
On the Infer enceof Configuration Structur es fr om Source Code
Research Paper

Maren Krone and Gregor Snelting
ArbeitsgruppeSoftwaretechnologie

TechnischeUniversiẗat Braunschweig
Gaußstraße17, D-38106 Braunschweig

Abstract

We apply mathematicalconceptanalysisto the problemof
infering configurationstructuresfrom existingsource code.
ConceptanalysishasbeendevelopedbyGermanmathemati-
ciansover the last years; it canbe seenas a discreteanal-
ogon to Fourier analysis. Basedon this theory, our tool
will acceptsourcecode,where configuration-specific state-
mentsare controlled by the preprocessor. The algorithm
will computea so-calledconceptlattice, which – whenvi-
sually displayed– allowsremarkableinsight into the struc-
ture and propertiesof possibleconfigurations. The lattice
not only displaysfine-graineddependenciesbetweencon-
figuration threads,but also visualizesthe overall quality of
configuration structures according to software engineering
principles. Thepaperpresentsa short introductionto con-
cept analysis,as well as experimentalresultson various
programs.

1 Intr oduction

A simpleandwidely usedtechniquefor configurationman-
agementis the use of the C preprocessor.Configuration-
dependentsourcecodepiecesareenclosedin “#ifdef ... #en-
dif” brackets,andby definingpreprocessorsymbolsduring
compilerinvocation(e.g.“cc –Dultrix prog.c”), aconfigura-
tion threadis determinedandtheappropriatecodepiecesare
selectedandcompiled. Although muchmoresophisticated
configurationmanagementsystemshavebeendevelopedre-
cently (seee.g.[2]), a lot of codestickingto “configuration
managementby preprocessing”is around,anda reverseen-
gineeringtool which allows to extractthe underlyingstruc-
ture from suchsourcesis certainly useful.

As an example,considersomecodepiecesfrom the X-
Window tool “xload”; this tool displaysvarious machine
load factors (figure 1). The 724–line program is quite
platform dependent:43 preprocessorsymbolsare usedto
control a variety of configuration threads(e.g. SYSV,
macII, ultrix, sun, CRAY, sony). A codepiecemay de-
pendnot only on simplepreprocessorsymbols,but on arbi-
trary booleancombinationsof suchsymbols.Furthermore,

#if (!defined(SVR4)|| !defined(__STDC__))&& !defined(sgi)&&
!defined(MOTOROLA)

extern void nlist();
#endif
#ifdef AIXV3

knlist(namelist,1, sizeof(structnlist));
#else

nlist(KERNEL_FILE, namelist);
#endif
#ifdef hcx

if (namelist[LOADAV].n_type == 0 &&
#else

if (namelist[LOADAV].n_type == 0 ||
#endif /* hcx */

namelist[LOADAV].n_value == 0) {
xload_error("cannotget namelist from", KERNEL_FILE);
exit(-1);
}
loadavg_seek= namelist[LOADAV].n_value;

#if defined(umips)&& defined(SYSTYPE_SYSV)
loadavg_seek&= 0x7fffffff;

#endif /* umips && SYSTYPE_SYSV*/
#if (defined(CRAY) && defined(SYSINFO))

loadavg_seek+= ((char*) (((structsysinfo*)NULL)- >avenrun))
- ((char *) NULL);
#endif /* CRAY && SYSINFO */

kmem = open(KMEM_FILE, O_RDONLY);
if (kmem< 0) xload_error("cannotopen",KMEM_FILE);

#endif

Figure1: X-Window tool “x_load.c”

“#ifdef”s and“#define”s may be nested,resultingin rather
incomprehensiblesourcetexts. Evenexperiencedprogram-
merswill have difficulties to obtain someinsight into the
configurationstructure,andwhena newconfigurationvari-
antis to becovered,theintroductionof errorsis very likely.

Fortunately, there is a method, called formal concept
analysis[13,15],whichallowsto reconstructsemanticstruc-
turesfrom raw dataasgiven in our case.This methodhas
beendevelopedat theuniversalalgebragroupin theDepart-
mentof Mathematicsat the TechnicalUniversity of Darm-
stadt,andhasbeenappliedto variousproblemdomainssuch
as classification of finite lattices,analysisof Rembrandt’s
paintings,or behaviourof drug addicts. The methodcom-
putesa so-calledconceptlattice, wherea conceptis a pair,
consisting– in our case– of a setof codepieces(so-called
objects) and a set of preprocessorsymbols (so-calledat-
tributes). Such conceptsrepresentsemanticpropertiesof

the underlyingproblem domain. The lattice structureim-
posesa partial order on concepts(more specific vs. more
general),andfor two concepts,thereexist supremum(gen-
eralization)and infimum (unification).

A conceptlatticewhich arisesfrom a sourcetext similar
to “x_load.c” is presentedin figure 21. It revealssimple
facts e.g. that the CRAY configurationcomprisessource
lines 21–28, 29–40, 201–207, and 11–20. But it also
displayslessobvious information, e.g. that thereare three
main configurationschemes(macII, SYSV, sun); that lines
11–20appearin all configurationsexceptsequent,alliant,
and386platforms;thatapolloandultrix configurationshave
lines126–200,201–207,11–20in common;andthatsource
lines valid for sony or ultrix are valid for sun as well.
Furthermore,violations of softwareengineeringprinciples
like high cohesionor low coupling show up immediately.

1 Figure2 andfigure3 areisomorphiccopiesof aninstructiveexample
presentedin [15]

sunSYSVmacII

sony ultrix

AIXapollo

CRAY

21-28

29-40

11-20

sequent

1-10201-207

126-200

i386, SYSV386

101-106

107-115 116-125 41-100

alliant

Figure2: A conceptlattice

All that is a consequenceof theconceptlatticestructure,as
explainedin the paper.

2 Basic Notions of Concept Analysis

2.1 The concept lattice

Formal conceptanalysishas beenintroducedby R. Wille
about ten years ago. For beginners,it is not that easy
to understand,hencewe restrict ourselvesto the absolute
minimum of the theory. Formal conceptanalysisstarts
with a triple

����������	
����
, called a (formal) context,

where
�

is a finite set (the so-calledobjects),
	

is a finite
set (the so-calledattributes), and

�
is a relation between�

and
	

, hence
��������	

. If
������������

, we say
object

�
has attribute

�
. Figure 3 gives an exampleof a

formal context, namely a characterizationof sourcelines
by governing preprocessorsymbols, as extractedfrom a
program’ssourcetext.

Fora setof objects� ��� , wedefinethesetof common
attributes � � � ! ��"#�$�%	'&)(*�+� � ,�����-�./�0�21

.
Similarly, for a setof attributes3 ��	 thecommon objects
are definedby 4 � 3 5 �6"#�7�8�9&:(;�<� 3 =�����>��?����1 .
The mappings �)@BADCE@GF

and 4 H@#FDCI@BA
form a

Galois connection andcanbecharacterizedby thefollowing
conditions: for � � �KJ � �ML �N�O� 3 � 3PJ � 3;L �Q	

�RJ � �OL �PS � � �5L H� � � �MJ

and
3 J � 3 L �*S 4 � 3 L H� 4 � 3 J

that is, both mappingsare antimonotone;

� � 4 � � � � >UTGV�W � � � H� � � 4 � � � � >-

as well as

3 � � � 4 � 3 -)T#VXW 4 � 3 Y� 4 � � � 4 � 3 ->

SYSV SYSV386 macII i386 ultrix sun AIX CRAY apollo sony sequent alliant

1 - 10 X X X X X X X

11 - 20 X X X X X X X X

21 - 28 X X X X

29 - 40 X X X X X X

41 - 100 X X X

101 - 106 X X X X X X

107 - 115 X X X

116 - 125 X X X

126 - 200 X X X X X

201 - 207 X X X X X X

Figure3: Sampleclassification of sourcelines accordingto governingpreprocessorsymbols

that is, both mappingsare extensive, in particularthe com-
monobjectsof thecommonattributesof anobjectsetarea
supersetof this objectset,and their commonattributesare
equal;finally, for an index set � and �������	��
�����
���������� �������������� �! �"��#%$'&)(* �+��,���
��-�.�/������ *
��,#
A (formal) concept is a pair �0��
"# , where �1���2��
�� and
3� �4 �5#6��� �7*
"# . Hence, a concept is

characterizedby a set of objects(called its extent) and a
setof attributes(calledits intent) suchthat all objectshave
all attributesandall attributesfit to all objects.Thesetof all
conceptsis denotedby 8 �	��"�:9;# . Intuitively, a concept
is a maximalfilled rectanglein a tablelike figure 3, where
permutationsof lines or columnsof coursedo not matter.

A concept �5<=��
><?# is a subconcept of anotherconcept �	@A��
B@=# if � < �C�2@ (or, equivalently,
 <ED
B@). It is
easyto seethat this definition imposesa partial order on8 �	��"�:9;# , thuswewrite � < ��
 < #;F �2@���
B@?# . Moreover,8 �	��"�:9;#�� 8 �	��"�:9;#6�GFH# is a completelattice, due
to the
Basic Theorem for Concept Lattices [13]: Let IJ� �	����K9;# be a context. Then 8 �	����K9;# is a complete
lattice, called the concept lattice of I , for which infimum
and supremumare given by

L
����� ���K��
���#M�ON ������ ���+� � � * �+��,���
�� �=�=P

and Q
�,��� � � ��
 � #R�1NS* � � � ������ � � �=� �6��,���
 � � P

This remarkabletheoremsaysthat in order to computethe
infimum (greatestcommon subconcept)of two concepts,
their extentsmust be intersectedand their intentsmust be
joined; the latter setof attributesmust thenbe “blown up”
in order to fit to the object set of the infimum. Analo-
geously,the supremum(smallestcommonsuperconcept)of
two conceptsis computedby intersectingthe attributesand
joining the objects.

The lattice structureallows a labelling of the concepts:
a conceptis labelled with an object, if it is the smallest
concept in the lattice subsumingthat object; a concept
is labelled with an attribute, if it is the largest concept
subsumingthat attribute. In fact, a concept T labelled
with an object U is of the form T"� � * ��4 WV U�XA#:#6� �> KV UYXA#�� ,
and if T is labelled with attribute Z , it is of the formT[� � * :V Z\XA#?� �> * :V Z\XA#:#�� . Utilizing this labelling, the
extentof T canbe obtainedby collectingall objectswhich
appearaslabelson conceptsbelow T , andthe intent of T is
obtainedby collectingall attributeswhich appearabove T .

For two attributesets and 8 we say “ implies 8 ”
(written ^] 8) if * �#_�`* 8"# (or equivalently, if

8a� �> * �#:#). This can be read as “any object having
all attributesin also has all attributesin 8 ”. Now if and 8 constitute two concepts IJ� � * .#?�� � andb � � * 8"#?�:8c� , and IdF b , then e]f8 obviouslyholds.

Theconceptlatticecanbeconsideredasa graph,that is,
a relation. Whathappensif weagainapplyconceptanalysis
to this derivedrelation?It turnsout that the conceptlattice
reproducesitself [1]! Thus conceptsdo not “breed” new
concepts;thereis no proliferationof virtual information.

There is much more to say about conceptlattices, but
for the purposesof this paper,the basic theoremsuffices.
The interestedreadershould consult [1], which contains
a chapteron conceptanalysis. We concludethis section
with the remark that there are severalalgorithms which
actuallycomputea conceptlattice(see[3]); thetypical time
complexity is � Kgih # , where g ��jkZ\l ?m � m � m m # .
2.2 Interpretation of context lattices

Let usapplythebasictheoremto thecontexttableof figure
3 and its conceptlattice, given in figure 2. In order to get
a feeling what kind of insight can be obtainedfrom such
a lattice, we first rememberthat a subconceptof a concept
hasa smallerobject set, but (note the symmetry)a larger
attributeset. That is, if we go down in the lattice, we get
morepreciseinformationaboutsmallerobjectsets.

The above-mentionedlabelling allows a concisecharac-
terisationof concepts. For example,the conceptlabelled
CRAY is in fact the concept({ 11-20, 21-28, 29-40, 201-
207},{ CRAY, apollo, macII, SYSV}). And indeed,figure
3 revealsthat this conceptis a rectanglein the contextta-
ble. Hence,we have inferred that the lines 11-20, 21-28,
29-40,and 201-207characterizethe CRAY, apollo, macII,
andSYSV configurations(andvice versa).The conceptla-
belledapollo standsfor ({ 11-20, 21-28, 29-40, 126-200,
201-207},{ apollo, macII, SYSV}), which againis a rec-
tanglein the contexttable, higher but leanerthan the first
one: CRAY F apollo. Thus,the CRAY configurationcom-
prises lines 11-20, 21-28, 29-40, 201-207(and no other),
but theselines appearin the apollo configurationaswell.

This examplealready demonstratesone possibility to
interpreta conceptlattice: it can be seenasa hierarchical
conceptional clustering of objects.Objectsaregroupedinto
setsand the lattice structureimposesa taxonomyon these
object sets.

If we want to know what an apollo and an ultrix con-
figuration havein common,we look at the infimum in the
lattice, which is labelled 126–200; going down we see
that lines126–200,201–207and11–20appearin bothcon-
figurations. On the other hand, if we want to seewhich
attributesgovernboth lines126–200and101–106,we look
at the supremumof the correspondingconcepts,which is
ultrix; going up, we seethat the sun andthe ultrix config-
urations(andno other)will includeboth codepieces.

Upward arcs in the lattice diagramcan be interpreted
as implications: “ If a code piece appearsin the sony or
ultrix configuration,it will appearin thesunconfigurationas
well”. Suchknowledgeis not easilyextractedby handfrom
a sourcefile like “x_load.c”! This exampledemonstrates
the secondmain possibility to interpreta conceptlattice: it
representsall implications(that is, dependencies) between
setsof attributes.

The original context can always be reconstructedfrom
the lattice, e.g. the columnfor i386 hasentriesfor all ob-
jectsbelow concepti386, namely1–10,101–106 whereas
the row labelled 41–100 has entries for all attributes
above,namely sun, SYSV, and ultrix. Hence,a context
(i.e. relation) and its concept lattice are analogeousto a
function and its Fourier transform(which also can be re-
constructedfrom eachother): conceptanalysisis similar in
spirit to spectralanalysisof continuoussignals.

3 The Reverse Engineering Tool

We havedevelopeda tool which implementsthe approach
describedin theprevioussections.This tool acceptssource
codeas input andproducesa graphicaldisplayof the con-
cept lattice asoutput. The sourcelanguageis arbitrary,but
the input file must stick to the conventionsof the C pre-
processor.Our tool consistsof the following phases:

1. front end: the front end separatescodepiecesand pre-
processorstatements,syntactically analysesthe latter,
and constructsthe context table accordingto the rules
describedbelow.

2. kernel: the kernel is is a softwarepackagedevelopedby
P. Burmeisterin Darmstadt;it readsa contexttableand
computesthe correspondingconceptlattice.

3. back end: the back end acceptsa descriptionof the
conceptlattice and producesa graphicaldisplay.

As usual,our tool is invokedasa UNIX commandwith the
sourcefile nameas a parameter;additionaloptionswhich
control somedisplay parametersmay be added.

3.1 Construction of the context table

In our applicationof conceptanalysis,codepiecesarenot
only governedby simplepreprocessorsymbols,but alsoby
complex expressions,e.g.

#if defined(A)||defined(B)&&defined(C)
We will now describethe treatmentof suchexpressions.

After syntax analysis, the context table is constructed
accordingto thefollowing semiformalrules(A, B, C denote
preprocessorsymbols,p-p, n-n, q-q denotecodepieces).

• The basic rule for codepiecesgovernedby single pre-
processorsymbols is:

... A ...

p-p
n-n ... X ...
q-q

...p-p...
#ifdef A
...n-n... � �
#endif
...q-q...

Of course,#if defined(A) has the samemeaning
as #ifdef A.

• If a code piece is governedby a conjunction of pre-
processorsymbols,the rule is:

...p-p...
#if defined(A) &&

defined(B) &&
... && defined(C)

...n-n...
#endif
...q-q...

� �

... A B ... C ...
p-p
n-n ... X X ... X ...
q-q

This is correct,sincea setof columnsin a formalcontext
is itself a conjunctionof single columns.

• If a symboloccursin negatedform, this negatedsymbol
needsa columnof its own, sincea basicformal context
canexpressonly positivestatements.The rule thusis:

#if defined(A)
...p-p...
#endif � �
...
#if !defined(A)
...n-n...
#endif

... A ... !A ...
p-p ... X
...

n-n X ...

A similar rule appliesto
#ifdef ... #else ... #endif

In the theory of conceptlattices, the resulting table is
called the “dichotomisedcontext”. Prologprogrammers
have known the sametrick (explicit rules for negated
predicates)for a long time.

• Disjunctions of symbols are a little bit more compli-
cated. The basicidea is as follows: In order to handle
#if defined(A) || defined(B) , we introduce
a separatecolumn for ����� . As both � and � imply
����� , we must thereforeplace a crossin the ���	�
columnwheneverwe placea crossin the columnfor �
or � . The basicrule for disjunctionshenceis:

#if defined(A)
...p-p...
#endif
#if defined(A) || defined(B)
...n-n...
#endif
#if defined(B)
...q-q...
#endif

���

... A B ... A||B ...

p-p ... X X ...
n-n X ...
q-q X ... X ...

Simpledisjunctionsshow up assupremain the concept
lattice. In casethereare complexconditionsarbitrarily
built up from conjunctions,disjunctionsand negations,
thesearefirst transformedinto conjunctivenormalform
by applying the distributive and de Morgan laws. Af-
terwards,all expressionsare of the form

�����	�
���	�
�� ��������������������� �� ������� �� � �!���"�#�$� �� �	%&�

, where
all

��')(*��+,(-�!.
areeithersimplesymbolsor negatedsym-

bols. Expressionsin conjunctivenormal form can then
be treatedby the aboverules.

• Nested#ifdefs, #defines,and #undefsare treatedas im-
plications. For example,in

#ifdef A
...p-p...
#define B
#ifdef B
...n-n... ���
#endif
#endif
...q-q...

... A B ...

p-p ... X ...

n-n ... X X ...

q-q

we must add a cross in the “B”-column wheneverwe
placea crossin the “A”-column; a similar mechanismis
usedfor “#undef”s.

It shouldbe notedthat transformingan expressioninto an
equivalentone (e.g.

�/���/���102�
) doesnot changethe

conceptlattice. In particular, it is not necessaryto use a
minimal conjunctivenormal form; any conjunctivenormal
form will do. Intuitively, the reasonis that a conceptis a
maximalfilled rectanglein a table.

3.2 A small example

Considerthe sourcetext andits correspondingconceptlat-
tice:

UNIX || DOS

UNIX

III

II I, IV

V

DOS || X_win

UNIX || X_win

DOS

#ifdef UNIX
...I...
#endif
#ifdef DOS
...II...
#endif
#if defined(DOS) ||

defined(X_win)
...III...
#endif
#ifdef UNIX
...IV...
#endif
#if defined(UNIX) ||

(defined(DOS)&&defined(X_win))
...V...
#endif

ThelatticeshowsthatcodepiecesI andIV aregovernedby
UNIX, codepieceII is governedby DOS, UNIX || X_win
implies UNIX || DOS (which meansthat any code piece
valid for X-windows is also valid for UNIX or DOS) etc.
Suchdependenciesarenot easyto seein morecomplicated
sources,but neverthelessthe readermight ask: so what?
After all, we mentionedthe analogyto spectralanalysis,
and using spectralanalysis,astronomershave shown that
the universeis expanding!

Although we cannotoffer suchspectacularinsights,the
lattice clearly shows that the configuration structure is
faulty. Two importantsoftwareengineeringprinciplesare
separationof concernsandanticipationof change. For ex-
ample, operatingsystemissuesshould be separatedfrom
user interfaceissues,and it shouldbe easyto incorporate
anotherwindow systeminto a future version. The lattice
showsthat OS as well as UI issuesshowup in both main
configurationthreads,and that —worse—there is a cross
dependencybetweenthem. Crossdependenciespreventthe
latticefrom beingdecomposedinto independentsublattices,
and this showsthereis low coherenceandstrongcoupling
betweenconfigurationthreads.Hence,conceptanalysisnot
only providesa detailedaccountof all dependencies,but
can serveasa quality assurancetool in order to checkfor
good designof the configurationstructure,or to limit en-
tropy increaseas a softwaresystemevolves.

In general, low coupling of configuration threads is
achievedwhen “semanticallydifferent” preprocessorsym-

bolsappearin disjointsublattices: .

Pathswhich are glued togetherin their top or bottom sec-
tions are acceptable,but crossarcsbetweensublatticesal-
waysindicateinterferencebetweenorthogonalconfiguration
threads.

High cohesion is achieved,if, for asubsetof preprocessor
symbolsin thesamesemantic(sub)domain,thecorrespond-

ing sublatticeis a grid: . Missing arcs indicate

thatcertaincombinationsof definedsymbolshavenot been
takeninto consideration,which is at leastsuspicious.

Unfortunately,only a humancan decidewhetherpre-
processorsymbolsare “semanticalneighbours”. Usually,
the namesof thepreprocessorsymbolsindicatetheir mean-
ing. This helps to interpret the lattice, but nevertheless
certain experienceis needed.

3.3 Data Reduction

Often one would like to obtain a quick overview of the
configurationstructureandexplorethefull detailslater. For
suchpurposes,two simple datareductiontechniqueshave
beenimplemented.

First, the user may specify a maximal nesting depth
for nested“ifdef”s. All #ifdefs and #defineswhich are
more deeplynestedare ignored. This resultsin a concept
lattice which displaysonly the overall structureof possible
configurations,ignoring fine-graineddetails.

The secondtechniqueis basedon the observationthat
certaincodepiecesare often governedby almostidentical
preprocessorsettings.The correspondingrows in the con-
text tablecanbemergedinto onerow if they “do not differ
too much”. The usermay specifya thresholdvalue � , and
if a setof rowscanbe identifiedwhereall rowsdo pairwise
differ in lessthan � positions,theserows arereplacedby a
new row which hascrossesin a columnif all original rows
had. Sucha “multirow” thusdescribesa setof codepieces
suchthat all codepieceshaveat leastall attributeswhich
are marked(but somemay have more). This gives us a
conservativeapproximation(we loosesomedependencies,
but we neverintroducefalse ones). In the conceptlattice,
thetechniquehastheeffect thatseveralconceptsaremerged
into oneconcept:row merging inducesa latticecongruence
andhenceis compatiblewith supremumand infimum.

3.4 Graphical Display

It is a non-trivial taskto displaythe conceptlattice in such
a way that interestingpropertiesshow up immediately. In
fact, a numberof sophisticatedalgorithmshasbeendevised
for that purpose[8,14]. Someof the techniquesusedare
to embedlattices into grids, or to presentthe lattice as
a (sub)directproduct of smaller lattices. Such techniques
allow to detecte.g. the automorphismsof the lattice, or to
checkwhetherthe lattice is distributive.

Someof thesealgorithmshave beenimplemented,but
werenot availableto us. Thus,we usea simplerapproach,
basedon the Sugiyamaalgorithm [11]. This well-known
layoutalgorithmfor arbitrarydirectedgraphsusesthetopo-
logical orderingof nodesin orderto determinetheir vertical
position. As the resultsarenot alwayscompletelysatisfac-
tory, theusermayfinally changethegraphlayoutmanually
(but the systemwill maintain integrity of the conceptlat-
tice).

4 Experimental Results

We appliedour tool to severalUNIX programs.Thereader
should keep in mind that the graph displaysbelow have
beenproducedby a programwhich hasbeendevelopedfor
a differentpurpose,hencethelayout is not optimal for con-
cept analysis. We plan to integratethe more sophisticated
displayalgorithmssketchedabovein thepublic–domainftp
version.

Our first exampleis a popular shell, the “tcshell” de-
velopedat Berkeley.We haveanalysedoneof its modules,
namely“sh.exec.c”.Thisprogramis 959lineslonganduses
24 different preprocessorsymbols. In the conceptlattice
(figure 4), singletonattributeor object labelsaredisplayed
in the diagram,the otherscan be looked up in a separate
window throughthe conceptname“Cnn”. It turnsout that
the configurationstructureis perfectaccordingto the crite-
ria describedabove. It seemsthat there is an interference
betweenthe path including C15 and the conceptsC15 –
C18, C20. But a look at the sourcecoderevealsthat both
VFORK andFASTHASH haveto dowith thehashfunction
used,hencethereareno dependenciesbetweenorthogonal
configurationconcepts.

Our secondexampleis the streameditor from the RCS
system“rcsedit.c” [12]. This 1656–lineprogramuses21
preprocessorsymbols.Theconceptlatticeis shownin figure
5, togetherwith 25 lines of sourcecode (beginningwith
line 179) and the labelling of the concepts.The concepts
below C6 (which concerndifferent file accessvariants)as
well as thosebelow C8 (C8 is labelled “large_memory”)
have a simple structure,and the conceptsbelow C9/C10
(concerningnetworking)form a grid-like cluster.But there
is an interferencemanifestin C27,which is the infimum of

C38 and C15. C38 is labelledhas_NFS, C15 is labelled
has_rename, and C27 is labelled 1425 – 1427. Thus,
lines 1425 – 1427 are governedby both has_NFS and
has_rename. A similar interferenceshowsup in C37.

Hence,althoughthe overall structureis quite good, we
suspectthat networking issuesand file accessvariantsare
not clearly separatedin “rcsedit.c”. And indeed: a com-
ment in the sourcecodeexplainsthat due to an NFS bug,
“rename()” can in rare casesdestroythe RCS file! This
problemhasbeenre-discoveredby conceptanalysis,just by
analysingthe configurationstructure.The exampledemon-

stratesthatour tool canindeedtrack down bugs,evenbugs
which theprogrammerswould like to keepcovered:thelast
sentenceof the commentreads“Since this problemafflicts
scadsof Unix programs,but is so rare that nobodyseems
to be worried aboutit, we won’t worry either”2.

Let us finally come back to our introductory example,
“x_load.c” (seefigure 1). This programis 724 lines long
and uses43 preprocessorsymbolsfor configuration man-
agement. The resulting conceptlattice has 141 concepts

2 The problemis in fact a little bit more complicated;the interested
readershouldlook at the sourcecodehimself

Figure4: Configurationstructureof tcshellmodule“sh.exec.c”

Figure5: Configurationstructureof the RCSstreameditor

and is shown in figure 6. It looks pretty chaotic, and
we thereforeuseddata reduction to display only the top
4 #ifdef nestinglevels (figure 7). Even on the top level,
there are interferences(C19/C24),and the central role of
C33 doesnot inspire confidence(C19 is the infimum of
C2 and C11; C2 is SVR4 || UTEK || alliant || hex || se-
quent || sgi || sun, C11 is !apollo. C33 is is a set of 9
codepiecesgovernedby the sundriesSYSV386, !LOAD-
STUB and!KVM_ROUTINES). It seemsthat this program
suffers from configurationhacking.

5 Conclusion

We describeda tool for extractingconfigurationstructures
from existingsourcecode.Ourpointof departurewas“con-
figuration managementby preprocessing”,but the method
can easily be adaptedto more modernconfigurationman-
agementtechniques(e.g.shape[7]). It turnedout thatmath-
ematicalconceptanalysisis a powerful tool for gainingin-
sight into configurationstructures,just as Fourier analysis
is for ordinary functions.

Figure6: Configurationstructureof “x_load.c”

Figure7: Top level configurationstructureof “x_load.c”

It might very well be that conceptanalysishas other
applicationsin reverseengineering;this shouldbe investi-
gated.Thereis anextensionof thetheorycalledconceptual
knowledgesystems[15] which allow to infer relationships
betweenuser-definedconcepts(in our tool, conceptsare
generatedautomatically). We will investigatethe useful-
nessof this extensionto our problem. Another possible
applicationis restructuringof configurations:by analysing
and decomposingthe conceptlattice, hints for improving
the configuration structuremay be obtained.

Our tool is part of the inference-basedsoftwaredevel-
opmentenvironmentNORA3. NORA aimsat utilizing uni-
fication theory and inferencetechnologyin softwaretools;
conceptsandpreliminaryresultscanbe found in [9,5,10].

The tool describedin this paper can be obtainedvia
anonymousftp: ftp.ips.cs.tu-bs.de (134.169.32.1).

Acknowledgements. AndreasZeller and Christian
Lindig havebeena greathelp with the graphdisplay pro-
gram. Martin Skorsky from the Darmstadtalgebragroup
contributedseveralhelpful comments. Peter Burmeister
kindly madeavailablehis CONIMP programfor concept
analysis.

NORA is funded by the DeutscheForschungsgemein-
schaft,grantsSn11/1–2and Sn11/2–1.

6 References

[1] Davey, B.A., Priestley,H.A.: Introduction to Latticesand
Order. CambridgeUniversity Press1990.

[2] Feiler, P. (ed.): Proc.of the 3rd InternationalWorkshopon
SoftwareConfigurationManagement.ACM 1991.

3 NORA is a drama by the Norwegian writer H. IBSEN. Hence,
NORA is no real acronym.

[3] Ganter,B.: Algorithmen zur formalen Begriffsanalyse. In
[4], pp. 241 – 254.

[4] Ganter,B., Wille, R., Wolff, K. (ed.): Beiträgezur Begriff-
sanalyse.B.I. Wissenschaftsverlag1987.

[5] Grosch, F.-J., Snelting, G.: Polymorphic Componentsfor
MonomorphicLanguages.Proc. SecondInternationalWork-
shopon SoftwareReusability. IEEE 1993,pp. 47 – 55.

[6] Krone,M.: ReverseEngineeringof ConfigurationStructures.
Master’sthesis,TU Braunschweig,Institut für Programmier-
sprachen,1993 (in German).

[7] Mahler, A. und Lampen,A.: An IntegratedToolsetfor En-
gineeringSoftwareConfigurations.Proc. ACM Symposium
onPracticalSoftwareDevelopmentEnvironments,SIGSOFT
Notices13, 5 (November1988),pp. 191 – 200.

[8] Skorsky,M.: EndlicheVerb̈ande– Diagrammeund Eigen-
schaften. PhD thesis, Technical University of Darmstadt,
Dept. of Mathematics,1992.

[9] Snelting,G., Grosch,F.-J., Schroeder,U.: Inference-Based
Supportfor Programmingin the Large. Proc.3rd European
SoftwareEngineeringConference,Milano 1991. LNCS 550,
pp. 396 – 408.

[10] Snelting, G., Zeller, A.: InferenzbasierteWerkzeugein
NORA. Proc. Softwaretechnik’93, pp. 25 – 32, GI 1993
(in German).

[11] Sugiyama, K., Tagawa, S., Toda, M.: Methods for Vi-
sualUnderstandingof HierarchicalSystemStructures.IEEE
Transactionon Systems,Man andCybernetics11, 2 (1981),
pp. 109 – 125.

[12] Tichy, W. F.: RCS- A Systemfor VersionControl. Software
PracticeandExperience15(7),pp. 637 – 654,Juli 1985.

[13] Wille, R.: RestructuringLatticeTheory: An ApproachBased
on Hierarchiesof Concepts.In: I. Rival (ed.) OrderedSets.
Reidel 1982, pp. 445 – 470.

[14] Wille, R.: GeometricRepresentationof ConceptLattices. In:
O. Opitz (ed.): ConceptualandNumericalAnalysisof Data.
Springer1989, pp. 239 – 255.

[15] Wille, R.: Concept Lattices and ConceptualKnowledge
Systems. Computers& Mathematicswith Applications 23
(1992), pp. 493 – 515.

