/s 18.5Mb/s 13.5Mb/s

Requests/s 4000 6850 2323 3592 3034

Breakpoint 330�s 220�s 620�s 400�s 480�s

Table 1: Dynascope Performance

been implemented. In the �rst design, the server is a special purpose thread executing in the same

address space as the user program. Normally, the user program is executing and the debugging

server is inactive. Upon receiving a debugging request, the user program is interrupted and the

server is activated. After the request is answered, the user program continues with the execution.

The execution of the user program and the server are mutually exclusive. There are no direct

procedure calls from the user program to the directing server or vice versa. More details on

the implementation of the server are described elsewhere [30]. In the second design, the server

runs as a separate program, utilizing system provided debugging primitives for carrying out

debugging requests. The second design is simpler to implement, but some of the features, such

as tracing or dynamic loading, are not supported, because they are not provided by the system

primitives.

Dynascope is implemented on DEC OSF/1, IBM AIX, NeXT Nextstep, Silicon Graphics

IRIX, Sun SunOS, Sun Solaris and Linux systems. Implementations on additional architectures

are in progress. Debuggers and programs being debugged can be mixed arbitrarily between

platforms.

The performance of major Dynascope primitives on various platforms is provided in Table 1.

Measurements were taken on machines with minimal load. Each column presents measured

performance for one platform. Row Attach shows the time required to attach to a process

and establish a connection between the debugger and the program. Row Null Command gives

the execution time for an empty debugging command, demonstrating the minimum command

servicing time. Row Max. Throughput illustrates the maximum number of bytes that can be

transferred between the debugger and the program in a second. Row Requests/s gives the

maximum number of copying requests that are handled by the debugging server per second.

Row Breakpoint shows the maximum number of breakpoints reported per second.

4.3 Experiment in Heterogeneous Debugging

As mentioned before, Dynascope provides uniform debugging primitives regardless of the un-

derlying computing platform. Because Guard is built on top of Dynascope, it works on any

platform supported by Dynascope. Moreover, it can debug programs that execute on any other

Dynascope supported platform.

To demonstrate the heterogeneous nature of Guard, we have performed the following experi-

ment (see Figure 13). In the experiment, Guard successfully compared the execution of programs

19

Guard :
relative debugger

shallow program
in FORTRAN

shallow program
in C

AUSTRALIA:
Silicon Graphics computer
in Brisbane

NORTH AMERICA:
NeXT computer
in Boston, USA

AUSTRALIA:
Sun computer
in Brisbane

Dynascope connections over Internet

Figure 13: Experiment in Heterogeneous Debugging

across Internet, involving three di�erent types of computers and two di�erent languages. Guard

itself was running on a Silicon Graphics computer at Gri�th University in Brisbane, Australia.

The C version of the program was running on a NeXT computer at Harvard University in

Boston, USA. The Fortran version of the program was running on a Sun computer at Gri�th

University in Brisbane, Australia.

Both programs solved a set of partial di�erential equations to perform the calculation of

waves in shallow water [3]. To perform the experiment, C and Fortran executables were created

on the NeXT in Boston and the Sun in Brisbane. These executables were formed by linking

user object �les with the Dynascope debugging server. The user access rights were set on the

NeXT and the Sun, so that Guard could perform a remote login to these machines. The script

that was executed by Guard to carry out the experiment is essentially the same as the script

shown in Figure 5 with results similar to those in Figure 7.

No modi�cations of the standard version of Guard and Dynascope were necessary in order

to perform the experiment. Dynascope hides all machine dependencies and handles the com-

munication details. Guard code is machine independent and only recompilation is required to

port Guard from one platform to another. Because Dynascope provides high level debugging

primitives, no extensive system level knowledge was required for implementing Guard.

5 Conclusions

Guard is being successfully used in software development. Several in-depth case studies of using

Guard on practical problems are described elsewhere [1, 2]. In those studies, Guard reduced

the time, necessary to locate errors in programs with several ten thousand lines of code, to less

than an hour. In one case, it found discrepancy between two programs, when no di�erence

was expected. It is estimated that traditional methods of program debugging and testing would

20

often require weeks to perform similar tasks. Our initial experience with Guard is thus extremely

encouraging. We expect that relative debugging will signi�cantly reduce the time required for

the evolutionary software development.

At the implementation level, several extensions to Guard are currently being planned. We are

working on support for providing complex control of processes. The support will be based on the

dataow approach to debugging [25]. This approach will also increase the power of assertions.

Assertions will be able to dynamically determine which containers to match, depending on the

run time values from the programs. Additional topics for future research involve issues related

to interactive input and output and the coverage of test data. So far, our work has concentrated

on numerically intensive applications. We plan to extend relative debugging to distributed,

interactive business applications, which require a high degree of reliability. Examples of such

applications include bank networks and air-tra�c control systems. By using techniques from

relative debugging, a new version of software could be run in parallel with the existing version for

extended periods of time. The execution of the new version would be compared to the existing

version, which would be performing the real work.

At the conceptual level, our experiment with Guard in heterogeneous debugging has suc-

cessfully demonstrated that it is possible to provide a uniform debugging interface. Such an

interface makes possible many novel applications in heterogeneous computer networks. For ex-

ample, to support the porting of applications to new computing platforms, veri�cation servers

could be set up, which would provide known behavior for testing the development programs. By

providing the capability of comparing programs in di�erent languages, relative debugging might

make practical advanced techniques, such as algorithmic debugging [28]. These techniques could

utilize executable program speci�cations. The reference program can be written in a high level

declarative language specifying the program behavior. Although such reference programs would

execute much slower than the development version, they could provide executable speci�cations

for the development version. By comparing the execution of the high level speci�cations and

the development version, relative debugging could be used to verify the conformation of the

development version with its speci�cations.

Relative debugging utilizes the fact that most software is being developed through relatively

small, evolutionary changes to the existing code. By providing support for this common software

development activity, relative debugging has the potential to signi�cantly reduce time consuming

phases of software debugging and testing.

Acknowledgments

This work has been supported in part by the Australian Research Council. Lisa Bell has per-

formed much of the programming necessary to implement Guard and proposed the term relative

debugging. Andrej �Sali arranged computer access in USA. Ian Foster, John Michalakes and Larry

Snyder provided many useful suggestions for extensions to Guard. Comments from anonymous

reviewers were very helpful in improving the paper.

The information on the availability of Guard can be obtained on WWW:

http://www.cit.gu.edu.au/~davida/guard.html

21

References

[1] D. Abramson, I. Foster, J. Michalakes, and R. Sosi�c. Relative debugging and its application

to the development of large numerical models. In Supercomputing'95, San Diego, December

1995.

[2] D. Abramson and R. Sosi�c. A debugging tool for software evolution. In CASE-95, Toronto,

pages 206{214, July 1995.

[3] D. A. Abramson, M. Dix, and P. Whiting. A study of the shallow water equations on

various parallel architectures. In 14th Australian Computer Science Conference, Sydney,

1991.

[4] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.

Addison-Wesley, Reading, MA, 1986.

[5] Z. Aral and I. Gertner. Non-intrusive and interactive pro�ling in Parasight. In Proceeedings

of the ACM/SIGPLAN PPEALS 1988, pages 21{30. ACM, 1988.

[6] G. Ashby, L. Salmonson, and R. Heilman. Design of an interactive debugger for FORTRAN:

MANTIS. Software{Practice and Experience, 3(1):65{74, January-March 1973.

[7] M. J. Bach. The Design of the Unix Operating System. Prentice-Hall, Englewood Cli�s,

NJ, 1986.

[8] R. M. Balzer. EXDAMS - EXtendable Debugging and Monitoring System. In AFIPS

Conference Proceeedings, Vol. 34, pages 567{580. SJCC, 1969.

[9] T. E. Bihari and K. Schwan. Dynamic adaptation of real-time software. ACM Transactions

on Computer Systems, 9(2):143{174, May 1991.

[10] B. Bruegge, T. Gottschalk, and B. Luo. A framework for dynamic program analyzers.

OOPSLA '93 Proceedings, Sigplan Notices, 28(10):65{82, 1993.

[11] I. J. P. Elsho�. A distributed debugger for Amoeba. In Proceedings SIGPLAN/SIGOPS

Workshop on Parallel and Distributed Debugging, pages 1{10. ACM, 1988.

[12] N. Galbreath, W. Gropp, and D. Levine. Applications-driven parallel I/O. In Proceedings

Supercomputing-93, Portland, Oregon, pages 462{471. IEEE, 1993.

[13] J. K. Hollingsworth, B. P. Miller, and J. Cargille. Dynamic program instrumentation for

scalable performance tools. Technical Report 1103, Dept. of Computer Science, University

of Wisconsin, Madison, 1993.

[14] S. Horwitz. Identifying the semantic and textual di�erences between two versions of a

program. In Proceedings of SIGPLAN'90 Conference on Programming Language Design

and Implementation, pages 234{245. ACM, 1990.

[15] J. Joyce, G. Lomow, K. Slind, and B. Unger. Monitoring distributed systems. ACM

Transactions on Computer Systems, 5(2):121{150, May 1987.

22

[16] T. J. Killian. Processes as �les. In Proceedings of the Summer 1984 USENIX Conference,

pages 203{207. USENIX, 1984.

[17] A. Kishon, P. Hudak, and C. Consel. Monitoring semantics: A formal framework for specify-

ing, implementing, and reasoning about execution monitors. In Proceedings of SIGPLAN'91

Conference on Programming Language Design and Implementation, pages 338{352. ACM,

1991.

[18] L. Lopriore. A user interface speci�cation for a program debugging and measuring environ-

ment. Software{Practice and Experience, 19(5):437{460, May 1989.

[19] J. E. Lumpp Jr., T. L. Casavant, H. J. Siegel, and D. C. Marinescu. Speci�cation and identi-

�cation of events for debugging and performance monitoring of distributed multiprocessor

systems. In Proceedings of the 10th International Conference on Distributed Computing

Systems, pages 476{483. IEEE, 1990.

[20] K. Marzullo, R. Cooper, M. D. Wood, and K. P. Birman. Tools for distributed application

environment. IEEE Computer, 24(8):42{51, August 1991.

[21] J. May and F. Berman. Panorama: A portable, extensible debugger. ACM/ONR Workshop

on Parallel and Distributed Debugging, Sigplan Notices, 28(12):96{106, 1993.

[22] P. Maybee. NeD: The network extensible debugger. In Proceedings of the Summer 1992

USENIX Technical Conference, San Antonio, 1992.

[23] T. G. Moher. PROVIDE: A process visualization and debugging environment. IEEE

Transactions on Software Engineering, 14(6):849{857, June 1988.

[24] B. A. Myers. Incense: A system for displaying data structures. Computer Graphics,

17(3):115{125, July 1983.

[25] R. A. Olsson, R. H. Crawford, and W. W. Ho. A dataow approach to event-based debug-

ging. Software{Practice and Experience, 21(2):209{229, February 1991.

[26] N. Ramsey and D. R. Hanson. A retargetable debugger. In Proceedings of SIGPLAN'92

Conference on Programming Language Design and Implementation, pages 22{31. ACM,

1992.

[27] E. Satterthwaite. Debugging tools for high level languages. Software{Practice and Experi-

ence, 2(3):197{217, July-September 1972.

[28] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, Massachusetts,

1983.

[29] T. Shimomura and S. Isoda. Linked-list visualization for debugging. IEEE Software,

8(3):44{51, May 1991.

[30] R. Sosi�c. Design and implementation of Dynascope, a directing platform for compiled

programs. Computing Systems, 8(2):107{134, Spring 1995.

23

[31] R. Sosi�c. A procedural interface for program directing. Software{Practice and Experience,

25(7):767{787, July 1995.

[32] W. Teitelman and L. Masinter. The Interlisp programming environment. IEEE Computer,

14(4):25{33, April 1981.

[33] A. P. Tolmach and A. W. Appel. Debugging standard ML without reverse engineering. In

Proc. ACM Lisp and Functional Programming Conference '90. ACM, 1990.

[34] P. Winterbottom. ACID: a debugger built from a language. In Proceedings of the Winter

1994 USENIX Technical Conference, pages 211{222, San Francisco, 1994.

[35] P. T. Zellweger. Interactive source-level debugging of optimized programs. Technical Report

CSL-84-5, Xerox PARC, 1984.

24

