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ABSTRACT
This paper presents the design, implementation and perfor-
mance evaluation of a hybrid MAC protocol, called Z-MAC,
for wireless sensor networks that combines the strengths of
TDMA and CSMA while offsetting their weaknesses. Like
CSMA, Z-MAC achieves high channel utilization and low-
latency under low contention and like TDMA, achieves high
channel utilization under high contention and reduces col-
lision among two-hop neighbors at a low cost. A distinc-
tive feature of Z-MAC is that its performance is robust to
synchronization errors, slot assignment failures and time-
varying channel conditions; in the worst case, its perfor-
mance always falls back to that of CSMA. Z-MAC is imple-
mented in TinyOS.

Categories and Subject Descriptors: B.2.1 [Computer-
Communication Networks]: Network Protocols, Wireless Com-
munications

General Terms: Algorithms, Design, Performance

Keywords: MAC, CSMA, TDMA, wireless sensor networks.

1. INTRODUCTION
A radio channel cannot be accessed simultaneously by

two or more nodes that are in a radio interference range
– neighboring nodes may cause “conflict” or signal interfer-
ence at some nodes if transmitting at the same time on the
same channel. In wireless sensor networks, controlling ac-
cess to the channel, generally known as multiple access con-

trol (MAC), plays a key role in determining channel capac-
ity utilization, network delays and more important, power
consumption. It also influences congestion and fairness in
channel usage.

Sensor networks serve many diverse applications from low
data rate event driven monitoring applications to high data
rate real-time industrial applications. Balakrishnan [4] re-
ports that some high data rate applications can reach sens-
ing rates of 102 to 105 Hz and consume from a few bytes
per seconds up to 10 or 100 Mbps aggregate bandwidth;
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these applications require over 5 times improvement on the
channel utilization of existing sensor networking technolo-
gies. Notwithstanding high channel utilization, traditional
sensor network requirements such as power efficiency, scal-
ability, robustness and small footprints must also not be
compromised.

A common MAC paradigm in wireless networks is CSMA
(carrier sense multiple access). It is popular because of its
simplicity, flexibility and robustness. It does not require
much infrastructure support: no clock synchronization and
global topology information are required, and dynamic node
joining and leaving are handled gracefully without extra
operations. These advantages, however, come at the cost
of trial and error – a trial may cost access collision where
more than two “conflicting” nodes transmit at the same time
causing signal fidelity degradation at destinations. Collision
can happen in any two-hop neighborhood of a node. While
collision among one-hop neighbors can be greatly reduced
by carrier sensing before transmission, carrier sensing does
not work beyond one hop. This problem, called the hidden

terminal problem, causes a serious throughput degradation
especially in high data rate sensor applications. Although
RTS/CTS can alleviate the hidden terminal problem, it in-
curs high overhead (40% to 75% of the channel capacity in
sensor networks [3, 15]) because data packets are typically
very small in sensor networks.

TDMA (time-division multiple access), on the other hand,
can solve the hidden terminal problem without extra mes-
sage overhead because it can schedule transmission times
of neighboring nodes to occur at different times. However,
TDMA has many other disadvantages as documented in [24].
First, finding an efficient time schedule in a scalable fashion
is not trivial. It often requires a centralized node to find a
collision-free schedule. Furthermore, developing an efficient
schedule with a high degree of concurrency or channel reuse
is very hard (the optimal solution is NP-hard [17]). Sec-
ond, TDMA needs clock synchronization. Although clock
synchronization is an essential feature of many sensor appli-
cations, tight synchronization incurs high energy overhead
because it requires frequent message exchanges. Third, sen-
sor networks may undergo frequent topology changes be-
cause of time-varying channel conditions, physical environ-
mental changes, battery outage and node failures. Handling
dynamic topology changes is expensive, possibly requiring a
global change. Fourth, it is difficult to ascertain the interfer-
ence relation among neighboring nodes because radio inter-
ference ranges are different from communication ranges and
some interfering nodes may not be in a direct communica-



tion range (this phenomenon is known as interference irreg-

ularity [25]). Therefore, any channel assignment that uses
the communication ranges, in place of interference ranges,
for building the conflict relations does not necessarily yield
an interference free schedule. Furthermore as interference
ranges and also channel conditions are highly time-varying,
it is unlikely that one fixed schedule is sufficient to prevent
collision all the time. Fifth, during low contention TDMA
gives much lower channel utilization and higher delays than
CSMA because in TDMA, a node can transmit only dur-
ing its scheduled time slots whereas in CSMA, nodes can
transmit at any time as long as there is no contention.

These difficulties with TDMA suggest that a stand-alone
TDMA scheme is not practical. Even if we have an effi-
cient TDMA schedule, the other factors such as interference
irregularity, time-varying channel conditions and clock syn-
chronization errors would diminish the benefits of TDMA.
Nevertheless, we posit that the information provided by an
efficient TDMA schedule, in particular, the independent sets
of nodes that can transmit concurrently can be used in cur-
tailing occurrences of collision especially under high con-
tention. This position greatly motivates our work.

In this paper, we present a new hybrid MAC scheme,
called Z-MAC (Zebra MAC), for sensor networks that com-
bines the strengths of TDMA and CSMA while offsetting
their weaknesses. The main feature of Z-MAC is its adapt-
ability to the level of contention in the network so that under
low contention, it behaves like CSMA, and under high con-
tention, like TDMA. It is also robust to dynamic topology
changes and time synchronization failures commonly occur-
ring in sensor networks.

Z-MAC uses CSMA as the baseline MAC scheme, but
uses a TDMA schedule as a “hint” to enhance contention
resolution. In Z-MAC, a time slot assignment is performed
at the time of deployment - higher overhead is incurred at
the beginning. Its design philosophy is that the high initial
overhead is amortized over a long period of network opera-
tion, eventually compensated by improved throughput and
energy efficiency. We use DRAND [18], an efficient scal-
able channel scheduling algorithm. DRAND is a distributed
implementation of RAND [17], a centralized channel reuse
scheduling algorithm. After the slot assignment, each node
reuses its assigned slot periodically in every predetermined
period, called frame. We call a node assigned to a time slot
an owner of that slot and the others the non-owners of that
slot. There can be more than one owner per slot because
DRAND allows any two nodes beyond their two-hop neigh-
borhoods to own the same time slot.

Unlike TDMA, a node may transmit during any time slot
in Z-MAC. Before a node transmits during a slot (not nec-
essarily at the beginning of the slot), it always performs
carrier-sensing and transmits a packet when the channel is
clear. However, an owner of that slot always has higher
priority over its non-owners in accessing the channel. The
priority is implemented by adjusting the initial contention
window size in such a way that the owners are always given
earlier chances to transmit than non-owners. The goal is
that during the slots where owners have data to transmit,
Z-MAC reduces the chance of collision since owners are given
earlier chances to transmit and their slots are scheduled a
priori to avoid collision, but when a slot is not in use by its
owners, non-owners can steal the slot. This priority scheme
has an effect of implicitly switching between CSMA and

TDMA depending on the level of contention. An impor-
tant feature of this priority scheme is that the probability
of owners accessing the channel can be adjusted indepen-
dently from that of non-owners. We show that this feature
contributes to increasing the robustness of the protocol to
synchronization and slot assignment failures while enhanc-
ing its scalability to contention.

By mixing CSMA and TDMA, Z-MAC becomes more ro-
bust to timing failures, time-varying channel conditions, slot
assignment failures and topology changes than a stand-alone
TDMA; in the worst case, it always falls back to CSMA.
Since Z-MAC needs only local synchronization among senders
in two-hop neighborhoods, we devise a simple local synchro-
nization scheme where each sending node adjusts its syn-
chronization frequency based on its current data rate and
resource budget. Our analysis shows that even in the case
when clocks are completely unsynchronized and some degree
of slot assignment failure occurs, its performance becomes
comparable to that of CSMA.

In what follows, we describe the design, implementation
and performance of Z-MAC in detail.

2. RELATED WORK
S-MAC [24] and T-MAC [20] are a hybrid of CSMA and

TDMA in that they also maintain the synchronized time
slots, but unlike TDMA their slots can be much bigger than
normal TDMA slots and synchronization failures do not nec-
essarily lead into communication failure because they em-
ploy RTS/CTS. Nodes maintain periodic duty cycle to listen
for channel activities and transmit data. As these protocols
use RTS/CTS, the overhead of the protocols is quite high
because most data packets in sensor networks are small. T-
MAC [20] improves the energy efficiency of S-MAC by forc-
ing all the transmitting nodes to start transmission at the
beginning of each active period.

Polastre et al. [15] develop a lightweight MAC protocol
called B-MAC which is used as the default MAC for Mica2.
B-MAC allows application to implement its own MAC through
a well-defined interface. They also adopt LPL (low power lis-
tening) [10, 7] and engineer the clear channel sensing (CCA)
technique to improve channel utilization. B-MAC is shown
to have higher throughput and better energy efficiency than
S-MAC and T-MAC.

CSMA/p∗ [19] uses the optimal probability distribution in
determining the channel access probability for CSMA when
the number of senders N is known. When N is unknown, it
provides sub-optimal performance. Sift [13] adapts CSMA/p∗

[19] for a network where N is unknown. The result is high
success probability for channel access and reduced collision
probability, thus achieving good throughput under both low
and high contention. However the optimal probability distri-
bution works only when senders always have data to trans-
mit and they are synchronized for the channel access, and
thus, when data arrivals to a node are highly random and
senders cannot sense each other for data transmission (as in
two-hops), its performance degenerates to the case of CSMA
with the uniform access probability distribution. Sift relies
on RTS/CTS to handle hidden terminals.

TDMA has long been dismissed as an impractical solution
for mobile wireless ad hoc networks for its lack of scalabil-
ity and adaptability to changing environments. However, it
provides a good energy efficiency and collision-freedom. Re-
cently, several proposals [1, 11, 14, 16] are made for TDMA



in sensor networks. Unfortunately, these protocols still fail
to address the fundamental difficulties that stand-alone TDMA
schemes face.

Seamlessly adapting the MAC behavior between TDMA
and CSMA according to the level of contention was previ-
ously explored by Ephremides and Mowafi [8] for a wire-
less LAN (or one-hop) environment using a scheme called
Probabilistic TDMA (PTDMA). As in TDMA, real time is
slotted and by adjusting the access probability of owners
(a) and that of non-owners (b), PTDMA adapts the be-
havior of MAC between TDMA and CSMA depending on
contention. These probabilities are adjusted by a function
a + (M − 1)b = 1 where M is the number of senders. While
PTDMA and Z-MAC share a common goal, PTDMA, be-
ing designed primarily for a one-hop wireless LAN environ-
ment, does not deal with many difficulties that TDMA faces
in ad hoc sensor networks such as time synchronization er-
rors, interference irregularity and topology changes. These
failures can drastically reduce the performance of PTDMA.
PTDMA also assumes buffered senders where all nodes ex-
perience the same statistical arrival. In a network where
only a subset of nodes is active data sources (which is a com-
mon scenario in sensor networks), PTDMA exhibits very low
channel utilization and does not behave like CSMA. This is
because b cannot be arbitrarily set to a high value without
reducing a (reducing a also causes MAC not to behave like
TDMA) due to the dependency between a and b. The effect
of probability ”a” is also not clear; it seems that the au-
thors want to adjust ”a” for different contention levels but
the paper does not mention how this can be achieved (Z-
MAC does not need to dynamically adjust its parameters to
achieve the desired effect).

3. DESIGN OF Z-MAC
Z-MAC has the setup phase in which it runs the following

operations in sequence: neighbor discovery, slot assignment,
local frame exchange and global time synchronization. These
operations run only once during the setup phase and does
not run until a significant change in the network topology
(such as physical relocation of sensors) occurs. The idea is
that the initial upfront costs for running these operations are
compensated by improved throughput and energy efficiency
during data transmission. In this section, we first describe
how we implement these setup phase operations and then
discuss how they are integrated with the main transmission
control of Z-MAC.

3.1 Neighbor Discovery and Slot Assignment
As a node starts up, it first runs a simple neighbor dis-

covery protocol where it periodically broadcasts a ping to
its one-hop neighbors to gather its one-hop neighbor list. A
ping message contains the current list of its one-hop neigh-
bors. In our implementation, each node sends one ping
message at a random time in each second for 30 seconds.
Through this process, each node gathers the information
received from the pings from its one-hop neighbors which
essentially constitutes its two-hop neighbor information.

The two-hop neighbor list is used as input to a time slot
assignment algorithm. The current implementation of Z-
MAC uses DRAND [18], a distributed implementation of
RAND [17], to assign time slots to every node in the net-
work. DRAND ensures a broadcast schedule where no two
nodes within a two-hop communication neighborhood are

assigned to the same slot. This assignment guarantees that
no transmission by a node to any of its one-hop neigh-
bors interferes with any transmission by its two-hop neigh-
bors. Note that a broadcast schedule can handle any routing
changes among its one-hop neighbors.

The performance of DRAND is scalable because it does
not depend on the network size, but on the local neigh-
borhood size of each node. The protocol produces a very
efficient time schedule where the slot number assigned to a
node does not exceed the size of its local two-hop neighbor-
hood (δ) – in most cases, much less than that. The running
time and message complexity of DRAND is also bounded
by O(δ). Thus, its energy cost is linearly proportional to
the size of the local neighborhood. When only a small num-
ber of new nodes are joined late, DRAND can also perform
localized time slot assignment without modifying the time
slots already assigned to the existing nodes. The detailed
performance analysis of DRAND can be found in [18].

3.2 Local Framing
Once a node picks a time slot, each node needs to decide

on the period in which it can use the time slot for trans-
mission. This period is called the time frame of the node.
The conventional wisdom is that all nodes must keep the
same time frame while all nodes synchronize to have their
time slot 0 at the same time. But this requires to propagate
the maximum slot number (MSN) to the entire network and
is also not adaptive to local time slot changes. When new
nodes are added to the network, DRAND can run local slot
assignment while maintaining the existing assignment. If
this assignment causes the MSN to be changed, that change
must be propagated again to the entire network. This could
incur high cost for adapting to a small change in the network
topology. (Note that network topology changes by unstable
radio channel conditions are handled by the inherent opera-
tion of Z-MAC so it does not incur new assignment, but new
node joining or node redeployment can cause slot changes.)

We present a new scheme where each node maintains its
own local time frame that fits its local neighborhood size,
but avoids any conflict with its contending neighbors. The
main idea is as follows.

Time frame rule (TF rule). Let a node i be assigned
to a slot si according to DRAND and the MSN within its
two-hop neighborhood be Fi. We set i’s time frame to be
2a where a positive integer a is chosen to satisfy condition
2a−1 ≤ Fi < 2a − 1. That is, i uses the si-th slot in every
2a time frame (is slots are l · 2a + si, for all l = 1, 2, 3, . . .).

Theorem 3.1. If every node i uses only slots l·2a+si, for

all l = 1, 2, 3, . . ., then no node j in the two-hop neighborhood

of i uses any slot that i uses.

The TF rule allows nodes to pick their own time frame
sizes based on their local two-hop information. This rule
makes DRAND adaptive to dynamic time frame changes
(caused by local topology changes) without incurring any
global changes. Figure 1 shows an example of a TDMA
schedule obtained by the TF rule. If the global time frame
is used, then 6 will be the time frame size. Then nodes A
and B can use their slots only once every 6 slots although
their frame sizes are 2 each. But if the TF rule is used,
we can allow them to use frame size 4. This increases the
concurrency in the channel usage and reduces the message
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Figure 1: An example of the TF rule. The top figure
shows a network topology and the numbers indicate
the slot numbers assigned by DRAND and the num-
bers in parenthesis are Fi. The bottom figure shows
the slot schedule of all nodes (shaded slots are ones
where each node transmits, and dark slots are the
“empty” slots that are not used by any one-hop or
two-hop neighbors).

delays for node A and B. However, we find that slots 6 and
7 are not assigned to any node in the neighborhood. This is
a trade-off; when the network is uniformly dense, the global
time frame would create a smaller number of empty slots.
But if the network contains many sparse areas with only
a few dense areas, then the local framing would be more
preferable. In Z-MAC, since empty slots are available for
CSMA (more details on Z-MAC’s transmission control are
given next section), they are not necessarily wasted.
Synchronizing on slot 0. The local framing rule implic-
itly assumes that every node starts its time slot 0 at the
same time. This can be achieved without any communica-
tion, if clocks are synchronized, by fixing a predetermined
absolute time to synchronize slot 0. For instance, we can
set the beginning of the real time (i.e., when the synchro-
nized clock value is zero) to be the beginning of slot 0. New
nodes can easily synchronize their slots if they synchronize
their clocks to the global clock. To allow this synchroniza-
tion, Z-MAC performs global clock synchronization such as
TPSN [9], only once at the beginning. After the initial syn-
chronization, each node runs a low-cost local synchroniza-
tion protocol discussed in Section 3.6.

3.3 Transmission Control of Z-MAC
At the end of the DRAND phase, every node forwards

its frame size and slot number to its two-hop neighborhood.
Thus, a node knows about the slot and frame information of
its one-hop and two-hop neighbors at the beginning of the Z-
MAC phase. At this point, every node synchronizes to slot
0 and then they are finally ready to run the transmission
control of Z-MAC.

In Z-MAC, a node can be in one of two modes: low con-

tention level (LCL) or high contention level (HCL). A node
is in HCL only when it receives an explicit contention noti-

fication (ECN) message from a two-hop neighbor within the

last tECN period. Otherwise, the node is in LCL. A node
sends an ECN when it experiences high contention. The
details on ECN are in next section.

In LCL, any node can compete to transmit in any slot,
but in HCL, only the owners of the current slot and their
one-hop neighbors are allowed to compete for the channel
access. In both modes, the owners have higher priority over
non-owners. If a slot does not contain an owner or its owner
does not have data to send, non-owners can steal the slot.
This feature achieves high channel utilization even under
low contention as a node can transmit as soon as the chan-
nel is available. Z-MAC implements LCL and HCL using
the backoff, CCA and LPL interfaces of B-MAC.

The transmission rule. As a node i acquires data to
transmit, it checks whether it is the owner of the current slot.
If it is the owner of the slot, it takes a random backoff within
a fixed time period To. When the backoff timer expires, it
runs CCA and if the channel is clear, it transmits the data.
If the channel is not clear, then it waits until the channel
is not busy and repeats the above process. If node i is a
non-owner of the current slot and it is in LCL, or if it is
in HCL and the current slot is not owned by its two-hop
neighbors, then it waits for To and then performs a random
backoff within a contention window [To, Tno]. When the
backoff timer expires, it runs CCA and if the channel is
clear, then it starts transmission. If the channel is not clear,
then it waits until the channel is clear, and repeats the above
process. If node i is a non-owner of the current slot and is in
HCL (this means that a two-hop neighbor of i has sent an
ECN in the last tECN), postpones its transmission (it may
sleep) until it finds a time slot that either (1) is not owned
by a two-hop neighbor or (2) is its owner. After waking up,
it repeats the above process.

According to the above transmission rules, in the LCL
mode, a node can compete in any slot, albeit with different
priorities. In HCL mode, it can compete in the current slot
only if it is the owner of the slot or a one-hop neighbor
to the owner of that slot. Note that it is possible that a
transmission started in the previous slot crosses over to an
HCL slot causing collision with the owner of the slot. One
way to prevent this is to restrict a transmission not to cross
over an HCL slot. We opt not to support this because this
restriction might create too many fragmentations in time
slots reducing the channel utilization. Since the slot size
should be big enough to handle more than one packet, HCL
slots will give more chance to an owner to succeed without
hidden terminals.

Specific values of To and Tno have performance impact.
We select these values based on stochastic analysis to maxi-
mize effective throughput. We omit the mathematical anal-
ysis because of the space constraint, but instead provide an
intuitive explanation for our methodology to pick these val-
ues. The choice of To determines the robustness of Z-MAC
in the face of time synchronization errors or slot assignment
failures which cause some slots to have more than one owner.
If the synchronization error is no more than one TDMA slot
size, then there can be at most two to three conflicting own-
ers at any time. We can analytically obtain the optimal
size of To to handle contention among two to three owners.
Based on this technique, we set To to 8 contention window
slots (also a power of 2 for efficient implementation). We
set Tno to 32 slots since it is commonly used as the initial



contention window size in IEEE 802.11 [5].
The transmission rule of Z-MAC is quite different from

that of PTDMA [8]. Unlike PTDMA, in Z-MAC, the owner
and non-owner access probabilities (a and b in Eq. 1 in [8])
are independently adjusted by To and Tno since non-owners
cannot compete during To. This enhances the ability to
increase the robustness of the protocol without affecting
the general behavior of the protocol. For instance, increas-
ing To does not change the priority between owners and
non-owners, thus preserving the performance swing between
TDMA and CSMA depending on contention. In PTDMA,
this is not possible due to the dependency between a and b.

3.4 Explicit Contention Notification
ECN messages notify two-hop neighbors not to act as hid-

den terminals to the owner of each slot when contention is
high. Each node makes a local decision to send an ECN
message based on its local estimate of the contention level.
There are two ways to estimate two-hop contention. One is
to receive acknowledgment from the one-hop receiver and
measure the packet loss rate. Since two-hop contention
causes collision, it is highly related to the loss rate. However
this technique requires the receiver to send feedback and in-
curs extra overhead. Unless the acknowledgment feature is
enabled by the application, this overhead can unduly reduce
the channel utilization. The other technique is to measure
the noise level of the channel. When high contention occurs,
it tends to increase the noise level. This technique does not
require any extra overhead as the noise level can be mea-
sured passively at the time of data transmission. In order
to measure the noise level passively without actively sam-
pling the channel, we measure the average number of noise

backoffs that a sender takes before transmitting a packet. A
noise backoff is the backoff taken by a transmitter when it
senses the channel using CCA before packet transmission (it
transmits only when the channel is clear). When the noise
level is higher than the CCA threshold, the node takes back-
off. In order to see the correlation between the noise backoff
and two-hop contention, we took a Mica2 experiment where
two clusters of nodes transmit to a common receiver called
sink. The nodes in different clusters are in a two-hop dis-
tance to each other and the nodes in the same cluster are
one-hop away from each other. In one cluster, we fix one
sender, called measurement node, and in the other cluster,
we vary the number of senders. We measure the correlation
between two-hop contention at the sink and the noise level
at the measurement node as we vary the number of senders
in one cluster and their transmission rate. The two-hop con-
tention is measured by the number of times per second that
the sink leaves the idle state into the receiving state but
fails to receive the data because of corrupted data or high
noise in sampled data (including loss of sync, CRC fail, and
preamble fail).

Under low transmission rates, even if we increase the num-
ber of senders, we find that the average noise level and two-
hop contention are very low, below 0.1 per packet and 5
per second respectively. However, we increase the transmis-
sion rate to the full rate (all senders always have data to
send), the noise level increases beyond 0.2. Figure 2 shows
the correlation between the average noise level and two-hop
contention under the full data rate. The simple correlation

coefficient [6], the ratio of co-variance of the two metrics
over the product of the variances of individual metrics, is
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Figure 2: The correlation between the noise level
and two-hop contention.

0.68 (1 and -1 indicate the maximum positive and nega-
tive correlations and 0 indicates no correlation), indicating
high correlation. The exponentially moving average value
(with weight 0.5) of the noise level when the two-hop con-
tention is higher than 20 per second increases beyond 0.3
backoffs/packet. We repeated the experiment many times
and confirmed that average 0.3 noise backoffs per packet
consistently indicates high two-hop contention. However,
this is only a conservative metric because even one-hop con-
tention can cause high noise backoffs as well, but it is clear
that low noise indicates low contention.

As a transmitting node detects high contention, the node
sends a unicast message, one-hop ECN to a destination to
which the node is experiencing contention. If more than one
destinations experience contention, it can send one broad-
cast with information about the multiple destinations. Typ-
ically, in sensor networks, since each node has one parent to
transmit data to, a node has one destination. When a node
j receives a one-hop ECN message triggered by its one-hop
neighbor i, it first checks whether j is the destination of
the ECN message. If so, it then broadcasts the ECN to
its one-hop neighbors (this ECN messages are called two-

hop ECN). If j is not the destination, it simply discards the
one-hop ECN. When a node receives a two-hop ECN, then
it sets its HCL flag. Figure 3 shows an example of ECN
forwarding.

The HCL flag is only a soft state, meaning that unless
another two-hop ECN message is received within the last
tECN period, the flag is reset. Thus, if node i continually ex-
periences contention, it needs to transmit the ECN message
periodically. This refresh period tECN is set by the system.

Typically, when a node detects contention, it is likely that
its neighboring senders will do so at the same time. There-
fore, we will have many duplicate ECN messages forwarded
to routing nodes. To prevent ECN implosion, we use over-
hearing to suppress ECN. When a node i detects high con-
tention, it takes random backoffs before the transmission of
a one-hop ECN message. In the mean time, if it receives a
one-hop ECN intended for another node that has the same
destination as i’s ECN, then node i suppresses its ECN and
cancels the transmission of the ECN. After tECN, if it still
experiences high contention, it schedules another ECN by
taking a random backoff and repeats the above process. The
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Figure 3: An example of ECN forwarding. When a
node s1 experiences heavy packet losses, it sends a
one-hop ECN to s5. The thick arrows indicate the
routing path and the dotted arrows indicate ECN
messages. Since nodes s2 and s4 are not the destina-
tion, they simply discard the ECN. Node s5 broad-
casts the ECN to its one-hop. Once HCL is enabled,
nodes s6 and s0 cannot compete during the time slot
of s1, while nodes s5, s2 and s4 can compete as one-
hop neighbors with lower priority than s1.

same suppression rule applies to routing nodes. If a routing
node receives a one-hop ECN and it has forwarded an ECN
within tECN period, it does not forward a two-hop ECN.

ECN is similar to RTS/CTS in CSMA/CA. But the dif-
ference is that HCL uses topology information (i.e., slot in-
formation) to avoid two hop collision. The cost of ECN is
also far less than RTS/CTS since it is triggered only when
contention is high. Using ECN suppression, only a small
number of ECN messages need to be forwarded. Since the
HCL state may last for a much longer term than a single
packet transmission, its cost is amortized over many packet
transmissions. ECN can also be viewed similar to the sup-

pression message in CODA[21]. However the difference is
that ECN suppresses two-hop neighbors only for the time
slot of the ECN originator whereas a suppression message
suppresses all receivers except the one designated in the mes-
sage.

3.5 Receiving Schedule of Z-MAC
DRAND defines only the transmission schedule of nodes.

In Z-MAC, a node can transmit in any slot. As Z-MAC
is implemented on top of B-MAC, it uses LPL by default
wherein each node maintains listening duty cycle separated
by a check period and each transmission is preceded by a
preamble as large as the check period. Therefore, the energy
consumption of Z-MAC for idle listening especially under
low duty cycles is comparable to that of B-MAC.

The check period also is a factor in determining the slot
size because a slot must be big enough to transmit one
packet. Thus, the slot size must be larger than the sum of
the check period, To, Tno, the CCA period and one packet
propagation time. There is a trade-off between the slot size
and the network delay, especially under high contention.
Under low contention the slot size does not affect the de-
lay since a node can transmit at any time. But under high
contention, a node is in HCL and transmits only during a
few designated slots. Therefore, a large slot size can incur
a large delay. We leave the choice of the slot size to the
application. The application designers have to evaluate the
trade-offs and find the slot size that fits their needs.

3.6 Local Time Synchronization
Using carrier-sensing and congestion backoffs, Z-MAC be-

comes more robust to clock errors than TDMA. Even under
no synchronization, its performance falls back to that of
CSMA. Furthermore under low contention, Z-MAC works
like CSMA with or without synchronization. Thus, Z-MAC
requires clock synchronization under high contention to im-
plement HCL. An important feature of Z-MAC is that syn-
chronization is required only among neighboring senders and
also when they are under high contention. These points
offer an excellent opportunity to optimize the overhead of
clock synchronization because synchronization is required
only locally among neighboring senders, and the frequency
of synchronization can be adjusted according to the trans-
mission rates of senders so that senders with higher data
rates transmit more frequent synchronization messages. In
this scheme, receivers passively synchronize their clocks to
the senders’ clocks and do not have to send any synchro-
nization messages.

To implement the local clock synchronization among senders,
Z-MAC adopts a technique from RTP/RTCP (real-time trans-
port protocol) [2]. In this protocol, the control message
transmission rate is limited to a small fraction of session
bandwidth and each session member adjusts its sending rate
of control messages according to the allocated session band-
width. In Z-MAC, each data sender limits its bandwidth
consumed by synchronization messages to a predetermined
fraction of its data sending rate, Bsynch (e.g., one synchro-
nization packet per every 100 data packets). In fact, each
sender can independently determine this fraction by some
function of its energy and bandwidth budget. We currently
set Bsynch to 1% of the sending rate.

In our local synchronization protocol, each data sender

transmits a synchronization message containing its current
clock value periodically. When a node receives a synchro-
nization message, it updates its clock value by taking a
weighted moving average of its current value and the newly
received value. Because only senders transmit synchroniza-
tion messages, it is possible that some nodes located in a low
traffic area might have clock values drift far away from the
other synchronized nodes. When those nodes start trans-
mission, their clock values are unsynchronized (note that
the maximum clock drift rate of Mica2 is around 40µs [9]).
Thus, their clock values must not be trusted. To avoid hon-
oring clock values from unsynchronized senders, we adjust
the averaging weight by applying a trust factor (βt) that
reflects the frequency of synchronizations of the message
senders. βt is computed by the frequency of transmitted
and received synchronization messages as below.

Let rdrift be the maximum clock drift rate of each sensor
and εclock be the maximum acceptable clock error. Then
Isynch = εclock/rdrift determines the minimum synchroniza-
tion interval required to achieve the maximum clock er-
ror or less. Let S be the average rate at which a node
receives or sends synchronization messages, and αsynch be
the maximum weight that applies to the new clock value
received. Then the βt of the node can be computed by
βt = min{α, S × Isynch × αsynch}. The weighted moving
average value Cavg of a clock can be computed by taking
a weighted moving average of a newly received clock value
Cnew and Cavg: Cavg = (1 − βt)Cavg + βt · Cnew.

In Mica2, to maintain 1 ms clock accuracy with 40 µs per
second maximum drift rate and one synchronization packet



per every hundred packets (packet size 49 bytes), a node
needs to maintain its sending and/or receiving data rate to
1.5 Kbps or higher. At that rate, the trust factor of the node
becomes αsynch, consuming only 1% of the sending rate, 150
bps (or 1/3 packets per second with 49 byte packets), for
synchronization. If the data rate (sum of sending and re-
ceiving rates) goes below this, then the trust factor of that
node gets discounted. But this does not pose any threat to
throughput because it is likely that the node does not ex-
perience much contention below that data rate and CSMA
works effectively under low contention.

In the above scheme, the nodes that send and receive syn-
chronization messages more often tend to have a higher trust
factor and their values will be reflected more heavily in up-
dating clock values. Typically, these nodes on routing paths
tend to have higher trust factors because they tend to send
more packets than the others. Similarly, source nodes that
infrequently send data have lower trust factors. When a
source starts sending data again after a long hibernation,
its clock could be drifted far apart from other more syn-
chronized clocks. But as it increases its rate and its data
being routed to the sink, its clock value will come closer to
the clock values of other routing nodes. In our experiment,
we find that even if an island of 30 nodes is not synchro-
nized, it resynchronizes with the rest of the network within
10 synchronization messages.

4. PERFORMANCE EVALUATION

4.1 Experimental Method
To evaluate the performance of Z-MAC, we implemented

Z-MAC in both ns-2 and Mica2/TinyOS. We use ns-2 sim-
ulation to compare the performance with existing protocols
whose TinyOS implementation does not exist at the time
of preparing this work. We compare the performance of Z-
MAC with that of PTDMA (ns-2), Sift (ns-2) and B-MAC
(ns-2 and TinyOS). We do not run S-MAC and T-MAC as
[15] shows that these protocols perform much worse than B-
MAC. Although our performance evaluation does not cover
all the available sensor MAC protocols, we believe that the
evaluated protocols constitute a good representation of ex-
isting protocols.

Unless specified otherwise, we use the default settings of
B-MAC as described in [15]. Since Z-MAC is implemented
on top of B-MAC, we use the same packet format as B-MAC
(shown in Table 4 in [15]). The default initial and congestion
backoff window sizes of B-MAC are 32 and 16 slots respec-
tively (each slot is 400 µs). Except the throughput tests
where we vary the backoff window sizes to see the impact
of window sizes on channel utilization, we keep the default
window sizes. The default values of Z-MAC parameters are
shown in Table 1.

We use three benchmark setups in our experiment: one-

hop, two-hop and multi-hop benchmarks.
One-hop benchmark. This benchmark is reproduced from
[15] where n nodes are placed equidistant from a receiver in
a circle. Each node transmits as quickly as possible with the
full transmission power. Before each run of experiment, we
ensured that all nodes are in a one-hop distance to each other
so that there are no hidden terminals. This benchmark is
used to measure the achievable throughput of different MAC
protocols for different levels of contention within a one-hop
neighborhood. Since B-MAC has the same test, we can di-

TinyOS and ns-2 experiment parameter Default
Owner contention window size (To) 8 slots

Non-owner contention window size (Tno) 32 slots
Contention window per-slot duration 400 µs

ECN refresh period (tECN) 10 seconds
Averaging weight for time synchronization (αsynch) 0.25

Maximum clock drift rate (rdrift) 40 µs

Maximum clock error (εclock) 1 ms
Synchronization bandwidth (Bsynch) 1 %

Z-MAC slot size 50 ms
Communication range (ns-2) 200 ft

Interference range (ns-2) 300 ft
Communication bandwidth (TinyOS, ns-2) 19.2 Kbps

Table 1: The default settings of Z-MAC parameters

rectly compare their result to ours. All nodes are placed at
least 2 feet apart and the distance to the receiver was ap-
proximately 2 meters. The setup is placed in an open con-
ference room without any obstruction. Ns-2 one-hop simu-
lation follows the same setup.

Two-hop benchmark. We create this benchmark to test
the performance of different protocols when hidden termi-
nals are present. We organize nodes into two clusters where
7 and 8 sending nodes are located in each cluster respec-
tively. The two clusters are placed approximately 5 meters
apart in a house with drywall. A receiver node (or routing
node) is placed in the middle of the two clusters. Nodes
within the same cluster are placed about 2 feet apart. In
this environment, we cannot get a sharp boundary of inter-
ference but we ensure that all senders find the receiver as
a one-hop neighbor and all nodes are reachable by two hop
communications.We also reduce the transmission power of
senders to 1 dBm (1.3 mW) to control the number of hidden
terminals. Since the number of hidden terminals varies with
the transmission power, we get more hidden terminals with
a low transmission power. On the other hand, ns-2 simula-
tion of the two-hop benchmark can define a clear separation
of the two clusters so that they become always two-hop to
each other.

Multi-hop benchmark. For a realistic multi-hop scenario,
we construct a network of 42 Mica2 nodes, each placed in
faculty offices and classrooms of our computer science build-
ing. Figure 4 shows the testbed and wireless communication
links among nodes. In this testbed, the maximum two-hop
neighborhood size of all nodes is 27 and the maximum local
frame size is 32 (many nodes have smaller local frame sizes).
To remove any effect of routing differences, we use fixed rout-
ing paths for all tests. The paths are taken from one run of
Mint [23], the default routing protocol of TinyOS. Figure 5
shows the tree routing paths we used out of 30 nodes in the
testbed. We use node 36 as the sink. Thicker lines indicate
links carrying more traffic.

4.2 Throughput
In this experiment, we measure and compare the effective

channel utilization of B-MAC and S-MAC and Z-MAC. For
throughput measurement, we measure only data throughput
as done in [15] where the data portion of each packet consists
of 36 bytes (29 bytes for the data payload, 5 bytes for the
header, and 2 bytes for CRC).
One-hop Benchmark. In this test, all senders are trans-
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Figure 5: Routing paths used in the multi-hop
Mica2 benchmark.

mitting at their full transmission power and the receiver has
its radio on always (i.e., no duty cycle). The effective max-
imum data throughput on Mica2 is 15.6 Kbps (excluding
preamble and sync bytes). Figure 6 shows the data through-
put of B-MAC and Z-MAC from Mica2 one-hop benchmark.
Unfortunately, we are not able to reproduce the same perfor-
mance of B-MAC as shown in [15]. Our result is significantly
less than what they report ([15] reports approximately the
maximum throughput of 13 Kbps with one sender). We con-
jecture this discrepancy could be due to a higher noise floor
level in our experiment environment. The performance of
B-MAC with congestion window size 64 shows much better
than that with congestion backoff window size 16. This hap-
pens because the larger congestion window size reduces the
contention among senders.

For the Z-MAC tests, we fix the frame size to 20 for all
experiments and vary the number of senders. HCL is dis-
abled because the performance of HCL and LCL is the same
when all nodes are in a one-hop distance to each other. Be-
fore running Z-MAC, we run DRAND and TPSN to get slot
assignments and to synchronize the clocks of the senders.
The data throughput is obtained after these protocols finish.
The data throughput of Z-MAC with one sender is about
40% less than that of B-MAC with window sizes (0,16) and
(32,16). This happens because Z-MAC uses a larger con-
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gestion backoff window size. With one source, it sends as
non-owners at most times except for its own slot. There-
fore, it incurs the cost of waiting for To for the non-owner
slots. The throughput of Z-MAC is almost independent of
the number of senders. When the number of senders is small,
most senders are sending as non-owners. Thus, they can uti-
lize the unused slots that belong to the other nodes. As the
number of senders increases, so does the number of senders
transmitting during their own slots. Thus, when contention
is high, it can maintain good throughput since it works more
like TDMA. The throughput with 20 senders is much higher
than that of B-MAC (in fact, higher than that shown in [15].

We also run Z-MAC with no clock synchronization. At
the beginning of the run, we randomize the clock values
of all nodes. We turn off the local clock synchronization
protocol as well. This allows some slots to be overlapped
with each other so that several nodes consider themselves
as owners at the same time. Thus, this scenario essentially
emulates slot assignment failures as well. We observe that
the performance of Z-MAC even with unsynchronized clocks
is quite comparable to that with synchronized clocks. This
is because To is sufficiently large to handle multiple owners
within a slot.
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Figure 7 shows ns-2 simulation results for one-hop involv-
ing PTDMA, Sift, B-MAC and Z-MAC. For PTDMA and
Z-MAC, we set the number of stations M to be 21. For
PTDMA, we vary a, the access probability of owners, from
0.5 to 1. The slot size for PTDMA is set to 20 ms which is
enough to send one packet. For Sift, the probability distri-
bution parameter α is set to 0.9 and the contention window
size is set to 32 slots as recommended in [13]. The results
presented in this figure are also verified by our stochastic
analysis. The analysis can be found in [22]. PTDMA, for
any value of a, shows very low utilization under a small num-
ber of sources. As the number of senders increases to M ,
it shows its maximum channel utilization. But under lower
values of a, its performance becomes close to that of CSMA
(which is B-MAC in this figure). Only when the number
of senders is equal to M , it becomes closer to TDMA as a
increases (these data points can be verified from the results
in [8] as well). The B-MAC simulation result closely follows
that in [15]. Z-MAC is the top performer in this test, but
only by a small margin from Sift. The good performance
of Sift is because all nodes are one-hop and data are always
available for transmission so the senders can be easily syn-
chronized with each other to the boundary of each packet
transmission.
Two-hop Benchmark. In the two-hop benchmark, we
measure the data throughput when hidden terminals are
present. We vary the number of senders while fixing the
number of neighbors. As in the one-hop benchmark, all
senders always have data to send. Each additional sender is
chosen from the alternating clusters. For Z-MAC tests, we
set the frame size to 16. In this test, we run Z-MAC with
HCL disabled (marked as Z-MAC-LCL) and with HCL en-
abled (marked as Z-MAC-HCL). Both cases run along with
the local clock synchronization protocol in which each sender
sends one synchronization packet in every 100 packets trans-
mitted. The data throughput reported by Z-MAC includes
the overhead of the clock synchronization and ECN.

Figure 8 shows the results of the two-hop Mica2 bench-
mark. Since the transmission power is low (1.3 mW), the
maximum achievable throughput also gets lower. As the
number of hidden terminals increases along with more senders,
the throughput of LCL drops more than that of HCL. On
the other hand, HCL performs relatively well maintaining
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around 6 Kbps even under high contention. According to
[15], the protocols with RTS/CTS (S-MAC and B-MAC
with RTS/CTS) achieve around 2 Kbps when more than
15 nodes (even when no hidden terminals are present). This
confirms that the overhead of ECN is much lower than that
of RTS/CTS. B-MAC shows high sensitivity to hidden ter-
minals as its throughput drops to 1 Kbps under high con-
tention. We also run Z-MAC-HCL under unsynchronized
clocks. Its performance drops a little but is still better than
B-MAC.

Figure 9 shows the results of the two-hop ns-2 benchmark
tests. Because this benchmark is simulated, we make sure
that the two node clusters do not sense each other, thus max-
imizing the number of hidden terminals. To be fair, we add
RTS/CTS and data acknowledgment for the CSMA tech-
niques (B-MAC and Sift). The size of RTS and CTS includ-
ing the TinyOS default preamble and synchronization bytes
is set to 15 bytes and the acknowledgment size is 5 bytes.
the throughput of B-MAC and Sift immediately dropped to
zero without RTS/CTS because of hidden terminals so we
did not plot them. The utilization of B-MAC and Sift with
RTS/CTS reaches around 10 to 12% as RTS/CTS/ACK in-
cur high overhead. These results are similar to the result
of B-MAC with RTS/CTS in [15]. The performance of PT-
DMA does not change much from the one-hop benchmark
result since time is completely synchronized and they use
DRAND time slots (note that in PTDMA, senders always
send at the beginning of a slot without sensing the channel).
Z-MAC-HCL shows a good sustained performance indepen-
dent of the number of senders. Its performance degrades
slightly from that in the one-hop ns-2 benchmark because
nodes can compete only during their own slots and the slots
of their one-hop neighbors and also because of the overhead
of ECN messages.

To see more effect of time synchronization errors to the
performance of PTDMA and Z-MAC, we add some clock
drift in our two-hop ns-2 benchmark. A randomized clock
drift value is added at every 1 s and the average throughput
of PTDMA and Z-MAC measured over 600 seconds is plot-
ted in Figure 10 as we increase the drift rate. We fix the
number of senders to 18. For Z-MAC, we turn off the local
clock synchronization feature. The results are that PTDMA
shows high sensitivity to even a small clock drift rate (1
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Figure 11: The data throughput in the multi-hop
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the sink (node 36) are sending.

µs/s), losing its throughput down to 38% of the channel ca-
pacity. As we increase the drift rate, the channel utilization
of PTDMA quickly drops to 25%. This is because PTDMA
relies on a high value of a to get the effect of TDMA un-
der high load and with a high a value, any overlapping with
neighboring slots increases the chance of collision among the
owners of neighboring slots. In contrast, Z-MAC shows good
robustness to the synchronization errors as it sustains its su-
perior performance until the drift error becomes larger than
1 ms/s even without its local clock synchronization. Note
that the maximum drift rate of Mica2 is around 40 µs per
second.
Multi-hop Benchmark. Figure 11 shows data through-
put of Z-MAC-HCL and B-MAC under the multi-hop Mica2
benchmark of 42 nodes. Under transmission rate lower than
3.12 packets/sec, both protocols deliver all the packets and
achieves about the same throughput. B-MAC shows slightly
better throughput than Z-MAC. This is because the backoff

congestion window value of Z-MAC for non-owners (To+Tno

= 8 + 32 = 40) is larger than B-MAC (which has 16). The
backoff value make difference because contention is low and
most transmissions in Z-MAC are done as non-owners. As
the transmission rate increases beyond 3 packets/sec, we ob-
serve that Z-MAC achieves about 20 to 30% higher through-
put than B-MAC. Under the full data rate (50 packets/sec),
Z-MAC achieves about 7.2 Kbps while B-MAC achieves
about 5.2 Kbps. These figures are slightly higher than the
values from the two-hop benchmark under low contention.
This is because as the network is so densely populated, nodes
can sense each other very well so one-hop contention domi-
nates two-hop contention.

4.3 Fairness
We measure the fairness index [12] of delivered packets of

all the senders. As the number of packets delivered to the
sink is more uniformly distributed among all the senders,
the index approaches one. We compute fairness index from
the average number of packets delivered per sender within
10 second intervals. Figure 12 shows the result of the two-
hop Mica2 benchmark. The fairness indices of Z-MAC-HCL
are within 0.7 and 1 while those of B-MAC drop to 0.2 to 0.3
as the number of senders increases. The high performance
of Z-MAC comes from the TDMA aspect of the protocol
as each sender will have eventually one chance to transmit
without interference during one time frame. One reason that
B-MAC does not perform well is that it does not handle
two-hop contention. Thus two-hop nodes get less chance to
deliver packets because of increased chance of collision.
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benchmark

Figure 13 shows the fairness index from the multi-hop
Mica2 experiment. Under low transmission rates, both Z-
MAC-HCL and B-MAC show high fairness. However as the
transmission rate increases, their fairness indices drop (more
precipitously for B-MAC). This is because in the testbed
some links are so unreliable that under high load, we see
high packet losses from the links. The fairness index of Z-
MAC still shows about 40% higher than that of B-MAC,
under the full rate.

4.4 Energy Efficiency
Table 2 shows the itemized energy cost of the Z-MAC

setup phase operations in the multi-hop benchmark. We
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Operation Average (J) StdDev
Neighbor discovery 0.73 0.0018

DRAND 4.88 3.105
Local Frame Exchange 1.33 1.39

TPSN 0.28 0.036

Table 2: Average energy consumption (in Joule)
during the setup operations in the multi-hop Mica2
testbed.

run the setup phase for 30 times and report the average val-
ues and standard deviations. Total 7.22 J/node on average
is consumed for the setup phase which constitutes about
0.03% of the total energy available per node with 2500 mAh
and 3 V battery (the same battery used in Table 3 [15]).
Although DRAND and the other operations are not opti-
mized for energy saving, this is still a substantial amount
of energy consumption compared to the per-transmission
energy cost. However, the idea is that this upfront energy
cost is later compensated by increased energy efficiency dur-
ing the regular transmission of Z-MAC. In this section, we
summarize our energy efficiency result from the mica2-based
benchmarks.
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Z-MAC uses the CCA and LPL features of B-MAC. Thus,
its energy efficiency is no better than B-MAC’s under low-
data applications. We run the same energy efficiency test
described in Section 6.2 of [15] using the one-hop Mica2
benchmark. As we vary the transmission rate, we compute
the optimal check interval for the traffic pattern. As a ref-
erence point, we use S-MAC result in [15] and plot it along
with the results of Z-MAC and B-MAC in Figure 14. The
power consumption of Z-MAC is slightly worse than that of
B-MAC. This is because in Z-MAC, (1) nodes tend to wake
up longer for transmission since their backoff window sizes
are larger and (2) clock synchronization messages are peri-
odically sent. In this test, the data rates are so low that all
nodes are in LCL. Thus, no overhead for ECN is incurred.
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Figure 15: The power efficiency in the multi-hop
Mica2 benchmark.

We measure the energy efficiency of Z-MAC and B-MAC
in the multi-hop Mica2 benchmark. For each sending rates,
we vary the duty cycle from 20% to 60% and measure the en-
ergy efficiency in terms of throughput over power. Figure 15
presents the best ratio of throughput over power for a given
sending rate among all duty cycle runs. As we observe in the
multi-hop throughput test, under low data rates, B-MAC
has slightly higher throughput. Also we observe in the en-
ergy efficiency test, that B-MAC also has slightly less power
consumption (up to 10%) under low transmission rates. This
is again because as B-MAC has a smaller contention window
size than Z-MAC, its idle time is less under low transmis-
sion rates. But as the transmission rate increases beyond 3
packets per second, we find that Z-MAC’s energy efficiency
improves and beats that of B-MAC by about 40% under the
full rate. This higher energy efficiency under high transmis-
sion rates is attributable to the efficiency in the contention
resolution of Z-MAC-HCL. Figure 16 plots the average num-
ber of data transmissions per second in the testbed. We
find that Z-MAC has substantially fewer transmissions un-
der high transmission rates. This is because HCL (when
ECN is sent) forces senders not to transmit during the slots
owned by two-hop neighbors and instead to sleep to save
energy.

5. CONCLUSION AND FUTURE WORK
This paper presents a new MAC protocol, called Z-MAC,

for sensor networks that can dynamically adjust the behav-
ior of MAC between CSMA and TDMA depending on the
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Figure 16: The average number of data transmis-
sions per second in the multi-hop Mica2 experiment

level of contention in the network. The protocol uses the
knowledge of topology and loosely synchronized clocks as
hints to improve MAC performance under high contention.
Under low contention, and when these hints are not reli-
able, the protocol behaves like CSMA. The performance re-
sults show that Z-MAC has advantage over B-MAC under
medium to high contention while it shows competitive, but
slightly less performance than B-MAC under low contention
(especially in terms of energy efficiency). Z-MAC finds its
utility in applications where expected data rates and two-
hop contention are medium to high. PTDMA shows high
sensitivity to timing and slot errors and further, low utiliza-
tion when a subset of nodes are transmitting. Sift shows
high performance under one-hop contention, but under two-
hop contention, it needs to rely on RTS/CTS, hence incur-
ring high overhead. We plan to extend Z-MAC to wireless
mesh networks and mobile ad hoc networks. The TinyOS
and ns-2 source code of Z-MAC and DRAND can be found
in http://www.csc.ncsu.edu/faculty/rhee/export/zmac.
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