Confined Types

Boris Bokowski

Freie Universitdt Berlin,
GMD-FIRST Berlin, Germany
bokowskiQacm.org

Abstract

Sharing and transfer of references is difficult to control
in object-oriented languages. As information security
is increasingly becoming software dependent, this diffi-
culty poses serious problems for writing secure compo-
nents. In this paper, we present a set of inexpensive
syntactic constraints that strengthen encapsulation in
object-oriented programs and facilitate the implementa-
tion of secure systems. We introduce two mechanisms:
confined types to impose static scoping on dynamic ob-
ject references and anonymous methods which do not
reveal the identity of the current instance (this). Con-
fined types protect objects from use by untrusted code,
while anonymous methods allow standard classes to be
reused from confined classes. We have implemented a
verifier which performs a modular analysis of Java pro-
grams and provides a static guarantee that confinement
is respected. We present security related programming
examples.

1 Introduction

Writing secure code is hard. The steady stream of secu-
rity defects reported in production code attests to the
difficulty of the task. Software systems, such as the Java
virtual machine, that permit untrusted code to mingle
with authorized code raise the stakes much higher than
more traditional systems as trust boundaries become
thinner and fuzzier.

In object-oriented programming it is difficult to con-
trol the spread and sharing of object references. This
pervasive aliasing makes it nearly impossible to know
accurately who owns a given object, that is to say, which
other objects have references to it [21]. The lack of own-
ership information [32] imposes a defensive program-

Jan Vitek
Object Systems Group,

University of Geneva, Switzerland

jv@cs.purdue.edu

ming style: since every method may have been called
by an adversary, appropriate security checks that ver-
ify the caller’s authority must be performed at method
entry.

This state of affairs creates a tension between secu-
rity and program efficiency. Placing dynamic security
checks in the prologue of each method is not realistic
for performance reasons. Instead, security conscientious
environments offer dynamic security checks which must
be explicitly interspersed in the program logic by the
developer [11, 37]. Thus nothing short of full-fledged
program verification can ensure that not a single check
has been omitted somewhere with the potential of com-
promising the security of the entire system.

Reusability creates its own set of problems for secu-
rity. Similar to the synchronization problems of concur-
rent programming, inheriting from classes that do not
implement the same security policy may create security
anomalies. Of course, from the point of view of the li-
brary designer, it is not possible to implement classes
that are secure in all contexts. Even if one could do
that, the overall performance of the library would be
unacceptable in secure contexts.

To a large extent the problem for implementing se-
cure systems in Java is one of defining interfaces be-
tween protection domains. As we stand now, a Java vir-
tual machine may manage objects of many different pro-
tection domains — code loaded from different sources
— but imposes no clear boundaries between these do-
mains. So, from the security engineer’s viewpoint, there
is no well identified place where to put security checks.

One solution to this dilemma is to separate objects
that are internal to a protection domain from external
objects. Internal objects implement the behavior of the
application without concern to security, while external
objects are the interface between protection domains
and must implement the security policy. Such a sepa-
ration of concerns simplifies the life of the application
programmer as the core of the system can be written
without security checks. Moreover, it improves security
as a smaller set of classes, the interface objects, become

the focal point for security analysis.

Current object-oriented languages do not provide
the means to enforce such a distinction between ob-
jects. While access modifiers can restrict how certain
object types are manipulated [13] — by curtailing vis-
ibility of methods and fields — and also restrict the
scope of types, object-oriented languages do not pro-
vide strong encapsulation [30]. They typically cannot
control the scope of object references. Thus references
to sensitive parts of an application may leak to other
protection domains.

We propose confined types as an aid for writing se-
cure code. Confined types are meant to be used for
preventing internal objects from escaping their protec-
tion domain. Given some definition of domain, we give
the following definition of confinement: a type is said
to be confined in a domain if and only if all references
to instances of that type originate from objects of the
domain. Confined types differ from existing access con-
trol features in that they prevent references to instances
from leaving a domain rather than restricting access on
a class level. In effect, confined types enforce static
scoping of dynamic object references.

Our proposal for achieving confinement in Java de-
pends on static constraints on the definition and use of
objects. Thus there is no extra runtime overhead and
confinement is guaranteed at compile time — avoiding
the need to worry about “confinement breach” excep-
tions. We extend Java with two additional modifiers,
one for classes and one for methods, and enforce some
restrictions on programs. While certain programming
tasks may be clumsier, we argue that these restrictions
are mild and that reasoning about security is much sim-
pler.

Confined types have been implemented with Coffee-
Strainer [2], a framework for static checking of struc-
tural constraints on Java programs. In this implemen-
tation we have chosen the Java package as the unit of
protection. Packages are well suited for this task as
they group related classes and they already provide ba-
sic access control features. Our annotations do not af-
fect program semantics, thus a valid program with con-
finement annotations behaves identically as the same
program with no annotations. The verification of the
validity of these annotation is modular and is thus able
to accommodate dynamic loading of classes.

Road map: An overview of language-based security
mechanisms is given in Section 2. For a large class of
security problems, these mechanisms are not sufficient.
Section 3 details a well-known security defect in the
Java Development Kit (JDK) which is our motivating
example. Anonymous methods are introduced in Sec-
tion 4. While independent from confined types, they are
essential to allow a traditional programming style and

in particular code reuse. Confined types are presented
in Section 5. Section 6 introduces a complete program-
ming example with confined types. Section 7 compares
confined types to other approaches. Finally, Section 8
discusses design choices, implications on genericity, and
benefits that confined types offer for other areas than
security.

2 Security in Programming Languages

Security is increasingly becoming a software issue as
the mechanisms used to implement security policies are
cheaper and more flexible in software than in hardware
[6, 14, 25].

In a computer system, principals are the entities
whose actions must be controlled. Principals invoke op-
erations on objects! The context within which a prin-
cipal executes is called a protection domain. Access
to resources within the same protection domain is not
checked, while cross-domain operations must be autho-
rized by a security policy.

Implementing security policies at the programming
language level is reasonable. Language semantics can
help to reason about program behavior and thus to
prove security properties. Type systems and static anal-
ysis algorithms can reduce the run-time cost of secu-
rity. Finally, protection domains can be made extremely
lightweight and allow fine-grained interactions.

We review some of the main programming language
approaches to security and discuss their merits in the
context outlined above.

2.1 Language Safety

Safe programming languages guarantee that the execu-
tion of programs proceeds according to the language
semantics. This means that, for example, types are
not misinterpreted and data is not mistaken for exe-
cutable code. In Java, safety depends on four tech-
niques: bytecode verification to ensure that programs
are well-formed, strong typing to guarantee that val-
ues are used according to their definition, automatic
memory management to prevent errors such as deleting
a live object, and memory protection to prevent array
and stack operations from overflowing [45].

While safety is not security, these mechanisms are
an essential foundation for language-based security.

2.2 Information Flow

Over the last 20 years an abundant body of work has
been devoted to information flow control. Multilevel

!Here, the notion of object is more general than in object-oriented
programming. In the security literature an object may be a datum,
a file, a hardware device, etc.

security policies [8] originally conceived for military ap-
plications are based on the notion that all data is la-
beled with security levels and that principals may only
access data for which they have security clearance. The
objective of information control techniques is to obtain
a form of non-interference — a property which, infor-
mally, means that the values of low level security vari-
ables may not depend on high level security variables
[43, 26, 42]. This requires checking all channels of com-
munication that may create information flows (these in-
clude implicit channels such as conditional expressions
and loops, as well as the more exotic timing and prob-
abilistic channels). To date, these techniques are still
not used in practice. Part of the problem stems from
inherent restrictions: to achieve non-interference in a
multi-threaded language Volpano and Smith [36] had
to forbid the guard of loops to depend on high secu-
rity variables. This restriction is quite stringent, yet
even then probabilistic channels remain. A more fun-
damental problem with information flow control is that
it assumes a homogeneous software system in which se-
curity labels are set once and for all, and all subsys-
tems agree on the labels and on their meaning. In a
distributed system assembled from heterogeneous com-
ponents these assumptions do not hold. In our case,
there are as many security policies as there are protec-
tion domains (e.g. applets), each of which may decide
on its own labeling scheme. Furthermore, there is mu-
tual distrust among the different components. Some
of these problems have been addressed in a sequential
subset of Java [28, 29], but extending the approach to
the full language is still an open problem. To summa-
rize, information flow provides a sound notion of what
a secure system is, but current technology remains too
restrictive for widespread usage.

2.3 Access Control

Discretionary access control mechanisms fail to provide
the same strong guarantees as information flow con-
trol, but are less constraining and thus more usable
in practice. Access control mechanisms entail security
checks before any potentially dangerous operation to
verify that the current program has the authority to
perform that action. Schemes such as capabilities and
access control lists have been used to implement access
control. A good example of the use of access control
lists is the Unix file system.

Static access control: Object-oriented languages pro-
vide two basic means for controlling access to objects.
The first is access modifiers such as the Java private,
public, and protected modifiers that restrict the vis-
ibility of attributes and classes. The second is type ab-
straction; subtyping can be used to limit the operations

that can be invoked on an object [33]. In Java, type ab-
straction is not useful since using the instanceof op-
erator and reflection make it quite easy to retrieve the
type of an object, which is not the case in some other
systems [22, 33].

Dynamic access control: Java provides dynamic ac-
cess control mechanisms based on call stack inspection.
That is, a dynamic check verifies that the current method
was invoked (transitively) by a method with appropri-
ate privileges [11]. Another dynamic scheme which has
been proposed is to use objects as capabilities [23] by
interposing a restricted proxy object between the user
and the target ([12], see also [15, 44, 40]).

To sum up, the protection mechanisms that have been
proposed so far are not perfect. On the one hand, dy-
namic checks are error-prone as it is easy to forget one
check and there is no guarantee that all potentially dan-
gerous operations that can be invoked by untrusted code
are protected by access checks. On the other hand,
static protection mechanisms were originally conceived
for software engineering purposes rather than for se-
curity and they fail to provide a sufficient solution to
access control.

We now turn to an example to demonstrate the kind
of problems which we want to address.

3 The Class Signing Example

In Java, each class object (instance of class Class) stores
a list of signers, which contains references to objects of
type java.security.Identity, representing the prin-
cipals under whose authority the class acts. This list
is used by the security architecture to determine the
access rights of the class at runtime. A serious secu-
rity breach was found in the JDK 1.1.1 implementation
which allowed untrusted code to acquire extended ac-
cess rights [35]. The breach was due to a reference to
the internal list of signers leaking out of the implemen-
tation of the security package into an untrusted applet.

The scenario is as follows. Assume a malicious ap-
plet loaded from the net. Without any trusted signa-
tures, its access rights are strongly limited. But the
JDK does allow the applet to get its own list of sign-
ers. Furthermore, an applet can find out about all the
principals known to the system by calling a method of
java.security.IdentityScope. The method that re-
turned the list of signers of a class (implemented by
a Java array object) accidentally returned a reference
to the system’s internal array. Since arrays are mu-
table data structures, the applet can then proceed to
update the array to include signatures of other princi-
pals known to the system and obtain access rights it

should not have, thus opening the system to more seri-
ous attacks.

We first present a program fragment which exhibits
the security problem described above, and then give a
solution using confined types.

3.1 The Security Breach in Detail

In Figure 1, the array signers is the system’s internal
array that contains references to instances of the class
Identity (the principals). Modifying this array is defi-
nitely a dangerous operation but there are no provisions
in the implementation of the array class for checking
the authority of the caller in an update. The security
breach is caused by the getSigners() method which
returns a reference to the signers object.

private Identity[] signers;

public Identity[] getSigners() {
return signers;
}

Figure 1: Signatures without confined types

The attacker need only call getSigners() to be able
to freely update the system’s signature array. A simple
fix is to return a shallow copy of the internal array.
Figure 2 makes the copy explicit. While this solves
the particular problem, nothing guarantees that similar
defects are not present in other parts of the package.

private Identity[] signers;

public Identity[] getSigners() {
Identity[] pub;
pub = new Identityl[signers.length];
for (int i=0; i<signers.length; i++)
pub[i] = signers[i];
return pub;

Figure 2: Ad-hoc fix of security problem

What is interesting about this example is that none
of the standard Java protection mechanisms seem to
help. Access modifiers and type abstraction are not rel-
evant here. Restricting the use of the Identity objects
would do no good as the attack does not interact with
Identity objects, it only needs to acquire references
to them and copy those references. Information flow
control [42] does not apply either, since we do want to
allow applets to read the signature information and to
see identities known to the system. Finally, inserting
dynamic checks in the array update operation, which is

the point where the security policy is actually broken, is
unrealistic as all array updates performed in the JVM
would incur the cost of a dynamic check.

We now give a solution that guarantees that none of
the key data structures used in code signing escape the
scope of their defining package.

3.2 Class Signing with Confined Types

To prevent software defects such as the one outlined
above, we propose to ensure that references to iden-
tity objects are confined to the java.security pack-
age. This is achieved by renaming the Identity class
to Secureldentity and declaring it confined. Intu-
itively, the meaning of confinement is that references
to instances of a confined class, or to instances of any
of its subclasses, cannot be disclosed to or accessed by
other packages. That is to say, only the classes defined
in package java.security may interact with Secure-
Identity objects. In order to preserve the functionality
of the original interface, we define a new class Identity
which can be seen outside of the security package. This
class implements the public methods of Securelden-
tity and has a private reference to a SecureIdentity
instance. Identity plays the role of a guard and encap-
sulates the real identity object [12, 15]. The Identity
class is purely for external use, it is neither a subclass
nor a superclass of SecureIdentity and thus cannot
be confused with a SecureIdentity object within the
security package. Any attempt to return a Secure-
Identity object to an outside package will be caught
at compile-time as a violation of confinement. Figure 3
outlines our solution.

The getSigners() method is similar to Figure 2. The
important difference is that the type of the internal ar-
ray signers is different from the type of the array that
is being returned. The confinement constraints extend
to arrays, thus if a type A is confined, then the array
type A[] is confined as well. The getSigners() method
allocates an unconfined array to which newly created
objects of type Identity are copied. If getSigners()
tried to return its internal array, a confinement breach
error would be signaled.

This solution preserves the functionality of the orig-
inal program, in fact outside code need not be aware
of the existence of confined types. But from a security
engineering point of view, attention is directed to the
Identity class as it can be accessed by untrusted com-
ponents, and may thus (if deemed necessary) include
dynamic security checks.

This example shows how confined types help in de-
veloping secure code. They draw a strong demarcation
line between internal representation objects and exter-
nal interface objects.

We now define confinement in more detail. We be-
gin the presentation with the definition of anonymous

confined class SecureIdentity ...{
// the original Identity implementation

}

public class Identity {
Secureldentity target;

Identity(Secureldentity t) { target = t; }

...// public operations on identities;

}

private Secureldentity[] signers;

public Identity[] getSigners() {
Identity[] pub;
pub = new Identityl[signers.length];
for (int i=0; i<signers.length; i++)
pub[i] = new Identity(signers[i]);
return pub;

Figure 3: Signatures with confined types.

methods which will prove to be essential for modular
checking of confinement.

4 Anonymous Methods

An anonymous method is a method that does not de-
pend on the identity of the current instance to compute
its value. The behavior of the method is entirely deter-
mined by its arguments and the value of the object’s
fields. An anonymous method does not reveal the ob-
ject’s identity to others which means it does not intro-
duce new aliases to the current instance, nor perform
any identity-dependent operations. Anonymous meth-
ods are needed to allow confined types to use methods
inherited from unconfined supertypes. However, they
also have interesting properties in their own right and
may be useful in other contexts [4].

In Java technical terms, an anonymous method is
a non-native instance method that may use this only
for accessing the fields of the current instance and for
calling other anonymous methods on itself. Thus, the
anonymous method keeps its implicit this parameter
secret by not assigning this to a variable, nor providing
this as a method argument, nor returning this as the
method’s return value. Additionally, it is not allowed
to perform reference comparisons using this?.

Figure 4 presents a valid class Example with two
anonymous methods (ok, alsoOk) and a non-anonym-

2As a rule of thumb, the keyword this should not be used at all
in anonymous methods, except to access fields hidden by a parameter
or local variable of the same name.

class Example {
int count;

int anon ok(A arg) {
1 alsoOk(arg.foo());
2 return count ;

}

void anon alsoOk(int i) {
3 count = i + count ;

}

Example notOk(A arg) {
arg.bar(this) ;
arg.o = this ;
notOk(arg);
if (this == arg)
return this ;

N O U

Figure 4: Anonymous methods.

ous method (not0k). Lines (1 - 3) show examples of
anonymity-preserving code, while (4 - 8) show exam-
ples that do not preserve anonymity. Line (4) reveals
this to method bar. (5) stores this in a field of arg.
Line (6) calls a non-anonymous method (don’t mind
the infinite recursion). Line (7) uses this for reference
comparison. Finally, (8) returns this.

Because the definition of anonymous methods is re-
cursive, we require anonymous methods to be declared
as such explicitly (anon), and check for each such de-
clared method whether it conforms to the definition
of anonymity. In addition to the constraint regarding
the use of this, there is another constraint regarding
anonymity of overridden methods: anonymity is a prop-
erty that potential callers rely on, methods in subclasses
that override an anonymous method must therefore be
anonymous as well.

We regard constructors as a special case of instance
methods. Accordingly, constructors may be declared
anonymous as well, and the same constraints that ap-
ply to instance methods apply to constructors. In Java,
the first statement of each constructor is a call to an-
other constructor, which may be in the same class, or in
the direct superclass of the current class. Without an
explicit call, the constructor of the superclass is called
implicitly. An anonymous constructor must thus ensure
that explicit and implicit calls are made only to anony-
mous constructors. The Object constructor, the only
one that does not call another constructor, is anony-
mous by definition, as are several other commonly used
methods in Object: wait(), notify(), notifyAll(),

hashCode ()3, and finalize().
The following table summarizes the constraints that
apply to anonymous methods and constructors:

The reference this can only be used for access-
Al | ing fields and calling anonymous methods of the
current instance.

Anonymity declarations must be preserved
when overriding methods.

A2

The constructor called from an anonymous con-
structor must be anonymous as well.

A3

A4 Native methods may not be declared anony-
mous.

Clearly some programming styles are restricted with
anonymous methods. It is important to assess how re-
strictive our proposal actually is and whether common
programming idioms would become too cumbersome to
be practical or too inefficient. For instance, the visi-
tor pattern breaks anonymity to implement a double
dispatching [9]. We have mentioned that the default
implementation of hashCode () must be changed*, this
comes at a price in runtime performance that remains
to be evaluated. The use of the reference equality op-
erator is restricted as well, instead value comparison
must be used. Changing code from reference semantics
to value semantics has deep implications [24] and is not
as efficient.’

To obtain a better sense of the impact of anonymity
declarations on programming style, we analyzed JDK
1.1 to find out how many existing methods meet the
above mentioned criteria (A1, A2, A3, and A4). The
data has been collected by iterating a static analysis de-
tecting anonymity violations. In each iteration, meth-
ods flagged by the analysis were declared as non-anon.
The process was repeated until the fixpoint was reached.
The results, summarized in Table 1, are encouraging.
Without changes to existing code, between 83% and
94% of the methods are already anonymous. With some
care a portion of those non-anon methods could be re-
written to become anonymous.

Anonymous methods are closely related to the con-

3By default, hashCode() and identityHashcode() return the ob-
ject’s address in the heap; this introduces a dependence on the ob-
ject’s identity. We therefore require the implementation to calculate
the code without using the object’s address.

4An anonymous hashCode method is an advantage for persistence
and for JVM implementers as objects can be freely moved around
the store and between main memory and secondary storage without
affecting code that relies on hashing.

5The inefficiency could be somewhat mitigated by program analy-
sis. The following code fragment does not violate anonymity because
reference equality implies value equality:

if (this == that) return true; else return equals(that);

| Package | java.util | java.awt
classes + interfaces || 28 + 3 63 + 7
all methods 351 1246
anon methods 329 (94%) | 1042 (83%)

Table 1: Anonymous methods in existing code.

cept of Boyland’s borrowed receiver [4]. Boyland defines
a reference to be borrowed by a method if the method
can not store the reference and thus does not intro-
duce any static aliases. We have considered relaxing
the anonymity restrictions to allow reference equality
and the use of the unmodified hashCode method. With
that definition the annon methods in Table 1 would go
up to 332 and 1047 for util and awt respectively.

Section 5.4 explains our use of anonymous methods.
We now turn to the definition of confined types.

5 Confined Types

A confined type is a type whose instances may not be
referenced or accessed from outside a certain protec-
tion domain. Confined types are introduced by anno-
tating class or interface definitions with the keyword
confined. Instances of confined types are called con-
fined objects. In Java, packages are an obvious choice of
protection domains as packages have already some pro-
tection mechanism built into the language in the form
of access modifiers. Instances of confined classes may
thus only be referenced or accessed from within a single
package. Since confined objects cannot be referenced
from outside their confined class’ package, we can un-
ambiguously refer to a confined object’s confining pack-
age, meaning the package in which the object’s class is
defined and the package in which all the code that can
potentially manipulate the object is located. We can
also refer to package of a confined type since all classes
(or interfaces) that extend (implement) a confined class
(interface) must belong to the same package. Figure 5
summarizes the relationships between an object obj in
package outside and the objects conf and unconf from
package inside. A reference from obj to the confined
object is not allowed, but all other references, including
from conf to objects outside of the package are.

outside

inside
unconf

Figure 5: References between packages.

It is important to understand that we are not try-
ing to prevent information to leak through covert chan-
nels, just stop references to confined objects from being
transferred out of their confining package.

5.1 Overview of the Problem

Before listing the confinement constraints, it is helpful
to consider all constructs with which object references
may be transferred from a package inside to another
package outside.

We start with reference transfers that originate from
code of package inside. The possible targets in package
outside fall into three categories: fields, method and
constructor parameters (including the implicit parame-
ter this), and parameters of catch clauses. Taking into
account that object references can be stored in arrays,
we distinguish six cases for transfers from the inside:

r1 Package inside assigns a reference to one of its
objects to a field in package outside,

r2 Package inside calls a method or constructor de-
fined in package outside passing a reference to
one of its objects as an argument,

r3 Package inside wraps an object reference into an
array (or multiple nested arrays) and uses points
rl or r2 for transferring the array reference,

r4 Calling a method or constructor defined in a class
in package outside from a subclass of that class
in package inside (the implicit parameter this is
transferred),

r5 Calling a method defined in a class in package
outside from a superclass of that class in pack-
age inside (the implicit parameter this is trans-
ferred),

r6 Package inside throws an exception which is han-
dled by a catch clause defined in package outside
(the exception object is transferred).

We now list reference transfers that originate in package
outside. The possible sources in package inside fall
into three categories: fields, method return values, and
references to newly instantiated objects using the oper-
ator new. Again, taking into account that object refer-
ences can be stored in arrays, we distinguish four cases
for reference transfers originating in package outside:

r7 Package outside reads a field of package inside
containing a reference to an instance of a class de-
fined in package inside,

r8 Package outside calls a method of package inside
that returns an object reference to an instance of
a class defined in package inside,

r9 Package outside uses points r7 or r8 to obtain a
reference to an array (or multiple nested arrays),
into which package inside has wrapped an object
reference,

r10 Package outside instantiates an object of a class
defined in package inside using the new operator.

These points are illustrated in Figure 6. Each line la-
beled r1 to r10 demonstrates a reference transfer.

We now introduce the constraints that prevent ref-
erence transfers. The presentation proceeds as follows:
Section 5.2 gives constraints on class and interface dec-
larations. Section 5.3 presents constraints that pre-
vent widening. Section 5.4 discusses constraints that
deal with hidden widening. Based on the constraints
introduced so far, Section 5.5 explains why reference
transfers originating in the inside package cannot occur.
Finally, Section 5.6 presents the remaining constraints
that address reference transfers originating in outside
packages.

The constraints can be checked statically. Our im-
plementation is based on CoffeeStrainer, a system for
statically checking structural constraints on Java pro-
grams [2]. An important design goal for these con-
straints was that only the classes of the confining pack-
age should have to be checked. Other packages may
remain unchecked, with the exception of anonymous
methods, because the standard Java access control checks
are sufficient to protect packages with confined types
from other packages. We assume for this that packages
containing confined types cannot be extended by un-
trusted programs. In practice, this constraint may have
to be checked at load time.

5.2 Confinement in Declarations

The first two constraints restrict the declaration of classes
and interfaces. The goal is to ensure that confined types
are only visible in their package and to guarantee that
subtyping preserves confinement.

A confined class or interface must not be de-
C1 | clared public or protected, and must not belong
to the unnamed global package.

Subtypes of a confined type must be confined
C2 | and belong to the same package as their con-
fined supertype.

C1 ensures that confined types have private or package-
local access. Confined types cannot belong to the un-
named global package, as this package is “open” to ex-
tensions. C2 guarantees that if a confined class (or in-
terface) is extended (implemented) then the extending
class (interface) is also confined and belongs to the same

package inside;
public class C extends outside.B {
void putReferences() {
C c = new C();

rl outside.B.cl = c;

r2 outside.B.storeReference(c);
r3 outside.B.c3s = new C[] {c};
rd calledByConfined() ;

r5 implementedInSubclass() ;

r6 throw new E();

}

void implementedInSubclass() { }
r7 static C £ = new C();
r8 static void C m() {
return new C(); }
r9 static C[] fs = new C[l{new C()};
r10 public CO { }

public class E extends RuntimeException { }

package outside;
public class B {
rl static inside.C ci;
r2 static void storeReference(inside.C c2) {
// store c2
}

r3 static inside.C[] c3s;
r4 void calledByConfined() {
// store this
}

static void getReferences() {

r7 inside.C c7 = inside.C.f;
r8 inside.C c8 = inside.C.m();
r9 inside.C[] c9s = inside.C.fs;
rl0 inside.C c10 = new inside.C();

D d = new D();

try {

d.putReferences() ;

r6 } catch (inside.E ex) {

// store ex

}
}
}
class D extends inside.C {
r5 void implementedInSubclass() {
// store this
}

Figure 6: Transferring references.

package. Thus, the confinement property extends tran-
sitively to all subtypes of a confined type.

5.3 Preventing Widening

To prevent references to confined objects from escaping
their package, reference widening from a confined type
to an unconfined supertype cannot be allowed. Clearly,
the root of the type hierarchy, java.lang. Object,
is not confined. Thus, if a confined reference can be
widened and stored in an Object variable, then the con-
fined object may leak out of its package.
In Java, reference widening may occur in either of:

e an assignment, if the declared type of the left hand
side of the assignment is a supertype of the as-
signed expression’s static type,

e a method call, if the declared type of a parame-
ter is a supertype of the corresponding argument
expression’s static type,

e a return statement, if the declared result type of
the method is a supertype of the result expression’s
static type,

e a cast expression, if the type casted to is a super-
type of the casted expression’s static type.

Widening must be prevented if it entails losing the con-
finement property of an object reference. The following
constraint enforces confinement.

Widening of references from a confined type to
an unconfined type is forbidden in assignments,
method call arguments, return statements, and
explicit casts.

C3

As noted in Section 3, Java arrays are a way to leak
references as well. Consequently, the constraint takes
arrays into account as well. For a confined type A, we
regard the array type A[] to be a confined type as well,
called a confined array type, so that they are a special
case of C3.

In general, confined objects may not be stored in
unconfined collections (of which arrays are just one ex-
ample). Although this restricts common programming
styles, the signed classes example showed that it is ex-
actly this kind of potential leakage which is easy to over-
look. Thus, we think it is worth the effort to provide
special-purpose confined collections (or arrays) rather
than trading security for the reuse of collection classes.
Section 8.2 discusses the impact of confined types on
genericity.

5.4 Preventing Hidden Widening

In addition to the obvious widening of the previous
section, implicit or hidden widening occurs whenever
a method inherited from an unconfined superclass is in-
voked on a confined object. Upon entry in the inherited

method the implicit parameter this which refers to the
current instance is widened from the confined type to
the unconfined supertype.

Clearly, hidden widenings should not be ruled out
completely, as this would make it impossible to de-
rive confined classes from non-trivial unconfined classes.
But allowing confined classes to extend unconfined clas-
ses without restrictions is dangerous. The reference to
the current instance may leak out if a method in the
superclass transfers it to any other object. However,
anonymous methods of Section 4 are safe since they do
not leak this. We can now give the constraints that en-
sure the safety of hidden widenings. We say that meth-
ods defined by a class are the new methods introduced
in that class, all other methods are inherited.

Methods invoked on a confined object must ei-
C4 | ther be defined in a confined class or be anony-
mous methods.

Constructors called from the constructors of a
C5 | confined class must either be defined by a con-
fined class or be anonymous constructors.

Constraint C4 ensures that methods called on a con-
fined reference are either defined in a confined class or
anonymous. In the case of overriden methods, i.e., if
a method defined in a superclass is overriden in a con-
fined subclass, it is safe to execute the method as it
preserves confinement. Similar to methods, construc-
tors of unconfined superclasses that are called by the
constructors of a confined class need to be anonymous.
This applies to instance field initializers and instance
initialization blocks as well, as these might also leak
out a reference to the object.

We should emphasize that these constraints need
only be checked within the defining package of the con-
fined type as it is not possible to invoke methods of con-
fined types of another package. Also, note that methods
and constructors defined by confined classes need not be
anonymous. Note that interfaces do not play a role here
since they do not introduce code.

Anonymous methods ease the restrictions that would
otherwise be imposed on inheritance. Without them, it
would be unsafe to invoke any inherited method of a
confined object.

5.5 Preventing Transfer from the Inside

In our list points r1 to r6 involve transfers that orig-
inate in the inside package. Based on the constraints
introduced so far, points r1 and r2 — assigning to a
field in an outside package, and passing parameters to
a method in an outside package — are not allowed for
confined types. Since neither a confined type itself nor
one of its subtypes is accessible from the outside pack-

age (due to constraints C1 and C2), the type of the field
or parameter can only be an unconfined supertype of
the confined type. But then, transferring the reference
would require reference widening which is ruled out by
constraint C3.

Similarly, point r3 — wrapping references to con-
fined objects in an array and transferring the array ref-
erence by assigning it to a field or passing it as a pa-
rameter — is not possible, because arrays of confined
types are confined as well.

Reference transfers according to point r4 — calling a
method in an unconfined supertype — are not ruled out
completely; rather, constraints C4 and C5 require the
called methods (resp. constructors) to be anonymous,
as discussed in Section 4. Thus, it is possible to transfer
references, but only to code that can neither discloses
the reference to a non-anonymous method nor depends
on the reference.

Item r5 — transferring this to a subclass by call-
ing a method which is implemented in the subclass —
cannot transfer a confined reference to an outside pack-
age, because constraints C1 and C2 make sure that all
subclasses of a confined type must reside in the same
package as the confined type.

With Java exceptions, there is another opportunity
for transferring references which is rather obscure: If an
exception of a certain type is thrown, it may be caught
with a catch clause whose formal parameter is of a su-
pertype of the actual exception that was thrown. As we
don’t see important uses where exception objects should
be confined to a package, we just disallow subtypes of
java.lang.Throwable to be confined types, thus dis-
allowing reference transfers according to point r6. The
class java.lang.Thread also requires special treatment
as one of its static methods returns a reference to the
currently executing thread object. We require that:

Subtypes of java.lang.Throwable and

c6 java.lang.Thread may not be confined.

5.6 Preventing Transfer from the Qutside

Reference transfers from the inside package to the out-
side (r7 — r10) have not yet been addressed. They
involve transfers that originate in an outside package.
The new constraints are:

The declared type of public and protected fields
Cc7

may not be confined.

The return type of public and protected meth-
C8

ods may not be confined.

Fields whose declared types are confined types should
not be accessible from outside the package, i.e., confined

KeyWriter

<.

| ConfinedRandomx* |

o KeyFactory

Key [PubKeyWriter
N
e R R rsa
. secure
| PrivKeyx | | PrivKeyWriter |

PrivKeyFactoryx |

g

Maln

Figure 7: Relationships between package rsa and package secure. Full arrow indicate subtyping relations. Dashed
arrows indicate implementation dependencies. Confined types are indicated with a *.

field may not be public or protected (C7), preventing ob-
ject reference transfer according to point r7. Although
the confined type itself is not accessible from outside
the package, confinement is not enforced in other pack-
ages. Thus, if a field of a confined type was accessible,
it would be possible for the outside package to widen
the reference to an unconfined supertype.

By similar reasoning, methods which return confined
type should not be accessible from outside the package,
i.e., no method returning a confined type should be
public or protected (C8). Thus, point r8 is prevented as
well. Again, note that confined array types are a special
case of the general constraint, so fields of confined array
types and methods returning confined arrays must have
private or package-local access, preventing r9. Instan-
tiating a confined class from outside (point r10) cannot
occur because confined classes are not accessible from
outside.

6 Example: Public-Key Cryptography

Public-key cryptography is one of the essential tools for
security in distributed systems. The implementation
of public key cryptography must therefore be secure.
Furthermore, it should be possible to reuse this imple-
mentation in different contexts without endangering se-
curity.

More specifically, our goal is to ensure that the ran-
dom number objects used in the generation of public-
private key pairs should not be accessible outside of the
implementation of the RSA algorithm [34]. Further, we
would like to offer the guarantee to clients of the RSA
package that the object that represent their private keys
remain confined to their application, and that under no
circumstance another applet be granted access to a pri-
vate key.

The solution we present in this section uses confined
types to achieve the desired security properties. It is
noteworthy that the result is achieved with little effort

on the part of the client (the users) of the RSA library.
We structure the code in two packages:

e Package rsa: a reusable public-key cryptographic
library.

e Package secure: one particular user of the rsa
package.

The classes that we want to protect are Confined-
Random, the random numbers used to generate keys,
and PrivKey, the actual private keys. The first class
belongs to the rsa implementation and the second is
owned by the client of the library, the secure package.
Thus ConfinedRandomis confined in package rsa, while
PrivKey is confined in secure.

Public keys are implemented by the Key class and do
not have to be confined as we assume that clients may
want to pass them around to other packages. Of course,
there could easily be another client package (even simul-
taneously on the same JVM) which confines its public
key class.

The package rsa, Figure 8, provides a class Key that
encapsulates RSA encryption. Class KeyFactory gen-
erates a key pair (pub,priv) such that a message en-
crypted with the public key can be decrypted using the
private key and vice versa, i.e., pub.crypt (priv.crypt
(m)) returns m. The implementation of KeyFactory re-
lies on class ConfinedRandom for generating the keys.

The package secure, Figure 9, introduces classes
PrivKeyFactory and PrivKey to, respectively, gener-
ate and represent private keys. A class Main is given to
demonstrate how keys are used. There are several other
classes in the implementation, we will detail them in the
following paragraphs. Figure 7 illustrates the relation-
ships between the two packages.

Relevant portions of the implementations of both
packages are given in Figure 8 and Figure 9.

package rsa;

import java.math.BigDecimal;
. . . package secure;
import java.util.Random;

import rsa.x*;

public class Key { import java.math.BigDecimal;

public BigDecimal mod;

public BigDecimal exp; confined class PrivKey

anon public String crypt(String msg) { extends Key { }

/* return (msg~"exp)’mod */
}

} private class PrivKeyWriter
implements KeyWriter {

private confined class ConfinedRandom private PrivKey key;

tend d
extends Random { } PrivKeyWriter (PrivKey k) { key = k; }

public interface KeyWriter . .
anon public vs(()id setvglues(anon public void setValues(

BigDecimal m, BigDecimal e); key mi;g?e;:.tmal m, Bigbecimal e) {
. - ’
} key.exp = e;

public class KeyFactory {

private ConfinedRandom randomGenerator =
new ConfinedRandom(
System.currentTimeMillis());

confined class PrivKeyFactory
extends KeyFactory { }

anon public void genKeyPair(
KeyWriter pub, KeyWriter priv) {
// set internal values
// of both key objects,
// using random generator...

public class Main {

private static PrivKey privateKey =
new PrivKey();

} public static Key publicKey =
new Key();

public static void main(String[] args) {
PrivKeyFactory keyFactory =
new PrivKeyFactory();
keyFactory.genKeyPair (
new PubKeyWriter (publicKey),
new PrivKeyWriter (privateKey));
// use keys for encryption
// and decryption...

public class PubKeyWriter implements KeyWriter {
private Key key;

public PubKeyWriter(Key k) { key = k; }

anon public void setValues(
BigDecimal m, BigDecimal e) {
key.mod = m;
key.exp = e; } }

Figure 8: Package containing RSA algorithm Figure 9: Confining a type in a different package

In class Key, the fields mod and exp are public. Al-
though this allows to access sensitive information from
the outside, an object reference is required to read the
fields’ values. The idea is to subclass Key in another
package and to make this subclass confined. Accord-
ingly, the method crypt is declared anon as otherwise
this method could not be called on a confined object
(C4).

Often confined types require only a trivial implemen-
tation, as can be seen in class ConfinedRandom. This
is an example of making an unconfined class confined
in another package by subclassing. The class Confined-
Random is used in class KeyFactory for the field random-
Generator. This field is declared private so that only
the class KeyFactory has to be checked by the program-
mer for potential leakage of a reference to the random
generator object or leakage of its internal state.

The class KeyFactory does not set the internal val-
ues of Key objects directly. Rather, it uses the inter-
face KeyWriter which normally would not appear in a
design without confined types. The reason for this is
that both Key and KeyFactory will be subclassed and
made confined in another package. If KeyFactory ref-
erenced Key directly, the confined subclass of Key could
not be used with KeyFactory or a subclass of it be-
cause at some place a reference widening to the original
type Key would be needed, which is forbidden by C3.
Class PubKeyWriter trivially implements the interface
KeyWriter.

Note also that PrivateKey does not define any new
methods or fields. However, a new implementation of
KeyWriter is needed for accessing the internal values of
the confined type PrivKey. Due to constraint C3, which
prevents widening from PrivKey to Key, the previously
defined class PubKeyWriter cannot be used. The sim-
ilarity of the new implementation PrivKeyWriter to
PubKeyWriter suggests that genericity would help here;
this is discussed in Section 8.2.

Similar to PrivKey, a confined subclass SecKeyFac-
tory is derived from KeyFactory. The interesting point
here is that the superclass has access, and uses, a con-
fined class (namely ConfinedRandom), but our restric-
tions guarantee that these values can not be leaked to
the subclass.

In class Main, a private and a public key object is
created. Note that private or package-local access for
field privateKey is required by C7, while publicKey
can be public. In main(), then, a Factory object is
created and genKeyPair() is invoked on it, providing
two instances of PubKeyWriter and PrivKeyWriter, re-
spectively.

7 Related Work

The original impetus for the work presented here comes
from difficulties of implementing secure and reliable sys-
tems in Java. Some of these difficulties can be at-
tributed to aliasing [41, 40]. Confined types follow up on
work on flexible alias protection [30] in which we tried
to control aliasing at the level of individual objects. Re-
lated work is divided between literature on alias control
and security; we review both topics in the following two
subsections.

7.1 Alias Control

Reference semantics permeate object-oriented program-
ming languages, it is thus not surprising that the issue
of controlling aliasing has been the focus of numerous
papers in the recent years [19, 18, 1, 30, 10, 20, 7].

In [30], we proposed flexible alias protection to con-
trol potential aliasing amongst components of an ag-
gregate object (or owner). Aliasing mode declarations
specify constraints on sharing of references. The mode
rep protects representation objects from exposure. In
essence, rep objects belong to a single owner object and
the model guarantees that all paths that lead to a rep-
resentation object go through that object’s owner. The
mode arg marks argument objects which do not belong
to the current owner, these objects may be aliased from
the outside. Argument objects can have different roles,
and the model guarantees that an owner cannot intro-
duce aliasing between roles. In [7], Clarke, Potter, and
Noble formalize representation containment by means
of ownership types. Both papers have been presented
in the context of a simple programming language with-
out inheritance or subtyping. There is no obvious way
to maintain containment in the presence of either. Con-
fined types were designed to support both concepts.

Hogg’s Islands [18] and Almeida’s Balloons [1] have
similar aims. An Island or Balloon is an owner ob-
ject that protects its internal representation from alias-
ing. The main difference to [30] is that both proposals
strive for full encapsulation, that is, all objects reach-
able from an owner are protected from aliasing. This
is equivalent to declaring everything inside an Island or
Balloon as rep. This is restrictive as it prevents many
common programming styles: it is not possible to mix
protected and unprotected objects as done with flexible
alias protection and confined types. Hogg’s proposal ex-
tends Smalltalk-80 with sharing annotations but it has
neither been implemented nor been formally validated.
Almeida did implement an abstract interpretation al-
gorithm for deciding whether a class meets his balloon
invariants. But his approach requires whole-program
analysis. The constraints present in this paper can be
checked modularly, one class at a time.

| | Language [Inheritance | Encapsulation | Enforcement | Modularity | Granularity |
Islands [18] Smalltalk-80 | Yes Full Static Class Object
Balloons [1] Toy Yes Full Static Whole-program | Object
Flexible Alias [30] | Toy No Partial Static Class Object
Sandwich [10] Toy No Full Static Whole-program | Class
Kent & Maung [20] || Eiffel Yes Partial Dynamic - Object
Confined types Java Yes Partial Static Class Package

Table 2: Comparison of alias control techniques.

The Sandwich types of Genius, Trapp, and Zimmer-
mann [10] are a compromise between flexible alias pro-
tection and balloons. The objects protected from alias-
ing are computed by inspection of the type graph of the
whole program. The criterion for protection is when a
type is only reachable from another (owner) type. The
prototypical example is the class LIST_CELL which only
appears in the implementation of LIST. The drawback
of sandwich types is that they require global program
analysis, and do not deal with inheritance and subtyp-
ing.

Finally, Kent and Maung [20] proposed an infor-
mal extension of the Eiffel programming language with
ownership annotations that are tracked and monitored
at run-time. Confined type are static, a choice better
suited to security as errors are caught earlier.

Table 2 compares the proposals discussed above. Par-
tial encapsulation allows selective protection of compo-
nents. Enforcement of constraints can either be done at
compile-time (static) or at run-time (dynamic). Verifi-
cation can require analysis of the entire program (whole-
program) or be modular at the class level (class). Gran-
ularity of protection can be either: at the object level,
meaning that individual objects are protected, at the
classlevel, meaning that all instance of a class are treated
as a single encapsulation domain, and finally at the
package level, meaning that all instances of all classes
belonging to the same package are grouped in a single
domain.

7.2 Security

Confined types depart from the work on information
flow control [17, 28, 42]. We are not trying to pro-
tect the information content of objects, as shown by
the class signing example of Section 3, rather we con-
trol the flow of language level objects, or more precisely,
object references. Further, confined types are as much
about integrity as secrecy.

The elegant paper of Leroy and Rouaix [22] has sim-
ilar goals as the work presented in this paper. The au-
thors formalize the security properties of applets writ-
ten in a strongly typed programming language. They
propose a technique based on type abstraction to guar-
antee that certain locations in the store will not be writ-

ten by untrusted components. Leroy and Rouaix did
not deal with subtyping or inheritance. They chose a
simple functional language (an idealization of Caml),
our work can be viewed as an extension of theirs to
object-oriented languages.

Another recurrent theme is the use of objects as ca-
pabilities or guards [12, 16, 15]. Different variants of this
scheme boil down to the facade pattern [9] in which a
facade object protects access to one or more targets.
The facade implements the security policy for access to
the targets. The proposals typically do not provide any
strong security guarantees, as some reference to one of
the targets may still be leaked to an adversary. Con-
fined types strengthen this approach. If target objects
are confined, then no reference can be revealed to out-
side code.

8 Discussion

8.1 Design alternatives

Unlike flexible aliasing protection [30], our proposal pro-
tects entire packages. This flat protection model can be
limiting. First, the objects we want to protect need not
all be in the same package. Second, it is not possible to
compose larger systems out of components.

We have considered different designs allowing a class
to be confined to a group of classes which need not be
in the same package. For example, we could define the
notion of a reference protection domain, then each class
would be declared to belong to some domain. The fol-
lowing declaration bundles three classes in a protection
domain.

domain java.security.Identity, java.lang.class,
java.security.Secureldentity;

The SecureIdentity class is still defined as confined,
but now it will be visible only to the other two classes
in the domain. The drawback of external domains is
that we cannot use package visibility to define methods
that may only be used by classes in the same domain.
This idea could be extended further to hierarchi-
cal protection domains. This requires named domains.
Next we define two domains, one is the aforementioned

domain, the second is a larger domain encompassing all
security classes.

domain IdentityDomain is
java.security.Identity, java.lang.class,
java.security.Secureldentity;

domain SecurityDomain is
java.security.*, IdentityDomain;

While possible, hierarchical domains are pushing to-
wards more complex models such as flexible alias pro-
tection [30, 7]. The cost in complexity may outweigh
the gains.

8.2 Confined Types and Genericity

As has already been noted in sections 5.3 and 6, con-
fined types could profit from parameterized types. Be-
cause parameterized types reduce the need for refer-
ence widening (e.g., when storing objects in collections),
much more reuse would be possible if confined types
were combined with parameterized types. Interestingly,
we found that confined types may influence the ongoing
discussion about how to incorporate genericity in Java
because they do not fit equally well with all propos-
als that have been put forward so far. There are two
observations:

The first observation concerns the translation scheme
used to translate generic types to normal classes and
interfaces so that they can be executed on unmodified
Java virtual machines. With a homogeneous transla-
tion scheme [31, 5], different instantiations of a param-
eterized type are translated to a single class or inter-
face. Because parameterized types instantiated with a
confined type then cannot be distinguished at runtime
from those instantiated with unconfined types, refer-
ences to confined objects could leak out by confusing
them with references to unconfined objects. Thus, con-
fined types fit better with proposals that have a hetero-
geneous translation scheme [27, 3], in which different
instantiations of parameterized types are translated to
different classes or interfaces.

When looking at the example presented in Section 6,
another observation for the discussion about genericity
can be made: In the example, the two classes Key and
KeyFactory had to be decoupled by the intermediate
interface KeyWriter. Although this interface would not
be needed in a conventional design, the decoupling was
required for subclassing both Key and KeyFactory in
package secure. This suggests that virtual types [38]
might be a better fit for confined types, as they allow
subclassing of a whole family of classes in such a way
that use relationships between classes in the original
family become use relationships between classes in the
derived family.

8.3 Software Engineering

Confined types may be useful from a software engi-
neering point of view as well. Confined types can be
viewed as the representational components of a frame-
work which cannot be accessed from the outside. The
external interface of the framework would then consist
of unconfined types that usually do not contain func-
tional code but make up a facade [9] through which the
framework must be used. Based on this architecture, a
package designer may decide to change the interface of
a confined type, knowing that the effects of that change
are limited to the single package and will not break
client code.

Note that unlike techniques such as guards and ca-
pabilities (see Section 7.2), in which every possible ac-
cess path to otherwise unprotected objects needs to be
controlled, confined types take the opposite approach.
First, any direct access to confined types is disallowed,
and then facades may be used to grant access for certain
uses.

8.4 Optimization

Confined types can help program optimization. As the
scope of a confined type is limited to a package, aggres-
sive optimizations can be applied within the package.
For instance, static analysis of the package code con-
tains all uses of that package’s confined types. It may
thus be possible to remove methods that are not called
in the package, as they are dead code, and even modify
the structure of confined objects or of the class hierar-
chy [39].

Restricting widening improves the precision of con-
crete type inference and thus helps generating better
code for confined types.

Finally, Genius, Trapp, and Zimmermann have shown
that aliasing restrictions can be used to improve locality
of memory access and have obtained significant speed
up on small scale programs [10].

9 Conclusion

Software security is a difficult problem. This paper in-
troduces two new language mechanisms, confined types
and anonymous methods, that can be used for control-
ling the dissemination of object references. This control
eases the task of writing secure code, as the interface
between components is sharper.

Confinement and anonymity are enforced by a set
of syntactic constraints which can be verified statically.
Thus, our proposal incurs no run-time overhead and all
confinement violations are caught before running the
program.

We have implemented a confinement verifier for Java
using CoffeeStrainer [2]. The verification procedure is

modular as classes are analyzed individually. Our ex-
tensions are transparent. Annotated classes can be com-
piled by the standard Java compiler (The concrete syn-
tax used is to tag methods by the special comment
/*:anon*/, and derive confined types from the empty
interface ConfinedType). Our implementation is avail-
able from:

http://www.inf.fu-berlin.de/ bokowski/ConfinedTypes

References

(1]

(10]

(11]

[12]

[13]

14]

(15]

P. S. Almeida. Balloon types: Controlling sharing of state
in data types. In M. Aksit and S. Matsuoka, editors,
ECOOP’97—Object-Oriented Programming, 11th European
Conference, volume 1241 of Lecture Notes in Computer Sci-
ence, pages 32-59, Jyvaskyld, Finland, 9-13 June 1997.
Springer.

B. Bokowski. Coffeestrainer: Statically-checked constraints
on the definition and use of types in Java. In Proceedings of
ESEC/FSE’99, Toulouse, France, Sept. 1999.

B. Bokowski and M. Dahm. Poor man’s genericity for Java.
In JIT Proceedings. Springer-Verlag, Frankfurt, Germany,
Nov. 1998.

J. Boyland. Deferring destruction when reading unique vari-
ables. Technical report, University of Wisconsin — Milwau-
kee, Mar. 1999.

G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Mak-
ing the future safe for the past: Adding genericity to the
Java programming language. In OOPSLA Proceedings. ACM
Press, Vancouver, BC, Oct. 1998.

J. Chase, H. Levy, M. Baker-Harvey, and E. Lazowska. Opal:
A single address space system for 64-bit architectures. In
Proceedings of the Fourth Workshop on Workstation Oper-
ating Systems, pages 80—85, 1993.

D. G. Clarke, J. M. Potter, and J. Noble. Ownership types
for flexible alias protection. In OOPSLA ’98 Conference Pro-
ceedings, volume 33(10) of ACM SIGPLAN Notices, pages
48 64. ACM, Oct. 1998.

D. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236-243, May 1976.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns — Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

D. Genius, M. Trapp, and W. Zimmermann. An approach
to improve locality using Sandwich Types. In Proceedings
of the 2nd Types in Compilation workshop, volume LNCS
1473, Kyoto, Japan, March 1998. Springer Verlag.

L. Gong. Java security architecture (JDK 1.2). Technical
report, JavaSoft, July 1997. Revision 0.5.

L. Gong. Guarding objects. In G. Vigna, editor, Mo-
bile Agents and Security, volume 576 of LNCS, pages 1-23,
Berlin, Germany, Aug. 1998. Springer.

J. Gosling, B. Joy, and G. L. Steele. The Java Language
Specification. The Java Series. Addison-Wesley, Reading,
MA, USA, 1996.

R. Grimm and B. N. Bershad. Security for extensible sys-
tems. In Proceedings of 6th Workshop on Hot Topics in
Operating Sytems, pages 62-66, Cape Cod, Massachusetts,
May 1997.

D. Hagimont, J. Mossiere, X. R. de Pina, and F. Saunier.
Hidden software capabilities. In 16th International Confer-
ence on Distributed Computing System, Hong Kong, May
1996. IEEE CS Press.

[16]

(17]

(18]

(25]

[26]

(27]

28]

[29]

(31]

(32]

(34]

(35]

(36]

C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, and
T. von Eicken. Implementing Multiple Protection Domains
in Java. Technical Report 97-1660, Cornell University, De-
partment of Computer Science, 1997.

N. Heintze and J. G. Riecke. The SLam calculus: Program-
ming with secrecy and integrity. In Proceedings of the 25th
POPL, Jan. 1998.

J. Hogg. Islands: Aliasing Protection in Object-Oriented
Languages. In Proceedings of the OOPSLA ’91 Conference
on Object-Oriented Programming Systems, Languages and
Applications, pages 271-285, Nov. 1991. Published as ACM
SIGPLAN Notices, volume 26, number 11.

J. Hogg, D. Lea, A. Wills, D. de Champeaux, and R. Holt.
The Geneva convention on the treatment of object aliasing.
OOPS Messenger, 3(2), Apr. 1992.

S. Kent and I. Maung. Encapsulation and Aggregation. In
Proceedings of TOOLS PACIFIC 95 (TOOLS 18). Prentice
Hall, 1995.

W. Landi. Undecidability of static analysis. ACM Letters
on Programming Languages and Systems, 1(4), Dec. 1992.

X. Leroy and F. Rouaix. Security properties of typed ap-
plets. In Conference Record of POPL ’98: The 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 391-403, San Diego, California, 19—
21 Jan. 1998.

H. Levy, editor. Capability Based Computer Systems. Digital
Press, 1984.

G. Lopez, B. Freeman-Benson, and A. Borning. Constraints
and object identity. In ECOOP Proceedings, LNCS 821,
pages 260—279. Springer-Verlag, Bologna, Italy, July 1994.

S. Lucco, O. Sharp, and R. Wahbe. Omniware: A Universal
Substrate for Web Programming. World Wide Web Journal,
1(1):359-368, Dec. 1995.

J. McLean. Security models. In J. Marciniak, editor, Ency-
clopedia of Software Engineering. Wiley & Sons, 1994.

A. Myers, J. Bank, and B. Liskov. Parameterized types for
Java. In POPL Proceedings. ACM Press, Paris, France, Jan.
1997.

A. C. Myers. Jflow: Practical static information flow control.
In Proceedings of the 26th ACM Symposium on Principles
of Programming Languages (POPL 99), 1999.

A. C. Myers and B. Liskov. Complete, safe information flow
with decentralized labels. In Proceedings of the 1998 IEEE
Symposium on Security and Privacy, Oakland, California,
pages 186-197, 1998.

J. Noble, J. Potter, and J. Vitek. Flexible alias protection.
In Proceedings of ECOOP’98, Brussels, Belgium, July 20 -
24 1998.

M. Odersky and P. Wadler. Pizza into Java: Translating
theory into practice. In Proc. 24th ACM Symposium on
Principles of Programming Languages, January 1997.

J. Potter, J. Noble, and D. Clarke. The ins and outs of ob-
jects. In Australian Software Engineering Conference, Ade-
laide, Australia, November 1998. IEEE Press.

J. G. Riecke and C. A. Stone. Privacy via Subsumption.
In Fifth Workshop on Foundations of Object-Oriented Lan-
guages, 1998.

R. Rivest, A. Shamir, and L. Aldeman. A Method for Ob-
taining Digital Signatures and Public-Key Cryptosystems.
Commun. ACM, 21(2), 1978.

Secure Internet Programming Group.
.princeton.edu/sip/news/april29.html. 1997.

G. Smith and D. Volpano. Secure information flow in a
multi-threaded imperative language. In Conference Record
of POPL ’98: The 25th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 355—
364, San Diego, California, 19-21 Jan. 1998.

http://www.cs-

(37]

(38]

(43]

[44

(45]

J. Tardo and L. Valente. Mobile agent security and Tele-
script. In IEEE CompCon, 1996.

K. K. Thorup and M. Torgersen. Unifying genericity —
combining the benefits of virtual types and parameterized
classes. In ECOOP Proceedings. Springer-Verlag, Lisbon,
Portugal, June 1999.

F. Tip, C. Laffra, P. F. Sweeney, and D. Streeter. Size mat-
ters: Reducing the size of java class file archives. Technical
report, IBM Research Report RC 21321, Oct. 1998.

J. Vitek and C. Bryce. Secure mobile code: the JavaSeal
experiment. Manuscript, 1999.

J. Vitek, M. Serrano, and D. Thanos. Security and commu-
nication in mobile object systems. In D. Tsichritzis, editor,
Objects at Large. University of Geneva, 1997.

D. Volpano and G. Smith. A type-based approach to pro-
gram security. Lecture Notes in Computer Science, 1214,
1997.

D. Volpano and G. Smith. Confinement properties for pro-
gramming languages. SIGACT News, 29(3):33-42, Sept.
1998.

D. Wallach, D. Balfanz, D. Dean, and E. Felten. Extensible
Security Architectures for Java. In Proceedings of the 16th
Symposium on Operating System Principles, 1997.

F. Yellin. Low level security in Java. In Fourth Interna-
tional Conference on the World-Wide Web, MIT, Boston,
Dec. 1995.

