
Type classes: an exploration of the design spaceSimon Peyton JonesUniversity of Glasgow and Oregon Graduate Institute Mark JonesUniversity of NottinghamErik MeijerUniversity of Utrecht and Oregon Graduate InstituteMay 2, 1997AbstractWhen type classes were �rst introduced in Haskell theywere regarded as a fairly experimental language feature, andtherefore warranted a fairly conservative design. Since thattime, practical experience has convinced many programmersof the bene�ts and convenience of type classes. However, onoccasion, these same programmers have discovered exampleswhere seemingly natural applications for type class overload-ing are prevented by the restrictions imposed by the Haskelldesign.It is possible to extend the type class mechanism of Haskellin various ways to overcome these limitations, but such pro-posals must be designed with great care. For example, sev-eral di�erent extensions have been implemented in Gofer.Some of these, particularly the support for multi-parameterclasses, have proved to be very useful, but interactions be-tween other aspects of the design have resulted in a typesystem that is both unsound and undecidable. Another illus-tration is the introduction of constructor classes in Haskell1.3, which came without the proper generalization of the no-tion of a context. As a consequence, certain quite reasonableprograms are not typable.In this paper we review the rationale behind the design ofHaskell's class system, we identify some of the weaknessesin the current situation, and we explain the choices that weface in attempting to remove them.1 IntroductionType classes are one of the most distinctive features ofHaskell (Hudak et al. [1992]). They have been used for animpressive variety of applications, and Haskell 1.31 signif-icantly extended their expressiveness by introducing con-structor classes (Jones [1995a]).All programmers want more than they are given, and manypeople have bumped up against the limitations of Haskell'sclass system. Another language, Gofer (Jones [1994]), thathas developed in parallel with Haskell, enjoys a much moreliberal and expressive class system. This expressiveness isde�nitely both useful and used, and transferring from Gofer1The current iteration of the Haskell language is Haskell 1.4, butit is identical to Haskell 1.3 in all respects relevant to this paper.

to Haskell can be a painful experience. One feature that isparticularly often missed is multi-parameter type classes |Section 2 explains why.The obvious question is whether there is an upward-compatible way to extend Haskell's class system to enjoysome or all of the expressiveness that Gofer provides, andperhaps some more besides. The main body of this paperexplores this question in detail. It turns out that there area number of interlocking design decisions to be made. Goferand Haskell each embody a particular set, but it is veryuseful to tease them out independently, and see how theyinteract. Our goal is to explore the design space as clearlyas possible, laying out the choices that must be made, andthe factors that a�ect them, rather than prescribing a par-ticular solution (Section 4). We �nd that the design spaceis rather large; we identify nine separate design decisions,each of which has two or more possible choices, though notall combinations of choices make sense. In the end, however,we do o�er our own opinion about a sensible set of choices(Section 6).A new language feature is only justi�able if it results in asimpli�cation or uni�cation of the original language design,or if the extra expressiveness is truly useful in practice. Onecontribution of this paper is to collect together a fairly largeset of examples that motivate various extensions to Haskell'stype classes.2 Why multi-parameter type classes?The most visible extension to Haskell type classes that wediscuss is support for multi-parameter type classes. The pos-sibility of multi-parameter type classes has been recognisedsince the original papers on the subject (Kaes [1988]; Wadler& Blott [1989]), and Gofer has always supported them.This section collects together examples of multi-parametertype classes that we have encountered. None of them arenew, none will be surprising to the cognescenti, and manyhave appeared inter alia in other papers. Our purpose incollecting them is to provide a shared database of motivatingexamples. We would welcome new contributions.

2.1 Overloading with coupled parametersConcurrent Haskell (Peyton Jones, Gordon & Finne [1996])introduces a number of types such as mutable variablesMutVar, \synchronised" mutable variables MVar, channelvariables CVar, communication channels Channel, and skipchannels SkipChan, all of which come with similar opera-tions that take the form:newX :: a -> IO (X a)getX :: X a -> IO aputX :: X a -> a -> IO ()where X ranges over MVar etc. Here are similar operationsin the standard state monad:newST :: a -> ST s (MutableVar s a)getST :: MutableVar s a -> ST s aputST :: MutableVar s a -> a -> ST s ()These are manifestly candidates for overloading; yet a singleparameter type class can't do the trick. The trouble is thatin each case the monad type and the reference type come asa pair: (IO, MutVar) and (ST s, MutableVar s). What wewant is a multiple parameter class that abstracts over both:class Monad m => VarMonad m v wherenew :: a -> m (v a)get :: v a -> m aput :: v a -> a -> m ()instance VarMonad IO MutVar whereinstance VarMonad (ST s) (MutableVar s) where ...This is quite a common pattern, in which a two-parametertype class is needed because the class signature is really overa tuple of types and where instance declarations capture di-rect relationships between speci�c tuples of type construc-tors. We call this overloading with coupled parameters.Here are a number of other examples we have collected:� The class StateMonad (Jones [1995]) carries the statearound naked, instead of inside a container as in theVarMonad example:class Monad m => StateMonad m s wheregetS :: m sputS :: s -> m ()Here the monad m carries along a state of type s; getSextracts the state from the monad, and putS overwritesthe state with a new value. One can then de�ne in-stances of StateMonad:newtype State s a = State (s -> (a,s))instance StateMonad (State s) s where ...Notice the coupling between the parameters arisingfrom the repeated type variable s. Jones [1995] alsode�nes a related class, ReaderMonad, that describescomputations that read some �xed environmentclass Monad m => ReaderMonad m e whereenv :: e -> m a -> m agetenv :: m e

newtype Env e a = Env (e -> a)instance ReaderMonad (Env e) e where ...� Work in Glasgow and the Oregon Graduate Instituteon hardware description languages has led to class dec-larations similar to this:class Monad ct => Hard ct sg whereconst :: a -> ct (sg a)op1 :: (a -> b) -> sg a -> ct (sg b)op2 :: (a -> b -> c) -> sg a -> sg b -> ct (s c)instance Hard NetCircuit NetSignal where ...instance Hard SimCircuit SimSignal where ...Here, the circuit constructor, ct is a monad, whilethe signal constructor, sg, serves to distinguish valuesavailable at circuit-construction time (of type Int, say)from those
owing along the wires at circuit-executiontime (of type SimSignal Int, say). Each instance ofHard gives a di�erent interpretation of the circuit; forexample, one might produce a net list, while anothermight simulate the circuit.Like the VarMonad example, the instance type come asa pair; it would make no sense to give an instance forHard NetCircuit SimSignal.� 2 The Haskell prelude de�nes de�nes the following twofunctions for reading and writing �lesreadFile :: FilePath -> IO StringwriteFile :: FilePath -> String -> IO ()Similar functions can be de�ned for many more pairsof device handles and communicatable types, such asmice, buttons, timers, windows, robots, etc.readMouse :: Mouse -> IO MouseEventreadButton :: Button -> IO ()readTimer :: Timer -> IO FloatsendWindow :: Window -> Picture -> IO ()sendRobot :: Robot -> Command -> IO ()sendTimer :: Timer -> Float -> IO ()These functions are quite similar to the methodsget :: VarMonad r m => r a -> m a and put ::VarMonad r m => r a -> a -> m () of the VarMonadfamily, except that here the monad m is �xed to IO andthe choice of the value type a is coupled with the boxtype v a. So what we need here is a multi-parameterclass that overloads on v a and a instead:class IODevice handle a wherereceive :: handle -> IO asend :: handle -> a -> IO a(Perhaps one could go one step further and unify classIODevice r a and class Monad m => StateMonad mr into a three parameter class class Monad m =>Device m r a.)2This example was suggested by Enno Scholz.2

� 3 An appealing application of type classes is to de-scribe mathematical structures, such as groups, �elds,monoids, and so on. But it is not long before the needfor coupled overloading arises. For example:class (Field k, AdditiveGroup a)=> VectorSpace k a where@* :: k -> a -> a...Here the operator @* multiplies a vector by a scalar.2.2 Overloading with constrained parame-tersLibraries that implement sets, bags, lists, �nite maps, and soon, all use similar functions (empty, insert, union, lookup,etc). There is no commonly-agreed signature for such li-braries that usefully exploits the class system. One reasonfor this is that multi-parameter type classes are absolutelyrequired to do a good job. Why? Consider this �rst attempt:class Collection c whereempty :: c ainsert :: a -> c a -> c aunion :: c a -> c a -> c a...etc...The trouble is that the type variable a is universally quan-ti�ed in the signature for insert, union, and so on. Thismeans we cannot use equality or greater-than on the ele-ments, so we cannot make sets an instance of Collection,which rather defeats the object of the exercise. By far thebest solution is to use a two-parameter type class, thus:class Collection c a whereempty :: c ainsert :: a -> c a -> c aunion :: c a -> c a -> c a...etc...The use of a multi-parameter class allows us to make in-stance declarations that constrain the element type on aper-instance basis:instance Eq a => Collection ListSet a whereempty = ...insert a xs =etc..instance Ord a => Collection TreeSet a whereempty = ...insert x t =etc...The point is that di�erent instance declarations can con-strain the element type, a, in di�erent ways. One can lookat this as a variant of coupled-parameter overloading (dis-cussed in the preceding section). Here, the second typein the pair is constrained by the instance declaration (e.g.\Ord a =>..."), rather than completely speci�ed as in theprevious section. In general, in this form of overloading, oneor more of the parameters in any instance is a variable that3This example was suggested by Sergey Mechveliani.

serves as a hook, either for one of the other arguments, orfor the instance context and member functions to use.The parametric type classes of Chen, Hudak & Odersky[1992] also deal quite nicely with the bulk-types example,but their assymetry does not suit the examples of the pre-vious section so well. A full discussion of the design choicesfor a bulk-types library is contained in Peyton Jones [1996].2.3 Type relationsOne can also construct applications for multi-parameterclasses where the relationships between di�erent parame-ters are much looser than in the examples that we haveseen above. After all, in the most general setting, a multi-parameter type class C could be used to represent an arbi-trary relation between types where, for example, (a; b) is inthe relation if, and only if, there is an instance for (C a b).� One can imagine de�ning an isomorphism relationshipbetween types (Liang, Hudak & Jones [1995]):class Iso a b whereiso :: a -> bosi :: b -> ainstance Iso a a where iso = id� One could imagine overloading Haskell's �eld selectorsby declaring a classclass Hasf a b wheref :: a -> bfor any �eld label f. So if we have the data typeFoo = Foo{foo :: Int}, we would get a class decla-ration class Hasfoo a b where foo :: a -> b andan instance declarationinstance Hasfoo Foo Int wherefoo (Foo foo) = fooThis is just a cut-down version of the kind of extensiblerecords that were proposed by Jones (Jones [1994]).These examples are \looser" than the earlier ones, becausethe result types of the class operations do not mention all theclass type variables. In practice, we typically �nd that suchrelations are too general for the type class mechanisms, andthat it becomes remarkably easy to write programs whoseoverloading is ambiguous.For example, what is the type of iso 'a' == iso 'b'? Theiso function is used at type Char -> b, and the resultingvalues of iso 'a' and iso 'b' are compared with (==) usedat type b -> b -> Bool. However this intermediate typeis completely unconstrained and hence the resulting type,(Eq b, Iso Char b) => Bool, is ambiguous. One runs intosimilar problems quickly when trying to use overloading of�eld selectors. We discuss ambiguity further in Section 3.7.3

2.4 SummaryIn our view, the examples of this section make a very per-suasive case for multi-parameter type classes, just as Monadand Functor did for constructor classes. These examplescry out for Haskell-style overloading, but it simply cannotbe done without multi-parameter classes.3 BackgroundIn order to describe the design choices related to type classeswe must brie
y review some of the concepts involved.3.1 Inferred contextsWhen performing type inference on an expression, the typechecker will infer (a) a monotype, and (b) a context, or setof constraints, that must be satis�ed. For example, considerthe expression:\xs -> case xs of[] -> False(y:ys) -> y > z || (y==z && ys==[z])Here, the type checker will infer that the expression has thefollowing context and type:Context: fOrd a;Eq a;Eq [a]gType: [a] -> BoolThe constraint Ord a arises from the use of > on an elementof the list, y; the constraint says that the elements of the listmust lie in class Ord. Similarly, Eq a arises from the use of== on a list element. The constraint Eq [a] arises from theuse of == on the tail of the list; it says that lists of elementsof type a must also lie in Eq.These typing constraints have an operational interpretationthat is often helpful, though it is not required that a Haskellimplementation use this particular operational model. Foreach constraint there is a corresponding dictionary| a col-lection of functions that will be passed to the overloaded op-erator involved. In our example, the dictionary for Eq [a]will be a tuple of methods corresponding to the class Eq. Itwill be passed to the second overloaded == operator, whichwill simply select the == method from the dictionary andapply it to ys and [z]. You can think of a dictionary asconcrete, run-time \evidence" that the constraint is satis-�ed.3.2 Context reductionContexts can be simpli�ed, or reduced, in three main ways:1. Eliminating duplicate constraints. For example, we canreduce the context fEq �; Eq �g to just fEq �g.2. Using an instance declaration. For example, theHaskell Prelude contains the standard instance dec-laration:instance Eq a => Eq [a] where ...

TV (P) � dom(�)instance C => P where : : :�(C) `̀ �(P) (inst)TV (P) � dom(�)class C => P where : : :�(P) `̀ �(C) (super)Q � PP `̀ Q (mono)P `̀ Q Q `̀ RP `̀ R (trans)Figure 1: Rules for entailmentThis instance declaration speci�es how we can use anequality on values of type a to de�ne an equality onlists of type [a]. In terms of the dictionary model, theinstance declaration speci�es how to construct a dic-tionary for Eq [a] from a dictionary for Eq a. Hencewe can perform the following context reduction:fOrd a; Eq a;Eq [a]g �! fOrd a;Eq agWe say that a constraint matches an instance declara-tion if there is a substitution of the type variables inthe instance declaration head that makes it equal tothe constraint.3. Using a class declaration. For example, the class dec-laration for Ord in the Haskell Prelude speci�es thatEq is a superclass of Ord:class Eq a => Ord a where ...What this means is that every instance of Ord is alsoan instance of Eq. In terms of the dictionary model,we can read this as saying that each Ord dictionarycontains an Eq dictionary as a sub-component. So theconstraint Eq a is implied by Ord a, and it follows thatwe can perform the following context reduction:fOrd a;Eq ag �! fOrd agMore precisely, we say that Q entails P , written Q `̀ P , ifthe constraints in P are implied by those in Q. We de�nethe meaning of class constraints more formally using the def-inition of the entailment relation de�ned in Figure 1. The�rst two rules correspond to (2) and (3) above4. The sub-stitution � maps type variables to types; it allows class andinstance declarations to be used at substitution-instances oftheir types. For example, from the declarationinstance Eq a => Eq [a] where ...4Notice that in (inst), C and P appear in the same order onthe top and bottom lines of the rules, whereas they are reversed in(super). This suggest an infelicity in Haskell's syntax, but one thatit is perhaps too late to correct!4

we can deduce that fEq �g `̀ fEq [�]g, for an arbitrarytype �5. The remaining rules explain that entailment ismonotonic and transitive as one would expect.The connection between entailment and context reductionis this: to reduce the context P to P 0 it is necessary (butperhaps not su�cient) that P 0 `̀ P . The reason that en-tailment is not su�cient for reduction concerns overlappinginstances: there might be more than one P 0 with the prop-erty that P 0 `̀ P , so which should be chosen? Overlappinginstance declarations are discussed in Section 3.6 and 4.4.3.3 FailureContext reduction fails, and a type error is reported, if thereis no instance declaration that can match the given con-straint. For example, suppose that we are trying to reducethe constraint Eq (Tree �), and there is no instance decla-ration of the forminstance ... => Eq (Tree ...) where ...Then we can immediately report an error, even if � containstype variables that will later be further instantiated, becauseno further re�nement of � can possibly make it match. Thisstrategy con
icts slightly with separate compilation, becauseone could imagine that a separately-compiled library mightnot be able to \see" all the instance declarations for Tree.Arguably, therefore, rather than reporting an error message,context reduction should be deferred (see Section 4.3), in thehope that an importing module will have the necessary in-stance declaration. However, that would postpone the pro-duction of even legitimate missing-instance error messagesuntil the \main" module is compiled (when no further in-stance declarations can occur), which is quite a serious dis-advantage. Furthermore, it is usually easy to arrange thatthe module that needs the instance declaration is able to\see" it. If this is so, then failure can be reported immedi-ately, regardless of the context reduction strategy.3.4 Tautological constraintsA tautological constraint is one that is entailed by the emptycontext. For example, given the standard instance dec-larations, Ord [Int] is a tautological constraint, becausethe instance declaration for Ord [a], together with that forOrd Int allow us to conclude that fg `̀ fOrd [Int]g.A ground constraint is one that mentions no type variables.It is clear that a ground constraint is erroneous (that is,cannot match any instance declaration), or is tautological.It is less obvious that a tautological constraint does not haveto be ground. Consider5In Gofer, an instance declaration instance P => C where ...brings about the axiom C `̀ P , because the representation in Goferof a dictionary for C contains sub-dictionaries for P . In retrospect,this was probably a poor design decision because it is not always veryintuitive. Moreover, it was later discovered that this is incompatiblewith overlapping instances: while either one is acceptable on its own,the combination results in an unsound type system. The Gofer typesystem still su�ers from this problem today because of concerns thatremoving support for either feature would break a lot of existing code.

instance Eq a => Foo (a,b) where ...and let us assume for the moment that overlapping instancedeclarations are prohibited (Section 4.4). Now suppose thatthe context fFoo (Int,t)g is subject to context reduction.Regardless of the type t, it can be simpli�ed to fEq Intg(using the instance declaration above), and thence to fg(using the Int instance for Eq). Even if t contains typevariables, the constraint Foo (Int,t) can still be reducedto fg, so it is a tautological constraint.Another example of one of these tautological constraintsthat contain type variables is given by this instance dec-laration:instance Monad (ST s) where ...This declares the state transformer type, ST s, to be amonad, regardless of the type s.If, on the other hand, overlapping instance declarations arepermitted, then reducing a tautological constraint in thisway is not legitimate, as we discuss in Section 4.4.3.5 GeneralisationSuppose that the example in Section 3.1 is embedded in alarger expression:letf = \xs -> case xs of[] -> False(y:ys) -> y > z ||(y==z && ys==[z])in....Having inferred a type for the right-hand side of f, the typechecker must generalise this type to obtain the polymorphictype for f. Here are several possible types for f:f :: (Ord a) => [a] -> Boolf :: (Ord a, Eq a) => [a] -> Boolf :: (Ord a, Eq a, Eq [a]) => [a] -> BoolWhich of these types is inferred depends on how much con-text reduction is done before generalisation, a topic we dis-cuss later (Section 4.3). For the present, we only need note(a) that there is a choice to be made here, and (b) that thetime that choice is crystallised is at the moment of general-isation.What we mean by (b) is that it makes no di�erence whethercontext reduction is done just before generalising f, or justafter inferring the type of the sub-expression (ys==[z]), oranywhere in between; all that matters is how much is donebefore generalisation.3.6 Overlapping instance declarationsConsider these declarations:class MyShow a wheremyShow :: a -> String5

instance MyShow a => MyShow [a] wheremyShow = myShow1instance MyShow [Char] wheremyShow = myShow2Here, the programmer wants to use a di�erent method formyShowwhen used at [Char] than when used at other types.We say that the two instance declarations overlap, becausethere exists a constraint that matches both. For example,the constraint MyShow [Char]matches both declarations. Ingeneral, two instance declarationsinstance P1 => Q1 where ...instance P2 => Q2 where ...are said to overlap if Q1 and Q2 are uni�able. This de�ni-tion is equivalent to saying that there is a constraint Q thatmatches both Q1 and Q2. Overlapping instance declarationsare illegal in Haskell, but permitted in Gofer.When, during context reduction, a constraint matches twooverlapping instance declarations, which should be chosen?We will discuss this question in Section 4.4, but for now weaddress the question of whether or not overlapping instancedeclarations are useful. We give two further examples.3.6.1 \Default methods"One application of overlapping instance declarations is tode�ne \default methods". Haskell has the following stan-dard classes:class Monad m where(>>=) :: m a -> (a -> m b) -> m breturn :: a -> m aclass Functor f wheremap :: (a -> b) -> f a -> f bNow, in any instance of Monad, there is a sensible de�nitionof map, an idea we could express like this:instance Monad m => Functor m wheremap f m = [f x | x <- m]These instance declarations overlap with all other instancesof Functor. (Whether this is the best way to explain thatan instance of Monad has a natural de�nition of map is de-batable.)3.6.2 Monad transformersA second application of overlapping instance declarationsarises when we try to de�ne monad transformers. The ideais given by Jones [1995]:\In fact, we will take a more forward-thinkingapproach and use the constructor class mecha-nisms to de�ne di�erent families of monads, eachof which supports a particular collection of sim-ple primitives. The bene�t of this is that, later,we will want to consider monads that are simulta-neously instances of several di�erent classes, and

hence support a combination of di�erent prim-itive features. This same approach has provedto be very
exible in other recent work (Jones[1995a]; Liang, Hudak & Jones [1995])."To combine the features of monads we introduce a notionof a monad transformer; the idea is that a monad trans-former t takes a monad m as an argument and produces anew monad (t m) as a result that provides all of the com-putational features of m, plus some new ones added in by thetransformer t.class MonadT t wherelift :: Monad m => m a -> t m aFor example, the state monad transformer that can addstate to any monad:newtype StateT s m a = StateT (s -> m (a,s))instance MonadT (StateT s) where ...instance Monad m=> StateMonad (StateT s m) s where ...Critically, we also need to know that any properties enjoyedby the original monad, are also supported by the trans-formed monad. We can capture this formally using:instance (MonadT t, StateMonad m s)=> StateMonad (t m) s whereupdate f = lift (update f)Note the overlap with the previous instance declaration,which plays an essential role. De�ning monad transformersin this way allows us to build up composite monads, withautomatically generated liftings of the important operators.For example:f :: (StateMonad m Int, StateMonad m Char)=> Int -> Char -> m (Int,Char)f x y = do x' <- update (const x)y' <- update (const y)return (x',y')Later, we might call this function with an integer and a char-acter argument on a monad that we've constructed using thefollowing:type M = StateT Int (ErrorT (State Char))Notice that the argument of the StateT monad trans-former is not State Char but rather the enriched monad(ErrorT (State Char)), assuming that ErrorT is anothermonad transformer. Now, the overloading mechansims willautomatically make sure that the �rst call to update in ftakes place in the outermost Int state monad, while the sec-ond call will be lifted up from the depths of the innermostChar state monad.3.7 The ambiguity problemAs we observed earlier, some programs have ambiguous typ-ings. The classic example is (show (read s)), where di�er-ent choices for the intermediate type (the result of the readmight lead to di�erent results). Programs with ambiguoustypings are therefore rejected by Haskell.6

Preliminary experience, however, is that multi-parametertype classes give new opportunities for ambiguity. Is thereany way to have multi-parameter type classes without risk-ing ambiguity? Our answer here is \no". One approachthat has been suggested to the ambiguity problem in single-parameter type classes is to insist that all class operationstake as their �rst argument a value of the class's type (Oder-sky, Wadler & Wehr [1995]). Though it is theoretically at-tractive, there are too many useful classes that disobey thisconstraint (Num, for example, and overloaded constants ingeneral), so it has not been adopted in practice. It is alsonot clear what the rule would be when we move to con-structor classes, so that the class's \type" variable rangesover type constructors.If no workable solution to the ambiguity problem has beenfound for single parameter classes, we are not optimistic thatone will be found for multi-parameter classes.4 Design choicesWe are now ready to discuss the design choices that must beembodied in a type-class system of the kind exempli�ed byHaskell. Our goal is to describe a design space that includesHaskell, Gofer, and a number of other options beside. Whilewe express opinions about which design choices we prefer,our primary goal is to give a clear description of the designspace, rather than to prescribe a particular solution.4.1 The ground rulesType systems are a huge design space, and we only havespace to explore part of it in this paper. In this section webrie
y record some design decisions currently embodied inHaskell that we do not propose to meddle with. Our �rstset of ground rules concern the larger setting:� We want to retain Haskell's type-inference property.� We want type inference to be decidable; that is, thecompiler must not fail to terminate.� We want to retain the possibility of separate compila-tion.� We want all existing Haskell programs to remain legal,and to have the same meaning.� We seek a coherent type system; that is, every di�erentvalid typing derivation for a program leads to a result-ing program that has the same dynamic semantics.The last point needs a little explanation. We have alreadyseen that the way in which context reduction is performeda�ects the dynamic semantics of the program via the con-struction and use of dictionaries (other operational modelswill experience similar e�ects). It is essential that the way inwhich the typing derivation is constructed (there is usuallymore than one for a given program) should not a�ect themeaning of the program.

Next, we give some ground rules about the form of classdeclarations. A class declaration takes the form:class P => C �1 : : : �n where { op :: Q => � ; : : : }(If multi-parameter type classes are prohibited, then n =1.) If S �1 : : : �m is one of the constraints appearing in thecontext P , we say that S is a superclass of C. We insist onthe following:� There can be at most one class declaration for eachclass C.� Throughout the program, all uses of C are applied ton arguments.� �1 : : : �n must be distinct type variables.� TV (P) � f�1; : : : ; �ng. That is, P must not mentionany type variables other than the �i.� The superclass hierarchy de�ned by the set of classdeclarations must be acyclic. This restriction is not ab-solutely necessary, but the applications for cyclic classstructures are limited, and it helps to keep things sim-ple.Next, we give rules governing instance declarations, whichhave the form:instance P => C �1 : : : �n where : : :We call P the instance context, �1; : : : ; �n the instance types,and C �1 : : : �n the head of the instance declaration. LikeHaskell, we insist that:� TV (P) � STV (�i); that is, the instance context mustnot mention any type variables that are not mentionedin the instance types.We discuss the design choices related to instance declara-tions in Sections 4.5 and 4.7.Thirdly, we require the following rule for types:� If P => � is a type, then TV (P) � TV (�). If thecontext P mentions any type variables not used in �then any use of a value with this type is certain to beambiguous.Fourthly, we will assume that, despite separate compilation,instance declarations are globally visible. The reason for thisis that we want to be able to report an error if we encountera constraint that cannot match any instance declaration.For example, considerf x = 'c' + xType inference on f gives rise to the constraint (Num Char).If instance declarations are not globally visible, then wewould be forced to defer context reduction, in case f iscalled in another module that has an instance declarationfor (Num Char). Thus we would have to infer the followingtype for f:f :: Num Char => Char -> Char7

Instead, what we really want to report an immediate errorwhen type-checking f.So, if instance declarations are not globally visible, manymissing-instance errors would only be reported when themain module is compiled, an unacceptable outcome. (Ex-plicit type sigatures might force earlier error reports, how-ever.) Hence our ground rule. In practice, though, we canget away with something a little weaker than insisting thatevery instance declaration is visible in every module | forexample, when compiling a standard library one does needinstance declarations for unrelated user-de�ned types.Lastly, we have found it useful to articulate the followingprinciple:� Adding an instance declaration to well-typed programshould not alter either the static or dynamic seman-tics of the program, except that it may give rise toan overlapping-instance-declaration error (in systemsthat prohibit overlap).The reason for this principle is to support separate compila-tion. A separately compiled library module cannot possibly\see" all the instance declarations for all the possible clientmodules. So it must be the case that these extra instancedeclarations should not in
uence the static or dynamic se-mantics of the library, except if they con
ict with the in-stance declarations used when the library was compiled.4.2 Decision 1: the form of typesDecision 1: what limitations, if any, are there on the formof the context of a type? In Haskell 1.4, types (whetherinferred, or speci�ed in a type signature) must be of theform P => � , where P is a simple context. We say that acontext is simple if all its constraints are of the form C �,where C is a class and � is a type variable.This design decision was defensible for Haskell 1.2 (whichlacked constructor classes) but seems demonstrably wrongfor Haskell 1.4. For example, consider the de�nition:g = \xs -> (map not xs) == xsThe right hand side of the de�nition has the typef Bool -> Bool, and context fFunctor f; Eq (f Bool)g6.Because of the second constraint here, this cannot be re-duced to a simple context by the rules in Figure 1, andHaskell 1.4 rejects this de�nition as ill-typed. In fact, if weinsist that the context in a type must be simple, the functiong has many legal types (such as [Bool] -> Bool), but noprincipal, or most general, type. If, instead, we allow non-simple contexts in types, then it has the perfectly sensibleprincipal type:g :: (Functor f, Eq (f Bool)) => f Bool -> BoolIn short, Haskell 1.4 lacks the principal type property,namely that any typable expression has a principal type;but it can be regained by allowing richer contexts in types.This is not just a theoretical nicety | it directly a�ects theexpressiveness of the language.6The de�nition of the class Functor was given in Section 3.6.1.

Similar problems occur with multi-parameter classes if weinsist that the arguments of each constraint in a contextmust be variables | a natural generalization of the single-parameter notion of a simple context. For example, onecan imagine inferring a context such as fStateMonad IO �g,where � is a type variable. If we then want to generaliseover �, we would obtain a function whose type was of theform StateMonad IO � => � . If such a type was illegal then,as with the previous example, we would be forced to rejectthe program even though it has a sensible principal type ina slightly richer system.The choices for the allowable contexts in types seem to bethese:Choice 1a (Haskell): the context of a type must be sim-ple (with some extended de�nition of \simple").Choice 1b (Gofer): there are no restrictions on the con-text of a type.Choice 1c: something in between these two. For example,we might insist that the context in a type is reduced\as much as possible". But then a legal type signaturemight become illegal if we introduced a new instancedeclaration (because then the type signature might nolonger be reduced as much as possible).4.3 Decision 2: How much context reduc-tion?Decision 2: how much context reduction should be done be-fore generalisation? Haskell and Gofer make very di�erentchoices here. Haskell takes an eager approach to contextreduction, doing as much as possible before generalisation,while Gofer takes a lazy approach, only using context reduc-tion to eliminate tautological constraints.It turns out that this choice has a whole raft of consequences,as Jones [1994, Chapter 7] discusses in detail. These con-sequences mainly concern pragmatic matters, such as thecomplexity of types, or the e�ciency of the resulting pro-gram. It is highly desirable that the choice of how muchcontext reduction is done when should not a�ect the mean-ing of the program. It is bad enough that the meaning of theprogram inevitably depends on the resolution of overload-ing (Odersky, Wadler & Wehr [1995]). It would be muchworse if the program's meaning depended on the exact wayin which the overloading was resolved | that is, if the typesystem were incoherent (Section 4.1).Here, then, are the issues a�ecting context reduction.1. Context reduction usually leads to \simpler" contexts,which are perhaps more readily understood (and writ-ten) by the programmer. In our earlier example, Ord ais simpler than fOrd a;Eq a;Eq [a]g.Occasionally, however, a \simpler" context might beless \natural". Suppose we have a data type Set withan operation union, and an Ord instance (Jones [1994,Section 7.1]):8

data Set a = ...union :: Eq a => Set a -> Set a -> Set ainstance Eq a => Ord (Set a) where ...Now, consider the following function de�nition:f x y = if (x<=y) then y else x `union` yWith context reduction, f's type is inferred to bef :: Eq a => Set a -> Set a -> Set awhereas without context reduction we would inferf :: Ord (Set a) => Set a -> Set a -> Set aOne can argue that the latter is more \natural" sinceit is clear where the Ord constraint comes from, whilethe former contains a slightly surprising Eq constraintthat results from the unrelated instance declaration.2. Context reduction often, but not always, reduces thenumber of dictionaries passed to functions. In the run-ning example of Section 3, doing context reduction be-fore generalisation allowed us to pass one dictionary tof instead of three.Sometimes, though, a \simpler" context might havemore constraints (i.e. more dictionaries to pass ina dictionary-passing implementation). For example,given the instance declaration:instance (Eq a, Eq b) => Eq (a,b) where ...the constraint Eq (a,b)would reduce to fEq a;Eq bg,which may be \simpler", but certainly is not shorter.3. Context reduction eliminates tautological constraints.For example, without context reduction the functiondouble = \x -> x + (x::Int)would get the typedouble :: Num Int => Int -> IntThis type means that a dictionary for Num Int will bepassed to double, which is quite redundant. It it in-variably better to reduce fNum Intg to fg, using theInt instance of Num. The \evidence" that Int is aninstance of Num takes the form of a global constantdictionary for Num Int. (This example uses a groundconstraint, but the same reasoning applies to any tau-tological constraint.)4. Delaying context reduction increases sharing of dictio-naries. Consider this example:letf xs y = xs > [y]inf xs y && f xs zHaskell will infer the type of f to be:

f :: Ord a => [a] -> a -> BoolA dictionary for Ord a will be passed to f, which willconstruct a dictionary for Ord [a]. In this example,though, f is called twice, at the same type, and the twocalls will independently construct the same Ord [a]dictionary. We could obtain more sharing (i.e. e�-ciency) by postponing the context reduction, inferringinstead the following type for f:f :: Ord [a] => [a] -> a -> BoolNow f is passed a dictionary for Ord [a], and thisdictionary can be shared between the two calls of f.Because context reduction is postponed until the toplevel in Gofer, this sharing can encompass the wholeprogram, and only one dictionary for each class/typecombination is ever constructed.5. Type signatures interact with context reduction.Haskell allows us to specify a type signature for a func-tion. Depending on how context reduction is done, andwhat contexts are allowed in type signatures, this typemight be more or less reduced than the inferred type.For example, if full context reduction is normally donebefore generalisation, then is this a valid type signa-ture?f :: Eq [a] => ...That is, can a type signature decrease the amount ofcontext reduction that is performed? In the other di-rection, if context reduction is not usually done at gen-eralisation, then is this a valid type signature?f :: Eq a => ...where f's right-hand side generates a constraintEq [a]? That is, can a type signature increase theamount of context reduction that is performed?6. Context reduction is necessary for polymorphic recur-sion. One of the new features in Haskell 1.4 is theability to de�ne a recursive function in which the re-cursive call is at a di�erent type than the original call,a feature that has proved itself useful in the e�cient en-coding of functional data structures (Okasaki [1996]).For example, consider the following non-uniformly re-cursive function:f :: Eq a => a -> a -> Boolf x y = if x == y then Trueelse f [x] [y]It is not possible to avoid all runtime dictionary con-struction in this example, because each call to recur-sive f must use a dictionary of higher type, and thereis no static bound to the depth of recursion. It fol-lows that the strategy of defering all context reduc-tion to the top level, thereby ensuring a �nite numberof dictionaries, cannot work. The type signature isnecessary for the type checker to permit polymorphicrecursion, and it in turn forces reduction of the con-straint Eq [a] that arises from the recursive call tof.9

7. Context reduction a�ects typability. Consider the fol-lowing (contrived) program:data Tree a = Nil | Fork (Tree a) (Tree a)f x = let silly y = (y==Nil)in x + 1If there is no Eq instance of Tree, then the program isarguably erroneous, since silly performs equality attype Tree. But if context reduction is deferred, sillywill, without complaint, be assigned the typesilly :: Eq (Tree a) => a -> BoolThen, since silly is never called, no other type errorwill result. In short, the de�nition of which programsare typable and which are not depends on the rules forcontext reduction.8. Context reduction con
icts with the use of overlappinginstances. This is a bigger topic, and we defer it untilSection 4.4.Bearing in mind this (amazingly large) set of issues, thereseem to be the following possible choices:Choice 2a (Haskell, eager): reduce every context to asimple context before generalisation. However, as wehave seen, this may mean that some perfectly reason-able programs are rejected as being ill-typed.Choice 2b (lazy): do no context reduction at all until theconstraints for the whole program are gathered to-gether; then reduce them. This is satisfyingly decisive,but it gives rise to pretty stupid types, such as:(Eq a, Eq a, Eq a) => a -> Bool(Num Int, Show Int) => Int -> StringChoice 2c (Gofer, fairly lazy): do context reduction be-fore generalisation, but refrain from using rule (inst)except for tautological constraints. If overlapping in-stances are permitted, then change \tautological" to\ground". A variant would be to refrain from using(super) as well.Choice 2d (Gofer + polymorphic recursion): like 2c,but with the added rule that if there is a type sig-nature, the inferred context must be entailed by thecontext in the type signature, and the variable beingde�ned is assigned the type in the signature through-out its scope. This is enough to make the choice com-patible with polymorphic recursion, which 2c is not.Choice 2e (relaxed): leave it un-speci�ed how much con-text reduction is done before generalisation! That is,if the actual context of the term to be generalised isP , then the inferred context for the generalised termis P or any context that P reduces to. The same rulefor type signatures must apply as in 2d, for the samereason. To avoid the problem of item 7 we can requirethat an error is reported as soon as a generalisationstep encounters a constraint that cannot possibly besatis�ed (even if that constraint is not reduced).

We should note that 2b-e rule out Choice 1a for type signa-tures. Furthermore (as we shall see in Section 4.4), Choices2a and 2e rule out overlapping instance declarations.The intent in Choice 2e is to leave as much
exibility as pos-sible to the compiler (so that it can make the most e�cientchoice) while still giving a well-de�ned static and dynamicsemantics for the language:� So far as the static semantics is concerned, when con-text reduction is performed does not change the set oftypable programs.� Concerning the dynamic semantics, in the absence ofoverlapping instance declarations, a given constraintcan only match a unique instance declaration.4.4 Decision 3: overlapping instance dec-larationsDecision 3: are instance declarations with overlapping (butnot identical) instance types permitted? (See Section 3.6.)If overlapping instances are permitted, we need a rule thatspeci�es which instance declaration to choose if more thanone matches a particular constraint. Gofer's rule is that thedeclaration that matches most closely is chosen. In general,there may not be a unique such instance declaration, sofurther rules are required to disambiguate the choice | forexample, Gofer requires that instance declarations may onlyoverlap if one is a substitution instance of the other.Unfortunately, this is not enough. As we mentioned above,there is a fundamental con
ict between eager (or unspeci-�ed) context reduction and the use of overlapping instances.To see this, consider the de�nition:letf x = myShow (x++x)in(f "c", f [True,False])where myShowwas de�ned in Section 3.6. If we do (full) con-text reduction before generalising f, we will be faced with aconstraint MyShow [a], arising from the use of myShow. Un-der eager context reduction we must simplify it, presumablyusing the instance declaration for MyShow [a], to obtain thetypef :: MyShow a => a -> StringIf we do so, then every call to f will be committed to themyShow1 method. However, suppose that we �rst performa simple program transformation, inlining f at both its callsites, to obtain the expression:(myShow "c", myShow [True,False] [True,False])Now the two calls distinct calls to myShow will lead to theconstraints MyShow [Char] and MyShow [Bool] respectively;the �rst will lead to a call of myShow2 while second will leadto a call of myShow1. A simple program transformation haschanged the behaviour of the program!10

Now consider the original program again. If instead we de-ferred context reduction we would infer the type:f :: MyShow [a] => a -> StringNow the two calls to f will lead to the constraintsMyShow [Char] and MyShow [Bool] as in the inlined case,leading to calls to myShow2 and myShow1 respectively. Inshort, eager context reduction in the presence of overlappinginstance declarations can lead to premature committment toa particular instance declaration, and consequential loss ofsimple source-language program transformations.Overlapping instances are also incompatible with the reduc-tion of non-ground tautological constraints. For example,suppose we have the declarationinstance Monad (ST s) where ...and we are trying to simplify the context fMonad (ST �)g. Itwould be wrong to reduce it to fg because there might bean overlapping instance declarationinstance Monad (ST Int) where ...This inability to simplify non-ground tautological con-straints has, in practice, caused Gofer some di�cultieswhen implementing lazy state threads (Launchbury & Pey-ton Jones [1995]). Brie
y, runST insists that its argumenthas type 8�:ST � � , while the argument type would be in-ferred to be Monad (ST �) => ST � � .To summarise, if overlapping instances are permitted, thenthe meaning of the program depends in detail on when con-text reduction takes place. To avoid loss of coherence, wemust specify when context reduction takes place as part ofthe type system itself.One possibility is to defer reduction of any constraint thatcan possibly match more than one instance declaration.That restores the ability to perform program transforma-tions, but it interacts poorly with separate compilation. Aseparately-compiled library might not \see" all the instancesof a given class that a client module uses, and so must con-servatively assume that no context reduction can be done atall on any constraint involving a type variable.So the only reasonable choices are these:Choice 3a: prohibit overlapping instance declarations.Choice 3b: permit instance declarations with overlapping,but not identical, instance types, provided one is asubstitution instance of the other; but restrict all usesof the (inst) rule (Figure 1) to ground contexts C;P .This condition identi�es constraints that can matchat most one instance declaration, regardless of whatfurther instance declarations are added.4.5 Decision 4: instance typesDecision 4: in the instance declarationinstance P => C �1 : : : �n where : : :what limitations, if any, are there on the form of the instancetypes, �1 : : : �n?

Haskell 1.4 has only single-parameter type classes, hencen = 1. Furthermore, Haskell insists that the single type� is a simple type; that is, a type of the form T �1 : : : �m,where T is a type constructor and �1 : : : �n are distinct typevariables. This decision is closely bound up with Haskell'srestriction to simple contexts in types (Section 4.2). Why?Because, faced with a constraint of the form (C (T �)) thereis either a unique instance declaration that matches it (inwhich case the constraint can be reduced), or there is not (inwhich case an error can be signaled). If � were allowed tobe other than a type variable then more than one instancedeclaration might be a potential match for the constraint.For example, suppose we had:instance Foo (Tree Int) where ...instance Foo (Tree Bool) where ...(Note that these two do not overlap.) Given the constraint(Foo (Tree �)), for some type variable �, we cannot decidewhich instance declaration to use until we know more about�. If we are generalising over �, we will therefore end upwith a function whose type is of the formFoo (Tree �) => �Since Haskell does not allow such types (because the con-text is not simple), it makes sense for Haskell also to restrictinstance types to be simple types. If types can have moregeneral contexts, however, it is not clear that such a restric-tion makes sense.We have come across examples where it makes sense forthe instance types not to be simple types. Section 3.6.1gave examples in which the instance type was just a typevariable, although this was in the context of overlappinginstance declarations. Here is another example7 :class Liftable f wherelift0 :: a -> f alift1 :: (a->b) -> f a -> f blift2 :: (a->b->c) -> f a -> f b -> f cinstance (Liftable f, Num a) => Num (f a) wherefromInteger = lift0 . fromIntegernegate = lift1 negate(+) = lift2 (+)The instance declaration is entirely reasonable: it saysthat any \liftable" type constructor f can be used to con-struct a new numeric type (f a) from an existing numerictype a. Indeed, these declarations precisely generalises theBehaviour class of Elliott & Hudak [1997], and we have en-countered other examples of the same pattern. (You willprobably have noticed that lift1 is just the map from theclass Functor; perhaps Functor should be a superclass ofLiftable.) A disadvantage of Liftable is that now theHaskell types for Complex and Ratiomust be made instancesof Num indirectly, by making them instances of Liftable.This seems to work �ne for Complex, but not for Ratio. In-cidentally, we could overcome this problem if we had over-lapping instances, thus:instance (Liftable f, Num a) => Num (f a) where ...instance Num a => Num (Ratio a) where ...Another reason for wanting non-simple instance types is7Suggested by John Matthews.11

when using old types for new purposes. For example8 , sup-pose we want to de�ne the class of moveable things:class Moveable t wheremove :: Vector -> t -> tNow let us make points moveable. What is a point? Perhapsjust a pair of Floats. So we might want to writeinstance Moveable (Float, Float) where ...or eventype Point = (Float, Float)instance Moveable Point where ...Unlike the Liftable example, it is possible to manage withsimple instance types, by making Point a new type:newtype Point = MkPoint Float Floatinstance Moveable Point where ...but that might be tiresome (for example, unzip split a listof points into their x-coordinates and y-coordinates).Choice 4a (Haskell): the instance type(s) �i must all besimple types.Choice 4b: each of the instance types �i is a simple typeor a type variable, and at least one is not a type vari-able. (The latter restriction is necessary to ensure thatcontext reduction terminates.)Choice 4c: at least one of the instance types �i must notbe a type variable.Choice 4c would permit the Liftable example above. Itwould also permit the following instance declarationsinstance D (T Int a) where ...instance D (T Bool a) where ...even if overlapping instances are prohibited (provided, ofcourse, there was no instance for D (T a b)). It would alsoallow strange-looking instance declarations such asinstance C [[a -> Int]] where ...which in turn make the matching of a candidate instancedeclaration against a constraint a little more complicated(although not much).If overlapping instances are permitted, then it is not clearwhether choices 4b and 4c lead to a decideable type system.If overlapping instances are not permitted then, seem to beno technical objections to them, and the examples givenabove suggest that the extra expressiveness is useful.4.6 Decision 5: repeated type variables ininstance headsDecision 5: in the instance declarationinstance P => C �1 : : : �n where : : :8Suggested by Simon Thompson.

can the instance head �i contain repeated type variables?This decision is really part of Decision 4 but it deservesseparate treatment.Consider this instance declaration, which has a repeatedtype variable in the instance type:instance ... => Foo (a,a) where ...In Haskell this is illegal, but there seems no technical rea-son to exclude it. Furthermore, it is useful: the VarMonadinstance for ST in Section 2.1 used repeated type variables,as did the Iso example in Section 2.3.Permitting repeated type variables in the instance type ofan instance declaration slightly complicates the process ofmatching a candidate instance declaration against a con-straint, requiring full matching (i.e. one-way uni�cation,a well-understood algorithm). For example, when matchingthe instance head Foo (�;�) against a constraint Foo (�1; �2)one must �rst bind � to �1, and then check for equality be-tween the now-bound � and �2.Choice 5a: permit repeated type variables in an instancehead.Choice 5b: prohibit repeated type variables in an instancehead.4.7 Decision 6: instance contextsDecision 6: in the instance declarationinstance P => C �1 : : : �n where : : :what limitations, if any, are there on the form of the instancecontext, P?As mentioned in Section 4.1, we require that TV (P) �STV (�i). However, Haskell has a more drastic restriction:it requires that each constraint in P be of the form C �where � is a type variable. An important motivation fora restriction of this sort is the need to ensure terminationof context reduction. For example, suppose the followingdeclaration was allowed:instance C [[a]] => C [a] where ...The trouble here is that for context reduction to terminateit must reduce a context to a simpler context. This instancedeclaration will \reduce" the constraint (C [�]) to (C [[�]]),which is more complicated, and context reduction will di-verge. Although they do not seem to occur in practicalapplications, instance declarations like this are permitted inGofer|with the consequence that its type system is in factundecidable.In short, it is essential to place enough constraints on theinstance context to ensure that context reduction converges.To do this, we need to ensure that something \gets smaller"in the passage from C �1 : : : �n to P . Haskell's restriction tosimple contexts certainly ensures termination, because theargument types are guaranteed to get smaller. In princi-ple, instance declarations with irreducible but non-simplecontexts might make sense:12

instance Monad (t m) => Foo t m where ...We have yet to �nd any convincing examples of this. How-ever, if context reduction is deferred (Choices 2b,c) then wemust permit non-simple instance contexts. For example:data Tree a = Node a [Tree a]instance (Eq a, Eq [Tree a]) => Eq (Tree a) where(==) (Node v1 ts1) (Node v2 ts2)= (v1 == v2) && (ts1 == ts2)Here, if we are not permitted to reduce the constraintEq [Tree a], it must appear in the instance context.Lastly, if the constraints in P involve only type variables,when multi-parameter type classes are involved we must alsoask whether a single constraint may contain a repeated typevariable, thus:instance Foo a a => Baz a where ...There seems to be no technical reason to prohibit this.Choice 6a: constraints in the context of an instance dec-laration must be of the form C �1 : : : �n, with the �idistinct.Choice 6b: as for Choice 6a, except without the require-ment for the �i to be distinct.Choice 6c: something less restrictive, but with some wayof ensuring decidability of context reduction.4.8 Decision 7: what superclasses are per-mittedDecision 7: in a class declaration,class P => C �1 : : : �n where { op :: Q => � ; : : : }what limitations, beyond those in Section 4.1, are there onthe form of the superclass context, P? Haskell restricts Pto consist of constraints of the form D �1 : : : �m, where �imust be a member of f�1; : : : ; �ng, and all the �i must bedistinct. But what is wrong with this?class Foo (t m) => Baz t m where ...Also in this case, there seems to be no technical reason toprohibit this.Choice 7a: constraints in the superclass context must beas in Haskell, i.e. the constraints are of the formD �1 : : : �n, with the �i distinct, and a subset of thetype variables that occur in the class head.Choice 7b: no limitations on superclass contexts, exceptthose postulated in Section 4.1.4.9 Decision 8: improvementSuppose that we have a constraint with the following prop-erties:

� it contains free type variables;� it does not match any instance declaration9� it can be made to match an instance declaration by in-stantiating some of the constraint's free type variables;� no matter what other (legal) instance declarations areadded, there is only one instance declaration that theconstraint can be made to match in this way.If all these things are true, an attractive idea is to improvethe constraint by instantiating the type variables in the con-straint so that it does match the instance declaration. Thismakes some programs typable that would not otherwise beso. It does not compromise any of our principles, becausethe last condition ensures that even adding new instancedeclarations will not change the way in which improvementis carried out.Improvement was introduced by Jones [1995b]. A full dis-cussion is beyond the scope of this paper. The conditionsare quite restrictive, so it is not yet clear whether it wouldimprove enough useful programs to be worth the extra e�ort.Choice 8a: no improvement.Choice 8b: allow improvement in some form.Choice 8b would obviously need further elaboration beforethis design decision is crisply formulated.4.10 Decision 9: Class declarationsDecision 9: what limitations, if any, are there on the con-texts in class-member type signatures? Presumably class-member type signatures should obey the same rules as anyother type signature, but Haskell adds an additional restric-tion. Consider:class C a whereop1 :: a -> aop2 :: Eq a => a -> aIn Haskell, the type signature for op2 would be illegal, be-cause it further constrains the class type variable a. Thereseems to be no technical reason for this restriction. It is sim-ply a nuisance to the Haskell speci�cation, implementation,and (occasionally) programmer.Choice 9a (Haskell): the context in a class-member typesignature cannot mention the class type variable; inaddition, it is subject to the same rules as any othertype signature.Choice 9b: the type signature for a class-member is sub-ject to the same rules as any other type signature.9Recall that matching a constraint against an instance declarationis a one-way uni�cation: we may instantiate type variables from theinstance head, but not those from the constraint.13

5 Other avenuesWhile writing this paper, a number of other extensions toHaskell's type-class system were suggested to us that seemto raise considerable technical di�culties. We enumeratethem in this section, identifying their di�culties.5.1 Anonymous type synonymsWhen exposed to multi-parameter type classes and in par-ticular higher order type variables, programmers often seeka more expressive type language. For example, suppose wehave the following two classes Foo and Bar:class Foo k1 where f :: k1 a -> aclass Bar k2 where g :: k2 b -> band a concrete binary type constructordata Baz a b = ...Then we can easily write an instance declaration that de-clares (Bar a) to be a functor, thus:instance Functor (Baz a) wheremap = ...But suppose Baz is really a functor in its �rst argument.Then we really want to say is:type Zab b a = Baz a binstance Functor (Zab b) wheremap = ...However, Haskell prohibits partially-applied type synon-myms, and for a very good reason: a partially-applied typesynonym is, in e�ect, a lambda abstraction at the type level,and that takes us immediately into the realm of higher-orderuni�cation, and minimises the likelihood of a decidable typesystem (Jones [1995a, Section 4.2]). It might be possible toincorporate some form of higher-order uni�cation (e.g. alongthe lines of Miller [1991]) but it would be a substantial newcomplication to an already sophisticated type system.5.2 Relaxed superclass contextsOne of our ground rules in this paper is that the type vari-ables in the context of a class declaration must be a subsetof the type variables in the class head. This rules out dec-larations like:class Monad (m s) => StateMonad m whereget :: m s sset :: s -> m s ()The idea here is that the context indicates that m s shouldbe a monad for any type s. Rewriting this de�nition byoverloading on the state as wellclass Monad (m s) => StateMonad m s whereget :: m s sset :: s -> m s ()

is not satisfactory as it forces us to pass several dictionaries,say (StateMonad State Int, StateMonad State Bool)where they are really the same. What we really want isto use universal quanti�cation:class (forall s. Monad (m s))=> StateMonad m whereget :: m s sset :: s -> m s ()but that means that the type system would have to han-dle constraints with universal quanti�cation | a substantialcomplication.Another ground rule in this paper is the restriction to acyclicsuperclass hierarchies. Gofer puts no restriction on the formof predicates that may appear in superclass contexts, in par-ticular it allows mutually recursive class hierarchies. For ex-ample, the Iso class example of Section 2.3 can be writtenin a more elegant way if we allow recursive classes:class Iso b a => Iso a b where iso :: a -> bThe superclass constraint ensures that when a type a is iso-morphic to b, then type b is isomorphic to a. Needless tosay that such class declarations easily give lead to an unde-cidable type system.5.3 Controling the scope of instancesOne sometimes wishes that it was possible to have morethan one instance declaration for the same instance type,an extreme case of overlap. For example, in one part of theprogram one might like to have an instance declarationinstance Ord T where { (<) = lessThanT }and elsewhere one might likeinstance Ord T where { (<) = greaterThanT }As evidence for this, notice that several Haskell standardlibrary functions (such as sortBy) take an explicit compar-ison operator as an argument, re
ecting the fact that theOrd instance for the data type involved might not be theordering you want for the sort. Having multiple instancedeclarations for the same type is, however, fraught with therisk of losing coherence; at the very least it involves strictcontrol over which instance declarations are visible where.It is far from obvious that controlling the scope of instancesis the right way to tackle this problem | functors, as in ML,look more appropriate.5.4 Relaxed type signature contextsIn programming with type classes it is often the casethat we end up with an ambiguous type while weknow that in fact it is harmless. For example, know-ing all instance declarations in the program, we mightbe sure that the ambiguous example of Section 2.3iso 2 == iso 3 :: (Eq b, Iso Int b) => Bool has thesame value, irrespective of the choice for b. Is it possibleto modify the type system to deal with such cases?14

6 ConclusionSometimes a type system is so �nely balanced that virtuallyany extension destroys some of its more desirable proper-ties. Haskell's type class system turns out not to have theproperty { there seems to be sensible extensions that gainexpressiveness without involving major new complications.We have tried to summarise the design choices in a fairlyun-biased manner, but it is time to nail our colours to themast. The following set of design choices seems to de�nean upward-compatible extension of Haskell without losinganything important:� Permit multi-parameter type classes.� Permit arbitrary constraints in types and type signa-tures (Choice 1b).� Use the (inst) context-reduction rule only when forcedby a type signature, or when the constraint is tauto-logical (Choice 2d). Choice 2e is also viable.� Prohibit overlapping instance declarations(Choice 3a).� Permit arbitrary instance types in the head of an in-stance declaration, except that at least one must notbe a type variable (Choice 4c).� Permit repeated type variables in the head of an in-stance declaration (Choice 5a).� Restrict the context of an instance declaration to men-tion type variables only (Choice 6b).� No limitations on superclass contexts (Choice 7b).� Prohibit improvement (Choice 8a).� Permit the class variable(s) to be constrained in class-member type signatures (Choice 9b).Our hope is that this paper will provoke some well-informeddebate about possible extensions to Haskell's type classes.We particularly seek a wider range of examples to illustrateand motivate the various extensions discussed here.AcknowledegementsWe would like to thank Koen Claessen, Benedict Gaster,Thomas Hallgren, John Matthews, Sergey Mechveliani,Alastair Reid, Enno Scholz, Walid Taha, Simon Thompson,and Carl Witty for helpful feedback on earlier drafts of thispaper. Meijer and Peyton Jones also gratefully acknowl-edge the support of the Oregon Graduate Institute duringour sabbaticals, funded by a contract with US Air ForceMaterial Command (F19628-93-C-0069).References

K Chen, P Hudak & M Odersky [June 1992], \Paramet-ric type classes," in ACM Symposium on Lisp andFunctional Programming, Snowbird, ACM.C Elliott & P Hudak [June 1997], \Functional reactive ani-mation," in Proc International Conference on Func-tional Programming, Amsterdam, ACM.P Hudak, SL Peyton Jones, PL Wadler, Arvind, B Boutel,J Fairbairn, J Fasel, M Guzman, K Hammond, JHughes, T Johnsson, R Kieburtz, RS Nikhil, WPartain & J Peterson [May 1992], \Report on thefunctional programming language Haskell, Version1.2," SIGPLAN Notices 27.MP Jones [Jan 1995a], \A system of constructor classes:overloading and implicit higher-order polymor-phism," Journal of Functional Programming 5, 1{36.MP Jones [June 1995b], \Simplifying and improving qual-i�ed types," in Proc Functional ProgrammingLanguages and Computer Architecture, La Jolla,ACM.MP Jones [May 1994], \The implementation of the Goferfunctional programming system,"YALEU/DCS/RR-1030, Department of ComputerScience, Yale University.MP Jones [May 1995], \Functional programming with over-loading and higher-order polymorphism," in FirstInternational Spring School on Advanced Func-tional Programming Techniques, B�astad, Sweden,Springer-Verlag LNCS 925.MP Jones [Nov 1994], Quali�ed types: theory and practice,Cambridge University Press.S Kaes [Jan 1988], \Parametric overloading in polymor-phic programming languages," in 15th ACM Sym-posium on Principles of Programming Languages,ACM, 131{144.J Launchbury & SL Peyton Jones [Dec 1995], \State inHaskell," Lisp and Symbolic Computation 8, 293{342.S Liang, P Hudak &M Jones [Jan 1995], \Monad transform-ers and modular interpreters," in 22nd ACM Sym-posium on Principles of Programming Languages,San Francisco, ACM.D Miller [1991], \A logic programming language withlambda abstraction, function variables, and simpleuni�cation," Journal of Logic and Computation 1.M Odersky, PL Wadler & M Wehr [June 1995], \A secondlook at overloading," in Proc Functional Program-ming Languages and Computer Architecture, LaJolla, ACM.15

C Okasaki [Sept 1996], \Purely functional data structures,"PhD thesis, CMU-CS-96-177, Department of Com-puter Science, Carnegie Mellon University.SL Peyton Jones [Sept 1996], \Bulk types with class,"in Electronic proceedings of the 1996 Glas-gow Functional Programming Workshop (http://-www.dcs.gla.ac.uk/fp/workshops/fpw96/-Proceedings96.html).SL Peyton Jones, AJ Gordon & SO Finne [Jan 1996], \Con-current Haskell," in 23rd ACM Symposium onPrinciples of Programming Languages, St Peters-burg Beach, Florida, ACM, 295{308.PL Wadler & S Blott [Jan 1989], \How to make ad-hoc poly-morphism less ad hoc," in Proc 16th ACM Sym-posium on Principles of Programming Languages,Austin, Texas, ACM.

16

