
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2007-014 February 23, 2007

Trading Structure for Randomness in
Wireless Opportunistic Routing
Szymon Chachulski, Michael Jennings, Sachin
Katti, and Dina Katabi

Trading Structure for Randomness in Wireless
Opportunistic Routing

Szymon Chachulski Michael Jennings Sachin Katti Dina Katabi
szym@mit.edu mvj@mit.edu skatti@mit.edu dk@mit.edu

ABSTRACT
Opportunistic routing is a recent technique that

achieves high throughput in the face of lossy wireless
links. The current opportunistic routing protocol, ExOR,
ties the MAC with routing, imposing a strict schedule on
routers’ access to the medium. Although the scheduler de-
livers opportunistic gains, it misses some of the inherent
features of the 802.11 MAC. For example, it prevents spa-
tial reuse and thus may underutilize the wireless medium.
It also eliminates the layering abstraction, making the pro-
tocol less amenable to extensions of alternate traffic type
such as multicast.

This paper presents MORE, a MAC-independent op-
portunistic routing protocol. MORE randomly mixes
packets before forwarding them. This randomness ensures
that routers that hear the same transmission do not for-
ward the same packets. Thus, MORE needs no special
scheduler to coordinate routers and can run directly on top
of 802.11. Experimental results from a 20-node wireless
testbed show that MORE’s average unicast throughput is
20% higher than ExOR, and the gains rise to 50% over
ExOR when there is a chance of spatial reuse. For multi-
cast, MORE’s gains increase with the number of destina-
tions, and are 35-200% greater than ExOR.

1 INTRODUCTION
Wireless mesh networks are increasingly used for pro-

viding cheap Internet access everywhere [7, 4, 32]. City-
wide WiFi networks, however, need to deal with poor link
quality caused by urban structures and the many interfer-
ers including local WLANs. For example, half of the oper-
ational links in Roofnet [4] have a loss probability higher
than 30%. Opportunistic routing has recently emerged as a
mechanism for obtaining high throughput even when links
are lossy [10]. Traditional routing chooses the nexthop be-
fore transmitting a packet; but, when link quality is poor,
the probability the chosen nexthop receives the packet is
low. In contrast, opportunistic routing allows any node that
overhears the transmission and is closer to the destination
to participate in forwarding the packet. Biswas and Morris
have demonstrated that this more relaxed choice of nex-
thop significantly increases the throughput. They proposed
the ExOR protocol as a means to achieve these gains [10].

Opportunistic routing, however, introduces a difficult

challenge. Multiple nodes may hear a packet broadcast
and unnecessarily forward the same packet. ExOR deals
with this issue by tying the MAC to the routing, imposing
a strict scheduler on routers’ access to the medium. The
scheduler goes in rounds. Forwarders transmit in order,
and only one forwarder is allowed to transmit at any given
time. The others listen to learn which packets were over-
heard by each node. Although the medium access sched-
uler delivers opportunistic throughput gains, it does so at
the cost of losing some of the desirable features of the cur-
rent 802.11 MAC. In particular, the scheduler prevents the
forwarders from exploiting spatial reuse, even when mul-
tiple packets can be simultaneously received by their cor-
responding receivers. Additionally, this highly structured
approach to medium access makes the protocol hard to ex-
tend to alternate traffic types, particularly multicast, which
is becoming increasing common with content distribution
applications [1] and video broadcast [3, 2].

In contrast to ExOR’s highly structured scheduler, this
paper addresses the above challenge with randomness. We
introduce MORE, MAC-independent Opportunistic Rout-
ing & Encoding. MORE randomly mixes packets before
forwarding them. This ensures that routers that hear the
same transmissions do not forward spurious packets. In-
deed, the probability that such randomly coded packets
are the same is proven to be exponentially low [15]. As
a result, MORE does not need a special scheduler; it runs
directly on top of 802.11.

The main contribution of MORE is its ability to deliver
the opportunistic routing gains while maintaining the clean
architectural abstraction between the routing and MAC
layers. MORE is MAC-independent, and thus can enjoy
the basic features available to today’s MAC. Specifically,
it achieves better unicast throughput by exploiting the spa-
tial reuse available with 802.11. Further, the clean separa-
tion between the layers makes MORE easily extendable to
multicast traffic.

We evaluate MORE in a 20-node indoor wireless
testbed. Our implementation is in Linux and uses the Click
toolkit [25] and the Roofnet software package [4]. Our re-
sults reveal the following findings.

• In our testbed, MORE’s average unicast throughput is
20% higher than ExOR. For 4-hop flows where the
last hop can exploit spatial reuse, MORE’s through-
put is 50% higher than ExOR’s. For multicast traffic,

1

Figure 1—Unicast Example. The source sends 2 packets. The
destination overhears p2, while R receives both. R needs to for-
ward just one packet but, without node-coordination, it may for-
ward p2, which is already known to the destination. With network
coding, however, R does not need to know which packet the des-
tination misses. R just sends the sum of the 2 packets p1 + p2.
This coded packet allows the destination to retrieve the packet
it misses independently of its identity. Once the destination re-
ceives the whole transfer (p1 and p2), it acks the transfer causing
R to stop transmitting.

MORE’s gains increase with the number of destina-
tions; For 2-4 destinations, MORE’s throughput is 35-
200% higher than ExOR’s.
• In comparison with traditional routing, the average

gain in the throughput of a MORE flow is 70%, and
the maximum throughput gain exceeds 10x.
• Finally, coding is not a deployment hurdle for mesh

wireless networks. Our implementation can sustain
a throughput of 44 Mb/s on low-end machines with
Celeron 800MHz CPU and 128KiB of cache.

2 MOTIVATING EXAMPLES
MORE’s design builds on the theory of network cod-

ing [5, 26, 15]. In this section, we use two toy examples
to explain the intuition underlying our approach and illus-
trate the synergy between opportunistic routing and net-
work coding.

The Unicast Case: Consider the scenario in Fig. 1. Tra-
ditional routing predetermines the path before transmis-
sion. It sends traffic along the path “src→R→dest”, which
has the highest delivery probability. However, wireless is a
broadcast medium. When a node transmits, there is always
a chance that a node closer than the chosen nexthop to the
destination overhears the packet. For example, assume the
source sends 2 packets, p1 and p2. The nexthop, R, receives
both, and the destination happens to overhear p2. It would
be a waste to have node R forward p2 again to the destina-
tion. This observation has been noted in [10] and used to
develop ExOR, an opportunistic routing protocol for mesh
wireless networks.

ExOR, however, requires node coordination, which is
hard to achieve in a large network. Consider again the ex-
ample in the previous paragraph. R should forward only
packet p1 because the second packet has already been re-
ceived by the destination; but, without consulting with the
destination, R has no way of knowing which packet to
transmit. The problem becomes harder in larger networks,
where many nodes hear a transmitted packet. Opportunis-

Figure 2—Multicast Example. Instead of retransmitting all four
packets, the source can transmit two linear combinations, e.g.,
p1 + p2 + p3 + p4 and p1 + 2p2 + 3p3 + 4p4. These two coded
packets allow all three destinations to retrieve the four original
packets, saving the source 2 transmissions.

tic routing allows these nodes to participate in forwarding
the heard packets. Without coordination, however, multi-
ple nodes may unnecessarily forward the same packets,
creating spurious transmissions. To deal with this issue,
ExOR imposes a special scheduler on top of 802.11. The
scheduler goes in rounds and reserves the medium for a
single forwarder at any one time. The rest of the nodes lis-
ten to learn the packets overheard by each node. Due to
this strict schedule, nodes farther away from the destina-
tion (which could potentially have transmitted at the same
time as nodes close to the destination due to spatial reuse),
cannot, since they have to wait for the nodes close to the
destination to finish transmitting. Hence the scheduler has
the side effect of preventing a flow from exploiting spatial
reuse.

Network coding offers an elegant solution to the above
problem. In our example, the destination has overheard
one of the transmitted packets, p2, but node R is unaware of
this fortunate reception. With network coding, node R nat-
urally forwards linear combinations of the received pack-
ets. For example, R can send the sum p1 + p2. The des-
tination retrieves the packet p1 it misses by subtracting
from the sum and acks the whole transfer. Thus, R need
not know which packet the destination has overheard.

Indeed, the above works if R sends any random lin-
ear combination of the two packets instead of the sum.
Thus, one can generalize the above approach. The source
broadcasts its packets. Routers create random linear com-
binations of the packets they hear (i.e., c1p1 + . . .+ cnpn,
where ci is a random coefficient). The destination sends an
ack along the reverse path once it receives the whole trans-
fer. This approach does not require node coordination and
preserves spatial reuse.

The Multicast Case: Our second example illustrates the
synergy between network coding and multicast. In Fig. 2,
the source multicasts 4 packets to three destinations. Wire-
less receptions at different nodes are known to be highly
independent [31, 29]. Assume that each destination re-
ceives the packets indicated in the figure–i.e., the first des-
tination receives p1 and p2, the second destination receives
p2 and p3, and the last destination receives p3 and p4. Note
that each of the four packets is lost by some destination.

2

Without coding, the sender has to retransmit the union
of all lost packets, i.e., the sender needs to retransmit all
four packets. In contrast, with network coding, it is suf-
ficient to transmit 2 randomly coded packets. For exam-
ple, the sender may send p′1 = p1 + p2 + p3 + p4 and
p′2 = p1 + 2p2 + 3p3 + 4p4. Despite that they lost dif-
ferent packets, all three destinations can retrieve the four
original packets using these two coded packets. For exam-
ple, the first destination, which has received p′1, p′2 and p1,
p2, retrieves all four original packets by inverting the ma-
trix of coefficients, and multiplying it with the packets it
received, as follows:




p1
p2
p3
p4


 =




1 1 1 1
1 2 3 4
1 0 0 0
0 1 0 0




−1 


p′1
p′2
p1
p2


 .

Thus, in this simple example, network coding has reduced
the needed retransmissions from 4 packets to 2, improving
the overall throughput.

The Challenges: To build a practical protocol that delivers
the above benefits, we need to address a few challenges.
(a) How Many Packets to Send? In traditional best path
routing, a node keeps sending a packet until the nexthop
receives it or until it gives up. With opportunistic routing
however, there is no particular nexthop; all nodes closer
to the destination than the current transmitter can partic-
ipate in forwarding the packet. How many transmissions
are sufficient to ensure that at least one node closer to the
destination has received the packet?
(b) Stop and Purge? With network coding, routers send
linear combinations of the packets. Once the destination
has heard enough such coded packets, it decodes and re-
trieves the file. We need to stop the sender as soon as the
destination has received the transfer and purge the related
data from the forwarders.
(c) Efficient Coding? Network coding optimizes for better
utilization of the wireless medium, but coding requires the
routers to multiply and add the data bytes in the packets.
We need efficient coding and decoding strategies to pre-
vent routers’ CPU from becoming a bottleneck.

3 RELATED WORK
We begin with a brief survey of prior work on oppor-

tunistic routing and a summary of network coding.

3.1 Opportunistic Routing & Wireless Diversity
Opportunistic routing has been introduced by Biswas

and Morris, whose paper explains the potential through-
put increase and proposes the ExOR protocol as a means
to achieve it [10]. Opportunistic routing belongs to a gen-
eral class of wireless algorithms that exploit multi-user di-
versity. These techniques use receptions at multiple nodes
to increase wireless throughput. They either optimize the

choice of forwarder from those nodes that received a trans-
mission [10], or combine the bits received at different
nodes to correct for wireless errors [29], or allow all nodes
that overheard a transmission to simultaneously forward
the signal acting as a multi-antenna system [16]. Our work
builds on this foundation but adopts a fundamentally dif-
ferent approach; it combines random network coding with
opportunistic routing to address its current limitations. The
resulting protocol is practical, allows spatial reuse, and
supports both unicast and multicast traffic.

3.2 Network Coding
Work on network coding has started with a pioneering

paper by Ahlswede et al. that establishes the value of cod-
ing in the routers and provides theoretical bounds on the
capacity of such networks [5]. The combination of [26, 24,
18] shows that, for multicast traffic, linear codes achieve
the maximum capacity bounds, and coding and decoding
can be done in polynomial time. Additionally, Ho et al.
show that the above is true even when the routers pick
random coefficients [15]. Researchers have extended the
above results to a variety of areas including content distri-
bution [14], secrecy [11, 17], and distributed storage [19].

Of particular relevance is prior work on wireless net-
work coding [27, 22, 23]. This work can be divided into
three classes. The first is theoretical; it extends known
information theory bounds from wired to wireless net-
works [27, 17]. The second is simulation-based; it de-
signs and evaluates network coding protocols using sim-
ulations [30, 33]. The third is implementation-based; it
uses implementation and testbed experiments to demon-
strate achievable throughput gains for sensors and mesh
networks [23, 21]. MORE belongs to this latter class.

This paper builds on the above foundational work de-
scribed above, but differs from it in two main ways. First,
the design of MORE including the choice of forwarders,
the heuristic of when a node should forward, the traffic
purging scheme, and the mechanisms used for achieving
high bit-rate via efficient coding, is new. Second, our ex-
perimental results reveal important new findings, includ-
ing how ExOR compares to a network coding protocol
under a variety of settings, and whether there are practical
benefits that support the use of random wireless network
coding.

4 MORE IN A NUTSHELL

MORE is a routing protocol for stationary wireless
meshes, such as Roofnet [4] and community wireless net-
works [32, 6]. Nodes in these networks are PCs with ample
CPU and memory.

MORE sits below IP and above the 802.11 MAC. It
provides reliable file transfer. It is particularly suitable for
delivering files of medium to large size (i.e., 8 or more
packets). For shorter files or control packets, we use stan-

3

Term Definition
Native Packet Uncoded packet
Coded Packet Random linear combination of native or coded

packets
Code Vector
of a Coded
Packet

The vector of co-efficients that describes how
to derive the coded packet from the native
packets. For a coded packet p′ =

P
cipi,

where pi’s are the native packets, the code vec-
tor is~c = (c1, c2, . . . , cK).

Innovative
Packet

A packet is innovative to a node if it is lin-
early independent from its previously received
packets.

Closer to des-
tination

Node X is closer than node Y to the destina-
tion, if the best path from X to the destination
has a lower ETX metric than that from Y .

Table 1—Definitions used in the paper.

dard best path routing (e.g., Srcr [9]), with which MORE
benignly co-exists.

Table 1 defines the terms used in the rest of the paper.

4.1 Source
The source breaks up the file into batches of K packets,

where K may vary from one batch to another. These K un-
coded packets are called native packets. When the 802.11
MAC is ready to send, the source creates a random linear
combination of the K native packets in the current batch
and broadcasts the coded packet. In MORE, data packets
are always coded. A coded packet is p′ =

∑
i cipi, where

the ci’s are random coefficients picked by the node, and
the pi’s are native packets from the same batch. We call
~c = (c1, . . . , ci, . . . , cK) the packet’s code vector. Thus,
the code vector describes how to generate the coded packet
from the native packets.

The sender attaches a MORE header to each data
packet. The header reports the packet’s code vector (which
will be used in decoding), the batch ID, the source and
destination IP addresses, and the list of nodes that could
participate in forwarding the packet (Fig. 3). To compute
the forwarder list, we leverage the ETX calculations [12].
Specifically, nodes periodically ping each other and esti-
mate the delivery probability on each link. They use these
probabilities to compute the ETX distance to the destina-
tion, which is the expected number of transmissions to
deliver a packet from each node to the destination. The
sender includes in the forwarder list nodes that are closer
(in ETX metric) to the destination than itself, ordered ac-
cording to their proximity to the destination.

The sender keeps transmitting coded packets from the
current batch until the batch is acked by the destination, at
which time, the sender proceeds to the next batch.

4.2 Forwaders
Nodes listen to all transmissions. When a node hears a

packet, it checks whether it is in the packet’s forwarder list.

If so, the node checks whether the packet contains new in-
formation, in which case it is called an innovative packet.
Technically speaking, a packet is innovative if it is linearly
independent from the packets the node has previously re-
ceived from this batch. Checking for independence can be
done using simple Algebra (Gaussian Elimination [24]).
The node ignores non-innovative packets, and stores the
innovative packets it receives from the current batch.

If the node is in the forwarder list, the arrival of this
new packet triggers the node to broadcast a coded packet.
To do so the node creates a random linear combination
of the coded packets it has heard from the same batch
and broadcasts it. Note that a linear combination of coded
packets is also a linear combination of the corresponding
native packets. In particular, assume that the forwarder has
heard coded packets of the form p′j =

∑
i cjipi, where pi is

a native packet. It linearly combines these coded packets to
create more coded packets as follows: p′′ =

∑
j rjp′j , where

rj’s are random numbers. The resulting coded packet p′′

can be expressed in terms of the native packets as follows
p′′ =

∑
j(rj

∑
i cjipi) =

∑
i(
∑

j rjcji)pi; thus, it is a linear
combination of the native packets themselves.

4.3 Destination
For each packet it receives, the destination checks

whether the packet is innovative, i.e., it is linearly inde-
pendent from previously received packets. The destination
discards non-innovative packets because they do not con-
tain new information. Once the destination receives K in-
novative packets, it decodes the whole batch (i.e., it ob-
tains the native packets) using simple matrix inversion:




p1
...

pK


 =




c11 . . . c1K
...

. . .
cK1 . . . cKK




−1 


p′1
...

p′K


 ,

where, pi is a native packet, and p′i is a coded packet whose
code vector is ~ci = ci1, . . . , ciK . As soon as the destina-
tion decodes the batch, it sends an acknowledgment to the
source to allow it to move to the next batch. ACKs are sent
using best path routing, which is possible because MORE
uses standard 802.11 and co-exists with sortest path rout-
ing. ACKs are also given priority over data packets at ev-
ery node.

5 PRACTICAL CHALLENGES
In §4, we have described the general design of MORE.

But for the protocol to be practical, MORE has to address
3 additional challenges, which we discuss in detail below.

5.1 How Many Packets Does a Forwarder Send?
In traditional best path routing, a node keeps transmit-

ting a packet until the nexthop receives it, or the number of
transmissions exceeds a particular threshold, at which time
the node gives up. In opportunistic routing, however, there

4

is no particular nexthop; all nodes closer to the destination
than the current transmitter are potential nexthops and may
participate in forwarding the packet. How many transmis-
sions are sufficient to ensure that at least one node closer
to the destination has received the packet? This is an open
question. Prior work has looked at a simplified and theo-
retical version of the problem that assumes smooth traffic
rates and infinite wireless capacity [27]. In practice, how-
ever, traffic is bursty and the wireless capacity is far from
infinite.

In this section, we provide a heuristic-based practical
solution to the above problem. Our solution has the fol-
lowing desirable characteristics: 1) It has low complexity.
2) It is distributed. 3) It naturally integrates with 802.11
and preserves spatial reuse. 4) It is practical– i.e., it makes
no assumptions of infinite capacity or traffic smoothness,
and requires only the average loss rate of the links.

5.1.1 Practical Solution

Bandwidth is typically the scarcest resource in a wire-
less network. Thus, the natural approach to increase wire-
less throughput is to decrease the number of transmissions
necessary to deliver a packet from the source to the desti-
nation [10, 12, 9]. Let the distance from a node, i, to the
destination, d, be the expected number of transmissions to
deliver a packet from i to d along the best path– i.e., node
i’s ETX [12]. We propose the following heuristic to route
a packet from the source, s, to the destination, d: when a
node transmits a packet, the node closest to the destina-
tion in ETX metric among those that receive the packet
should forward it onward. The above heuristic reduces the
expected number of transmissions needed to deliver the
packet, and thus improves the overall throughput.

Formally, let N be the number of nodes in the network.
For any two nodes, i and j, let i < j denote that node i is
closer to the destination than node j, or said differently, i
has a smaller ETX than j. Let pij denote the loss probability
in sending a packet from i to j. Let zi be the expected num-
ber of transmissions that forwarder i must make to route
one packet from the source, s, to the destination, d, when
all nodes follow the above routing heuristic. In the follow-
ing, we assume that wireless receptions at different nodes
are independent, an assumption that is supported by prior
measurements [31, 29].

We focus on delivering one packet from source to des-
tination. Let us calculate the number of packets that a for-
warder j must forward to deliver one packet from source,
s to destination, d. The expected number of packets that j
receives from nodes with higher ETX is

∑
i>j zi(1 − pij).

For each packet j receives, j should forward it only if no
node with lower ETX metric hears the packet. This hap-
pens with probability

∏
k<j pik. Thus, in expectation, the

number of packets that j must forward, denoted by Lj, is:

Lj =
∑

i>j

(zi(1− pij)
∏

k<j

pik). (1)

Note that Ls = 1 because the source generates the packet.
Now, consider the expected number of transmissions

a node j must make. j should transmit each packet until a
node with lower ETX has received it. Thus, the number of
transmissions that j makes for each packet it forwards is a
geometric random variable with success probability (1 −∏

k<j pjk). This is the probability that some node with ETX
lower than j receives the packet. Knowing the number of
packets that j has to forward from Eq. (1), the expected
number of transmissions that j must make is:

zj =
Lj

(1−∏
k<j pjk)

. (2)

(a) Low Complexity: The number of transmissions made
by each node, the zi’s, can be computed via the following
algorithm. We can ignore nodes whose ETX to the des-
tination is greater than that of the source, since they are
not useful in forwarding packets for this flow. Next, we
order the nodes by increasing ETX from the destination
d and relabel them according to this ordering, i.e. d = 1
and s = n. We begin at the source by setting Ln = 1, then
compute Eqs. (1) and (2) from source progressing towards
the destination. To reduce the complexity, we will compute
the values incrementally. Consider Lj, as given by Eq. (1).
If we computed it in one shot, we would need to compute
the product

∏
k<j pik from scratch for each i > j. The idea

is to instead compute and accumulate the contribution of
node i to Lj’s of all nodes j with lower ETX, so that each
time we only need to make a small update to this product
(denoted P in the algorithm).

1 Computing the number of transmissions each node
makes to deliver a packet from source to destination, zi’s

for i = n . . . 1 do
Li ← 0

Ln ← 1 {at source}
for i = n . . . 2 do

zi ← Li/(1−Qj<i pij)
P← 1
for j = 2 . . . i− 1 do
{compute the contribution of i to Lj}
P← P× pi(j−1) {here, P is

Q
k<j pik}

Lj ← Lj + zi × P× (1− pij)

Alg. 1 requires O(N2) operations, where N is the num-
ber of nodes in the network. This is because the outer loop
is executed at most n times and each iteration of the inner
loop requires O(n) operations, where n is bounded by the
number of nodes in the network, N.

(b) Distributed Solution: Each node j can periodically
measure the loss probabilities pij for each of its neigh-
bors via ping probes. These probabilities are distributed
to other nodes in the network in a manner similar to link
state protocols [9]. Each node can then build the network

5

graph annotated with the link loss probabilities and com-
pute Eq. (2) from the pij’s using the algorithm above.

(c) Integrated with 802.11: A distributed low-
complexity solution to the problem is not sufficient. The
solution tells each node the value of zi, i.e., the number
of transmissions it needs to make for every packet sent by
the source. But a forwarder cannot usually tell when the
source has transmitted a new packet. In a large network,
many forwarders are not in the source’s range. Even those
forwarders in the range of the source do not perfectly re-
ceive every transmission made by the source and thus can-
not tell whether the source has sent a new packet. Said dif-
ferently, the above assumes a special scheduler that tells
each node when to transmit.

In practice, a router should be triggered to transmit
only when it receives a packet, and should perform the
transmission only when the 802.11 MAC permits. We
leverage the preceding to compute how many transmis-
sions each router needs to make for every packet it re-
ceives. Define the TX credit of a node as the number of
transmissions that a node should make for every packet it
receives from a node farther from the destination in the
ETX metric. For each packet sent from source to destina-
tion, node i receives

∑
j>i pjizj, where zj is the number of

transmissions made by node j and pji is the delivery prob-
ability from j to i. Thus, the TX credit of node i is:

TX crediti =
zi∑

j>i zjpji
. (3)

Thus, in MORE, a forwarder node i keeps a credit
counter. When node i receives a packet from a node up-
stream, it increments the counter by its TX credit. When
the 802.11 MAC allows the node to transmit, the node
checks whether the counter is positive. If yes, the node
creates a coded packet, broadcasts it, then decrements the
counter. If the counter is negative, the node does not trans-
mit. The ETX metric order ensures that there are no loops
in crediting, which could lead to credit explosion.

5.1.2 Pruning

MORE’s solution to the above might include for-
warders that make very few transmissions (zi is very
small), and thus, have very little contribution to the rout-
ing. In a dense network, we might have a large number
of such low contribution forwarders. Since the overhead
of channel contention increases with the number of for-
warders, it is useful to prune such nodes. MORE prunes
forwarders that are expected to perform less than 10%
of all the transmissions for the batch (more precisely, it
prunes nodes whose zi < 0.1

∑
j∈N zj).

5.2 Stopping Rule
In MORE, traffic is pumped into the network by the

source. The forwarders do not generate traffic unless they
receive new packets. It is important to throttle the source’s

transmissions as soon as the destination has received
enough packets to decode the batch. Thus, once the desti-
nation receives the Kth innovative packet, and before fully
decoding the batch, it sends an ACK to the source.

To expedite the delivery of ACKs, they are sent on
the shortest path from destination to source. Furthermore,
ACKs are given priority over data packets at all nodes and
are reliably delivered using local retransmission at each
hop.

When the sender receives an acknowledgment for the
current batch, it stops forwarding packets from that batch.
If the transfer is not complete yet, the sender proceeds to
transmit packets from the next batch.

The forwarders are triggered by the arrival of new
packets, and thus stop transmitting packets from a partic-
ular batch once the sender stops doing so. Eventually the
batch will timeout and be flushed from memory. Addition-
ally, forwarders that hear the ACK while it is being trans-
mitted towards the sender immediately stop transmitting
packets from that batch and purge it from their memory.
Finally, the arrival of a new batch from the sender causes
a forwarder to flush all buffered packets with batch ID’s
lower than the active batch.

5.3 Fast Network Coding

Network coding, implemented naively, can be expen-
sive. As outlined above, the routers forward linear com-
binations of the packets they receive. Combining N pack-
ets of size S bytes requires NS multiplications and addi-
tions. Due to the broadcast nature of the wireless medium,
routers could receive many packets from the same batch.
If a router codes all these packets together, the coding cost
may be overwhelming, creating a CPU bottleneck.

MORE employs three techniques to produce efficient
coding that ensure the routers can easily support high bit
rates.

(a) Code only Innovative Packets: The coding cost scales
with the number of packets coded together. Typically, net-
work coding makes routers forward linear combinations
of the received packets. Coding non-innovative packets,
however, is not useful because they do not add any in-
formation content. Hence, when a MORE forwarder re-
ceives a new packet, it checks if the packet is innovative
and throws away non-innovative packets. Since innovative
packets are by definition linearly independent, the number
of innovative packets in any batch is bounded by the batch
size K. Discarding non-innovative packets bounds both the
number of packets the forwarder buffers from any batch,
and the number of packets combined together to produce
a coded packet. Discarding non-innovative packets is par-
ticularly important in wireless because the broadcast na-
ture of the medium makes the number of received packets
much larger than innovative packets.

(b) Operate on Code Vectors: When a new packet is

6

received, checking for innovativeness implies checking
whether the received packet is linearly independent of the
set of packets from the same batch already stored at the
node. Checking independence of all data bytes is very ex-
pensive. Fortunately, this is unnecessary. The forwarder
node simply checks if the code vectors are linearly inde-
pendent. (Checking for vector independence can be done
using Gaussian elimination [13]. To amortize the cost over
all packets each node keeps code vectors of the packets in
its buffer in row echelon form.) The data in the packet it-
self is not touched; it is just stored in a pool to be used
later when the node needs to forward a linear combination
from the batch. Thus, operations on individual data bytes
happen only occasionally at the time of coding or decod-
ing, while checking for innovativeness, which occurs for
every overheard packet, is fairly cheap.

(c) Pre-Coding: When the wireless driver is ready to send
a packet, the node has to generate a linear combination
of the buffered packets and hand that coded packet to the
wireless card. Linearly combining packets involves multi-
plying individual bytes in those packets, which could take
hundreds of microseconds. This inserts significant delay
before every transmission, decreasing the overall through-
put.

To address this issue, MORE exploits the time when
the wireless medium is unavailable to pre-compute one
linear combination, so that a coded packet is ready when
the medium becomes available. If the node receives an in-
novative packet before the prepared packet is handed over
to the driver, the pre-coded packet is updated by multiply-
ing the newly arrived packet with a random coefficient and
adding it to the pre-coded packet. This approach achieves
two important goals. On one hand, it ensures the trans-
mitted coded packet contains information from all pack-
ets known to the node, including the most recent arrival.
On the other hand, it avoids inserting a delay before each
transmission.

6 IMPLEMENTATION DETAILS
Finally, we put the various pieces together and explain

the system details.

6.1 Packet Format
MORE inserts a variable length header in each packet,

as shown in Fig. 3. The header starts with a few required
fields that appear in every MORE packet. The type field
distinguishes data packets, which carry coded information,
from ACKs, which signal batch delivery. The header also
contains the source and destination IP addresses and the
flow ID. The last required field is the batch ID, which iden-
tifies the batch to which the packet belongs. The above is
followed by a few optional fields. The code vector exists
only in data packets and identifies the coefficients that gen-
erate the coded packet from the native packets in the batch.
The list of forwarders has variable length and identifies all

Figure 3—MORE Header. Grey fields are required while the
white fields are optional. The packet type identifies batch ACKs
from data packets.

(a) Sender side (b) Receiver side

Figure 4—MORE’s Architecture. The figure shows a flow chart
of our MORE implementation.

potential forwarders ordered according to their proximity
to the source. For each forwarder, the packet also contains
its TX credit (see §5.1.1). Except for the code vector, all
fields are initialized by the source and copied to the pack-
ets created by the forwarders. In contrast, the code vector
is computed locally by each forwarder based on the ran-
dom coefficients they picked for the packet.

7

6.2 Node State
Each MORE node maintains state for the flows it for-

wards. The per-flow state is initialized by the reception of
the first packet from a flow that contains the node ID in
the list of forwarders. The state is timed-out if no packets
from the flow arrive for 5 minutes. The source keeps trans-
mitting packets until the destination acks the last batch of
the flow. These packets will re-initialize the state at the
forwarder even if it is timed out prematurely. The per-flow
state includes the following.

• The batch buffer stores the received innovative
packets. Note that the number of innovative packets in
a batch is bounded by the batch size K.
• The current batch variable identifies the most re-

cent batch from the flow.
• The forwarder list contains the list of for-

warders and their corresponding TX credits, ordered
according to their distance from the destination. The
list is copied from one of the received packets, where
it was initialized by the source.
• The credit counter tracks the transmission

credit. For each packet arrival from a node with a
higher ETX, the forwarder increments the counter by
its corresponding TX CREDIT, and decrements it 1 for
each transmission. A forwarder transmits only when
the counter is positive.

6.3 Control Flow
Figure 4 shows the architecture of MORE. The control

flow responds to packet reception and transmission oppor-
tunity signaled by the 802.11 driver.

On the sending side, the forwarder prepares a pre-
coded packet for every backlogged flow to avoid delay
when the MAC is ready for transmission. A flow is back-
logged if it has a positive credit counter. When-
ever the MAC signals an opportunity to transmit, the node
selects a backlogged flow by round-robin and pushes its
pre-coded packet to the network interface. As soon as the
transmission starts, a new packet is pre-coded for this flow
and stored for future use. If the node is a forwarder, it
decrements the flow’s credit counter.

On the receiving side, when a packet arrives the node
checks whether it is a forwarder by looking for its ID
in the forwarder list in the header. If the node is a for-
warder, it checks if the batch ID on the packet is the
same as its current batch. If the batch ID in the
packet is higher than the node’s current batch, the
node sets current batch to the more recent batch ID
and flushes packets from older batches from its batch
buffer. If the packet was transmitted from upstream,
the node also increments its credit counter by its
TX credit. Next, the node performs a linear independence
check to determine whether the packet is innovative. In-
novative packets are added to the batch buffer while
non-innovative packets are discarded.

Further processing depends on whether the node is the
packet’s final destination or just a forwarder. If the node
is a forwarder, the pre-coded packet from this flow is up-
dated by adding the recent packet multiplied by a random
coefficient. In contrast, if the node is the destination of the
flow, it checks whether it has received a full batch (i.e., K
innovative packets). If so, it queues an ACK for the batch,
decodes the native packets and pushes them to the upper
layer.

6.4 ACK Processing
ACK packets are routed to the source along the shortest

ETX path. ACKs are also prioritized over data packets and
transferred reliably. In our implementation, when a trans-
mission opportunity arises, a flow that has queued ACK is
given priority, and the ACK packet is passed to the device.
Unless the transmission succeeds (i.e., is acknowledged
by the MAC of the nexthop) the ACK is queued again.
In addition, all nodes that overhear a batch ACK update
their current batch variable and flush packets from
the acked batch from their batch buffer.

7 MULTICAST
Multicast in MORE is a natural extension of unicast.

All of our prior description carries on to the multicast case
except for three simple modifications.

First, the source does not proceed to the next batch un-
til all destinations have received the current batch.

Second, the list of forwarders and their TX credits are
different. The source computes the TX credits and the for-
warder list for hypothetical unicast flows from itself to
each of the destinations in the multicast group. The for-
warder list of the multicast flow is the union of the for-
warders of the unicast flows. The TX credit of each for-
warder is computed as the maximum of the TX credits
that the forwarder gets in each of the hypothetical unicast
flows.

Third, for multicast the TX credit of a forwarder takes
a dynamic nature. In particular, as the current batch pro-
gresses towards the end, more and more destinations are
able to decode. Those forwarders that were included in the
forwarder list in order to reach destinations that have al-
ready decoded the batch are temporarily not needed. Thus,
whenever a destination acks the current batch, the source
recomputes the TX credits of the forwarders as the maxi-
mum TX credit taken over only the hypothetical unicast
flows to the destinations that have not yet decoded the
batch. The forwarders that hear the new TX credit in the
packet update their information accordingly.

8 EXPERIMENTAL RESULTS
We use measurements from a 20-node wireless testbed

to evaluate MORE, compare it with both ExOR and tra-
ditional best path routing, and estimate its overhead. Our
experiments reveal the following findings.

8

• On average, MORE achieves 20% better throughput
than ExOR. In comparison with traditional routing,
MORE improves the average throughput by 70%, and
the maximum throughput gain exceeds 10x.
• MORE’s throughput exceeds ExOR’s mainly because

of its ability to exploit spatial reuse. Focusing on flows
that traverse paths with 25% chance of concurrent
transmissions, we find that MORE’s throughput is 50%
higher than that of ExOR.
• For multicast traffic, MORE’s throughput gain in-

creases with the number of destinations. For 2-4 des-
tinations, MORE’s throughput is 35-200% larger than
ExOR’s. In comparison to traditional routing, the mul-
ticast gain can be as high as 3x.
• MORE significantly eases the problem of dead spots.

In particular, 90% of the flows achieve a throughput
higher than 50 packets/second. In traditional routing
the 10th percentile is only 10 packets/second.
• MORE keeps its throughput gain over traditional rout-

ing even when the latter is allowed automatic rate se-
lection.
• MORE is insensitive to the batch size and maintains

large throughput gains with batch size as low as 8
packets.
• Finally, we estimate MORE’s overhead. MORE stores

the current batch from each flow. Our MORE imple-
mentation supports up to 44 Mb/s on low-end ma-
chines with Celeron 800MHz CPU and 128KiB of
cache. Thus, MORE’s overhead is reasonable for the
environment it is designed for, namely stationary wire-
less meshes, such as Roofnet [4] and community wire-
less networks [32, 6].

We will make our code public including the finite field
coding libraries.

8.1 Testbed

(a) Characteristics: We have a 20-node wireless testbed
that spans three floors in our building connected via open
lounges. The nodes of the testbed are distributed in several
offices, passages, and lounges. Fig. 5 shows the locations
of the nodes on one of the floors. Paths between nodes are
1–5 hops in length, and the loss rates of links on these
paths vary between 0 and 60%, and averages to 27%.

(b) Hardware: Each node in the testbed is a PC equipped
with a NETGEAR WAG311 wireless card attached to an
omni-directional antenna. They transmit at a power level
of 18 dBm, and operate in the 802.11 ad hoc mode, with
RTS/CTS disabled.

(c) Software: Nodes in the testbed run Linux, the Click
toolkit [25] and the Roofnet software package [4]. Our
implementation runs as a user space daemon on Linux.
It sends and receives raw 802.11 frames from the wireless
device using a libpcap-like interface.

Figure 5—One Floor of our Testbed. Nodes’ location on one
floor of our 3-floor testbed.

8.2 Compared Protocols

We compare the following three protocols.

• MORE as explained in §6.
• ExOR [10], the current opportunistic routing protocol.

Our ExOR code is provided by its authors.
• Srcr [9] which is a state-of-the-art best path routing

protocol for wireless mesh networks. It uses Dijk-
stra’s shortest path algorithm where link weights are
assigned based on the ETX metric [12].

8.3 Setup

In each experiment, we run Srcr, MORE, and ExOR in
sequence between the same source destination pairs. Each
run transfers a 5 MByte file. We leverage the ETX im-
plementation provided with the Roofnet Software to mea-
sure link delivery probabilities. Before running an exper-
iment, we run the ETX measurement module for 10 min-
utes to compute pair-wise delivery probabilities and the
corresponding ETX metric. These measurements are then
fed to all three protocols, Srcr, MORE, and ExOR, and
used for route selection.

Unless stated differently, the batch size for both
MORE and ExOR is set to K = 32 packets. The packet
size for all three protocols is 1500B. The queue size at
Srcr routers is 50 packets. In contrast, MORE and ExOR
do not use queues; they buffer active batches.

Most experiments are performed over 802.11b with
a bit-rate of 5.5Mb/s. In §8.7, we allow traditional rout-
ing (i.e., Srcr) to exploit the autorate feature in the Mad-
Wifi driver, which uses the Onoe bit-rate selection algo-
rithm [8]. Current autorate control optimizes the bit-rate
for the nexthop, making it unsuitable for opportunistic
routing, which broadcasts every transmission to many po-
tential nexthops. The problem of autorate control for op-
portunistic routing is still open. Thus in our experiments,
we compare Srcr with autorate to opportunistic routing
(MORE and ExOR) with a fixed bit-rate of 11 Mb/s.

9

8.4 Throughput

We would like to examine whether MORE can ef-
fectively exploit opportunistic receptions to improve the
throughput and compare it with Srcr and ExOR.

8.4.1 How Do the Three Protocols Compare?

Does MORE improve over ExOR? How do these two
opportunistic routing protocols compare with traditional
best path routing? To answer these questions, we use these
protocols to transfer a 5 MByte file between various nodes
in our testbed. We repeat the same experiment for MORE,
ExOR, and Srcr as explained in §8.3.

Our results show that MORE significantly improves
the unicast throughput. In particular, Fig. 6 plots the
CDF of the throughput taken over 200 randomly selected
source-destination pairs in our testbed. The figure shows
that both MORE and ExOR significantly outperform Srcr.
Interestingly, however, MORE’s throughput is higher than
ExOR’s. On average, MORE has 20% throughput gain
over ExOR. Its throughput gain over Srcr is 70%, but some
challenged flows achieve 10-12x higher throughput with
MORE than traditional routing.

Further, MORE and opportunistic routing ease the
problem of dead spots. Fig. 6 shows that over 90% of
MORE flows have a throughput larger than 50 packets a
second. ExOR’s 10th percentile is at 40 packets a second.
Srcr on the other hand suffers from dead spots with many
flows experiencing very low throughput. Specifically, the
10th percentile of Srcr’s throughput is at 10 packets a sec-
ond.

8.4.2 When Does Opportunistic Routing Win?

We try to identify the scenarios in which protocols
like MORE and ExOR are particularly useful– i.e., when
should one expect opportunistic routing to bring a large
throughput gain? Fig. 7a shows the scatter plot for the
throughputs achieved under Srcr and MORE for the same
source-destination pair. Fig. 7b gives an analogous plot
for ExOR. Points on the 45-degree line have the same
throughput in the two compared schemes.

These figures reveal that opportunistic routing (MORE
and ExOR) greatly improves performance for challenged
flows, i.e., flows that usually have low throughput. Flows
that achieve good throughput under Srcr do not improve
further. This is because when links on the best path have
very good quality, there is little benefit from exploiting
opportunistic receptions. In contrast, a source-destination
pair that obtains a low throughout under Srcr does not
have any good quality path. Usually, however, many low-
quality paths exist between the source and the destination.
By using the combined capacity of all these low-quality
paths, MORE and ExOR manage to boost the throughput
of such flows.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 F
lo

w
s

Throughput [pkt/s]

Srcr
ExOR

MORE

Figure 6—Unicast Throughput. Figure shows the CDF of the
unicast throughput achieved with MORE, ExOR, and Srcr.
MORE’s average throughput is 20% higher than ExOR. In com-
parison to Srcr, MORE achieves an average throughput gain of
70%, while some source-destination pairs show as much as 10-
12x.

 1

 10

 100

 1 10 100

M
O

R
E

 T
hr

ou
gh

pu
t [

pk
t/s

]

Srcr Throughput [pkt/s]

(a) MORE vs. Srcr

 1

 10

 100

 1 10 100

E
xO

R
 T

hr
ou

gh
pu

t [
pk

t/s
]

Srcr Throughput [pkt/s]

(b) ExOR vs. Srcr
Figure 7—Scatter Plot of Unicast Throughput. Each point rep-
resents the throughput of a particular source destination pair.
Points above the 45-degree line indicate improvement with op-
portunistic routing. The figure shows that opportunistic routing
is particularly beneficial to challenged flows.

8.4.3 Why Does MORE Have Higher Throughput than
ExOR?

Our experiments show that spatial reuse is a main con-
tributor to MORE’s gain over ExOR. ExOR prevents mul-
tiple forwarders from accessing the medium simultane-
ously [10], and thus does not exploit spatial reuse. To
examine this issue closely, we focus on a few flows that

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 F
lo

w
s

Throughput [pkt/s]

Srcr
ExOR

MORE

Figure 8—Spatial Reuse. The figure shows CDFs of unicast
throughput achieved by MORE, ExOR, and Srcr for flows that
traverse 4 hops, where the last hop can transmit concurrently
with the first hop. MORE’s average throughput is 50% higher
than ExOR.

Figure 9—Multicast Topology. A simple topology used in the
multicast experiments in Fig. 10.

we know can benefit from spatial reuse. Each flow has a
best path of 4 hops, where the last hop can send concur-
rently with the first hop without collision. Fig. 8 plots the
CDF of throughput of the three protocols for this environ-
ment. Focusing on paths with spatial reuse amplifies the
gain MORE has over ExOR. The figure shows that for 4-
hop flows with spatial reuse, MORE on average achieves
a 50% higher throughput than ExOR.

It is important to note that spatial reuse may occur even
for shorter paths. The capture effect allows multiple trans-
missions to be correctly received even when the nodes are
within the radio range of both senders [31]. In particular,
less than 7% of the flows in Fig. 6 have a best path of 4
hops or longer. Still MORE does better than ExOR. This
is mainly because of capture. The capture effect, however,
is hard to quantify or measure. Thus, we have focused on
longer paths to show the impact of spatial reuse.

8.5 Multicast
We want to compare the performance of multicast traf-

fic under MORE, ExOR, and Srcr. In §7, we have de-
scribed how multicast works under MORE. In contrast,
ExOR [10] and Srcr [9] do not have multicast extensions.
Thus, we need to define how these protocols deal with
multicast. For Srcr we adopt the same approach as wired
multicast. Specifically, we find the shortest path from the
source to each destination, using ETX as the metric. These
paths create a tree rooted at the source. Srcr’s multicast
traffic is sent along the branches of this tree. In contrast,
with ExOR, we want multicast traffic to exploit oppor-

 0

 50

 100

 150

 200

 250

 2 3 4

T
hr

ou
gh

pu
t P

er
 D

es
tin

at
io

n
[p

kt
/s

]

Number of Destinations

Srcr
ExOR

MORE

Figure 10—Multicast Throughput as a Function of the Num-
ber of Destinations for the Topology in Fig. 9. The figure shows
the per-destination multicast throughput of MORE, ExOR, and
Srcr. The thick bars show the average per-destination through-
put taken over 40 runs with different nodes. The lines show the
standard deviation.

tunistic receptions. We find the ExOR forwarders for each
destination. The per-destination forwarders use the ExOR
protocol to access the medium and coordinate their trans-
missions. In contrast to unicast ExOR, if the forwarders
toward destination X opportunistically hears a packet by
a forwarder in the forwarder list of destination Y , it ex-
ploits that opportunistic reception. Said differently, we al-
low opportunistic receptions across the forwarders of var-
ious destinations.

Our results show that MORE’s multicast throughput is
significantly higher than both ExOR and Srcr. In partic-
ular, we experiment with the simple topology in Fig. 9,
where the source multicasts a file to a varying number of
destinations. Fig. 10 shows the average multicast through-
put as a function of the number of destinations. The av-
erage is computed over 40 different instantiations of the
topology in Fig 9, using nodes in our testbed. As expected,
the per-destination average throughput decreases with in-
creased number of destinations. Interestingly however, the
figure shows that MORE’s throughput gain increases with
increased number of destinations. MORE has 35-200%
throughput gain over ExOR and 100-300% gain over Srcr.

MORE’s multicast throughput gain is higher than its
unicast gain. This is because network coding fits naturally
with multicast. Recall from the example in §2 that without
network coding, a transmitter (whether the source or a for-
warder) needs to retransmit the union of all packets lost by
downstream nodes. In contrast, with coding it is enough to
transmit just the number of packets missed at the down-
stream node that experienced the most packet loss.

Next, we run multicast over random topologies and
multihop paths. We pick a source and 3 destinations ran-
domly from the nodes in the testbed. We make the source
multicast a file to the three destinations, using MORE,
ExOR, and Srcr. We repeat the experiment for 40 differ-
ent instantiations of the nodes, and plot the CDFs of the
throughput. Fig. 11 confirms our prior results showing sig-
nificant gain for MORE over both ExOR and Srcr. In this
figure however the difference between MORE and ExOR

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 F
lo

w
s

Throughput Per Destination [pkt/s]

Srcr
ExOR

MORE

Figure 11—CDF of Multicast Throughput for 3 Destinations
in a Random Topology. The figure shows the CDF of the per-
destination multicast throughput of MORE, ExOR, and Srcr. For
each run, a source and 3 destinations are picked randomly from
among the nodes in the testbed.

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4

A
ve

ra
ge

 F
lo

w
 T

hr
ou

gh
pu

t [
pk

t/s
]

Number of flows

Srcr
ExOR

MORE

Figure 12—Multi-flows. The figure plots the per-flow average
throughput in scenarios with multiple flows. Bar show the av-
erage of 40 random runs. Lines show the standard deviation.

is less pronounced than in Fig. 10. This is because the CDF
uses random topologies with all nodes in the testbed poten-
tially acting as forwarders. This increases the potential for
opportunistic receptions and thus makes the relative gain
from network coding look less apparent.

8.6 Multiple Flows
One may also ask how MORE performs in the pres-

ence of multiple flows. Further, since the ExOR paper does
not show any results for concurrent flows, this question is
still open for ExOR as well. We run 40 multi-flow experi-
ments with random choice of source-destination pairs, and
repeat each run for the three protocols.

Fig. 12 shows the average per-flow throughput as a
function of the number of concurrent flows, for the three
protocols. Both MORE and ExOR achieve higher through-
put than Srcr. The throughput gains of opportunistic rout-
ing, however, are lower than for a single flow. This high-
lights an inherent property of opportunistic routing; it ex-
ploits opportunistic receptions to boost the throughput,
but it does not increase the capacity of the network. The
802.11 bit rate decides the maximum number of transmis-
sions that can be made in a time unit. As the number of
flows in the network increases, each node starts playing
two roles; it is a forwarder on the best path for some flow,
and a forwarder off the best path for another flow. If the
driver polls the node to send a packet, it is better to send

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 F
lo

w
s

Throughput [pkt/s]

Srcr
ExOR

MORE
Srcr autorate

Figure 13—Opportunistic Routing Against Srcr with Au-
torate. The figure compares the throughput of MORE and ExOR
running at 11Mb/s against that of Srcr with autorate. MORE and
ExOR preserve their throughput gains over Srcr.

a packet from the flow for which the node is on the best
path. This is because the links on the best path usually
have higher delivery probability. Since the medium is con-
gested and the number of transmissions is bounded, it is
better to transmit over the higher quality links.

Also, the gap between MORE and ExOR decreases
with multiple flows. Multiple flows increase congestion
inside the network. Although a single ExOR flow may un-
derutilize the medium because it is unable to exploit spa-
tial reuse, the congestion arising from the increased num-
ber of flows covers this issue. When one ExOR flow be-
comes unnecessarily idle, another flow can proceed.

Although the benefits of opportunistic routing decrease
with a congested network, it continues to do better than
best path routing. Indeed, it smoothly degenerates to the
behavior of traditional routing.

Finally, this section highlights the differences between
inter-flow and intra-flow network coding. Katti et al. [23]
show that the throughput gain of COPE, an inter-flow net-
work coding protocol, increases with an increased number
of flows. But, COPE does not apply to unidirectional traf-
fic and cannot deal with dead spots. Thus, inter-flow and
intra-flow network coding complement each other. A de-
sign that incorporates both MORE and COPE is a natural
next step.

8.7 Autorate
Current 802.11 allows a sender node to change the bit

rate automatically, depending on the quality of the link
to the recipient. One may wonder whether such adapta-
tion would improve the throughput of Srcr and nullify the
gains of opportunistic routing. Thus, in this section, we
allow Srcr to exploit the autorate feature in the MadWifi
driver [28], which uses the Onoe bit-rate selection algo-
rithm [8].

Opportunistic routing does not have the concept of a
link, it broadcasts every packet to many potential nex-
thops. Thus, current autorate algorithms are not suitable
for opportunistic routing. The problem of autorate control
for opportunistic routing is still open. Therefore, in our ex-
periments, we compare Srcr with autorate to opportunis-

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 F
lo

w
s

Throughput [pkt/s]

MORE, K=8
MORE, K=16
MORE, K=32
MORE, K=64

MORE, K=128

(a) MORE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 F
lo

w
s

Throughput [pkt/s]

ExOR, K=8
ExOR, K=16
ExOR, K=32
ExOR, K=64

ExOR, K=128

(b) ExOR

Figure 14—Impact of Batch Size. The figure shows the CDF of
the throughput taken over 40 random node pairs. It shows that
MORE is less sensitive to the batch size than ExOR.

tic routing (MORE and ExOR) with a fixed bit-rate of 11
Mb/s.

Fig. 13 shows CDFs of the throughputs of the vari-
ous protocols. The figure shows that MORE and ExOR
preserve their superiority to Srcr, even when the latter is
combined with automatic rate selection. Paths with low
throughput in traditional routing once again show the
largest gains. Such paths have low quality links irrespec-
tive of the bit-rate used, therefore autorate selection does
not help these paths.

Interestingly, the figure also shows that autorate does
not necessarily perform better than fixing the bit-rate at the
maximum value. This has been noted by prior work [34]
and attributed to the autorate confusing collision drops
from error drops and unnecessarily reducing the bit-rate.

8.8 Batch Size
We explore the performance of MORE and ExOR for

various batch size. Fig. 14 plots the throughput for batch
sizes of 8, 16, 32, 64, and 128. It shows that ExOR’s per-
formance with small batches of 8 packets is significantly
worse than large batches. In contrast, MORE is highly in-
sensitive to different batch sizes.

In both ExOR and MORE, the overhead increases with
reduced batch size. ExOR nodes exchange control packets
whenever they transmit a batch. Increasing the batch size
allows ExOR to amortize the control traffic and reduces
the chance of spurious transmissions. MORE may make a
few spurious transmissions between the time the destina-
tion decodes a batch and when the source and forwarders

Operation Avg. Time [µs] Std. Dev. [µs]
Independence check 10 5
Coding at the source 270 15
Decoding 260 150

Table 2—Average computational cost of packet operations in
MORE. The numbers for K = 32 and 1500B packets are mea-
sured on a low-end Celeron machine clocked at 800MHz with
128KiB cache. Note that the coding cost is highest at the source
because it has to code all K packets together. The coding cost at
a forwarder depends on the number of innovative packets it has
received, and is always bounded by the coding cost at the source.

stop transmitting packets from that batch. A bigger batch
size allows MORE to amortize the cost of these spurious
transmissions over a larger number of packets, increasing
the overall throughput.

Insensitivity to batch sizes allows MORE to vary the
batch size to accommodate different transfer sizes. We ex-
pect that for any transfer size larger than 7-10 packets (i.e.,
a batch larger than 7-10 packets), MORE will show signif-
icant advantages. Shorter transfers can be sent using tradi-
tional routing. Note that MORE benignly co-exists with
traditional routing, which it uses to deliver its ACKs.

8.9 MORE’s Overhead
Finally, we would like to estimate MORE’s overhead

and itssuitabilityy for deployment in mesh networks like
Roofnet [4] and community wireless networks [32, 6].

(a) Coding Overhead: In MORE, the cost of cod-
ing/decoding packets is incurred mainly when the packet
has to be multiplied by a random number (in a finite field
of size 28). To optimize this operation, our implementation
reduces the cost by using a 64KiB lookup-table indexed by
pairs of 8 bits. The lookup table caches results of all pos-
sible multiplications, so multiplying any byte of a packet
with a random number is simply a fast lookup.

Table 2 provides micro benchmarks for coding and de-
coding in MORE. The measurements are taken on a low-
end Celeron 800MHz machine. The benchmarks show that
coding and decoding have roughly equal cost. They re-
quire on average K finite-field multiplications per byte,
where K is the batch size. This ties the choice of K with the
maximum achievable throughput. In our setting K = 32
and coding takes on average 270µs per 1500B packet. This
limits the effective throughput to 44 Mb/s, which is higher
than the effective bit rate of current wireless mesh net-
works [20].

(b) Memory Overhead: In MORE like in ExOR, routers
do not keep an output queue. Instead, they store the cur-
rent batch from each flow. This per-flow state is dominated
by the storage required to buffer innovative packets from
the current batch, which is bounded by K = 32 packets.
Additionally, as stated above, MORE nodes keep a 64KiB
lookup-table. Given that the number of concurrent flows
in a mesh network is relatively small, we believe MORE’s

13

memory overhead is acceptable.

(c) Header Overhead: MORE’s header in our current im-
plementation is bounded by 70 bytes because we bound
the number of forwarders to 10. Certain values in the
header are compressed to increase efficiency. For exam-
ple, since routers only keep the current batch, we can rep-
resent batch IDs using a few bits. Similarly, we compress
the node ID in the forwarder list to one byte, which is a
hash of its IP. This works because only nodes whose ETX
to the destination is smaller than the source are allowed to
participate in forwarding. For 1500B packets, the header
overhead is less than 5%. Note that our throughput num-
bers are computed over the delivered data, and thus they
already account for header overhead.

9 CONCLUSION

Opportunistic routing and network coding are two
powerful ideas which may at first sight appear unrelated.
Our work combines these ideas in a natural fashion to pro-
vide opportunistic routing without node coordination. We
design a practical system, MORE, that plugs random net-
work coding into the current network stack, exploits the
opportunism inherent in the wireless medium, and pro-
vides significant performance gains. Field tests on a 20-
node wireless testbed show that MORE provides both uni-
cast and multicast traffic with significantly higher through-
put than both traditional routing and prior work on oppor-
tunistic routing.

REFERENCES
[1] Calling p2p: Peer-to-peer networks coming to a phone

near you, 2005. http://www.econtentmag.com.
[2] Digiweb offers wireless IPTV in Ireland, 2005.

http://www.dtg.org.uk/news/.
[3] Ruckus to announce wireless, IPTV deals with 15 telcos,

2006.
http://www.eweek.com/article2/0,1895,1989290,00.asp.

[4] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris.
Link-level measurements from an 802.11b mesh network.
In SIGCOMM, 2004.

[5] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung. Network
Information Flow. In IEEE Trans. on Information Theory,
Jul 2000.

[6] Bay area wireless user group. http://www.bawug.org.
[7] P. Bhagwat, B. Raman, and D. Sanghi. Turning 802.11

inside-out. In HotNets, 2003.
[8] J. Bicket. Bit-rate selection in wireless networks. M.S.

Thesis, 2005.
[9] J. Bicket, D. Aguayo, S. Biswas, and R. Morris.

Architecture and evaluation of an unplanned 802.11b mesh
network. In MOBICOM, 2005.

[10] S. Biswas and R. Morris. Opportunistic routing in
multi-hop wireless networks. In SIGCOMM, 2005.

[11] N. Cai and R. W. Yeung. Secure Network Coding. In ISIT,
2002.

[12] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A

high-throughput path metric for multi-hop wireless
routing. In MOBICOM, 2003.

[13] J. E. Gentle. Numerical Linear Algebra for Applications in
Statistics. Springer–Verlag, 1998.

[14] C. Gkantsidis and P. Rodriguez. Network Coding for
Large Scale Content Distribution. In INFOCOM, 2005.

[15] T. Ho, M. Médard, J. Shi, M. Effros, and D. Karger. On
randomized network coding. In Allerton, 2003.

[16] D. T. J. N. Laneman and G. Wornell. Cooperative diversity
in wireless networks: Efficient protocols and outage
behavior. IEEE Trans. on Information Theory, Dec 2004.

[17] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and
M. Médard. Resilient Network Coding In The Presence of
Byzantine Adversaries. In INFOCOM, 2007.

[18] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner,
K. Jain, and L. Tolhuizen. Polynomial time algorithms for
multicast network code construction. IEEE Trans. on
Information Theory, 2003.

[19] A. Jiang. Network Coding for Joing Storage and
Transmission with Minimum Cost. In ISIT, 2006.

[20] A. Kamerman and G. Aben. Net throughput with IEEE
802.11 wireless LANs. In WCNC, 2000.

[21] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein.
Growth Codes: Maximizing Sensor Network Data
Persistence. In SIGCOMM, 2006.

[22] S. Katti, D. Katabi, W. Hu, H. S. Rahul, and M. Médard.
The importance of being opportunistic: Practical network
coding for wireless environments. In Allerton, 2005.

[23] S. Katti, H. Rahul, D. Katabi, W. H. M. Médard, and
J. Crowcroft. XORs in the Air: Practical Wireless Network
Coding. In SIGCOMM, 2006.

[24] R. Koetter and M. Médard. An algebraic approach to
network coding. IEEE/ACM Trans. on Networking, 2003.

[25] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Trans. on
Computer Systems, Aug 2000.

[26] S.-Y. R. Li, R. W. Yeung, and N. Cai. Linear network
coding. IEEE Trans. on Information Theory, Feb 2003.

[27] D. S. Lun, M. Médard, and R. Koetter. Efficient operation
of wireless packet networks using network coding. In
IWCT, 2005.

[28] MADWiFi: Multiband Atheros Driver for WiFi.
http://madwifi.org.

[29] A. K. Miu, H. Balakrishnan, and C. E. Koksal. Improving
loss resilience with multi-radio diversity in wireless
networks. In MOBICOM, 2005.

[30] J. S. Park, M. Gerla, D. S. Lun, Y. Yi, and M. Médard.
Codecast: A network-coding based ad hoc multicast
protocol. IEEE Wireless Comm. Magazine, 2006.

[31] C. Reis, R. Mahajan, M. Rodrig, D. Wetherall, and
J. Zahorjan. Measurement-based models of delivery and
interference. In SIGCOMM, 2006.

[32] Seattle wireless. http://www.seattlewireless.net.
[33] J. Widmer and J.-Y. L. Boudec. Network Coding for

Efficient Communication in Extreme Networks. In
SIGCOMM WDTN, 2005.

[34] S. H. Y. Wong, S. Lu, H. Yang, and V. Bharghavan. Robust
rate adaptation for 802.11 wireless networks. In
MOBICOM, 2006.

14

