Efficient Key Distribution for Secure Multicast

Richard Ladner
Justin Goshi

Multicast Security

- Multicast is broadcast to a group, not to everyone.
- Multicast group – group of members who have a right (have paid) to be in the group.
- Applications
 - Pay-per-view live broadcast
 - Video-on-demand for a fee
 - Software update group
 - Authorized for database access

Key Distribution Problem

- Group key to secure content
 - Change (re-key) on membership change
 - ADD(u) - u does not have access to data prior to operation, but does after operation
 - DELETE(u) - u does not have access to data after operation
 - Distribute group key to current members
 - Additional keys needed to secure group key

Logical Key Trees

(Wong et al., 1998)
(Wallner et al., 1998)

- Shows keys held by each member
 - Nodes represent keys
 - Leaf nodes represent members
 - Members hold all keys on path to root

Encryption

- Each member i has a private key ui which is distributed using public key encryption.
- Each key ki encrypts data multicast to the leaves of the tree rooted at g.
- Member i holds all the keys on its path to the root.

Group keys

- Needed for multicast
- Needed for re-keying
Re-keying Messages

- $E(k_a, k_g)$ is a message to the group rooted at g that is encrypted using k_g and contains a new key k_a for some ancestor of g.
- Goal is to minimize the number of these re-keying messages.

Re-keying (ADD)

- 2 level tree
- $ADD(u)$ requires 2 messages per key
- Example: $ADD(u_{10})$
Re-keying (ADD)

- Example: $ADD(u_{10})$

Re-keying (ADD)

- Example: $ADD(u_{10})$

Re-keying (ADD)

- Define d_u to be the depth of u.
- $ADD(u)$ cost is $2d_u$ messages

Re-keying (ADD)

- Example: $ADD(u_{10})$

Re-keying (DELETE)

- $DELETE(u)$ requires a linear number of messages, each of the form $E(k'_G, u_j)$

Re-keying (DELETE)

- Example: $DELETE(u_9)$

Re-keying (DELETE)

- Example: $DELETE(u_9)$
Re-keying (DELETE)

• Example: $\text{DELETE}(u_9)$

![Diagram of Re-keying (DELETE) example]

Re-keying (DELETE)

• Example: $\text{DELETE}(u_9)$

![Diagram of Re-keying (DELETE) example]

Re-keying (DELETE)

• Define ancestor weight w_u to be sum of degrees on path from u to root

$\text{DELETE}(u)$ cost is $w_u - 1$ messages

![Diagram of Re-keying (DELETE) example]

Asymmetry

• ADD and DELETE have different costs
 – ADD $2d_u$
 – DELETE $w_u - 1$

• ADD has more freedom than DELETE
 – ADD can go anywhere in the tree
 – DELETE is where it happens

![Diagram of Asymmetry example]

Fundamental Problem

• What is the best key tree for a given mix of ADDs and DELETEs?

• Our approach is to use balanced trees.

• Evaluation of the approach
 – Theoretical worst case analysis
 – Simulation studies

![Diagram of Fundamental Problem example]

Previous Results

(Poovendran and Baras, 2001)

(Snoeyink et al., 2001)

• Amortized worst-case cost lower bound is $\Omega(\log n)$ per operation.

• Constructed static multiway trees that are optimal for ancestor weight.
Cost Components for On-line Algorithms

- Tree structure cost due to w_u
- Restructuring cost to maintain structure

Algorithms

- K-ary trees
- B-trees
- 2-k trees (like AVL trees)
- Weight balanced trees

K-ary Trees

(Wong et al. 2000)

- ADD(u) - insert into the tree to keep w_u as small as possible.
- DELETE(u) - simple remove it at cost w_u
 - If only one child, then collapse

B-Tree Algorithm

- All leaves have same depth
- All internal nodes (except the root) have degree in the interval \([\lceil t/2 \rceil, \lceil t \rceil]\), where t is the order of the B-tree.
- Use existing algorithms for maintaining B-Tree property
 - John Hopcroft, 2-3 trees, 1970

Height-Balanced 2-k Algorithm

- All nodes are balanced
 - Height of children differ by at most
- All internal nodes have degree in the interval \([2, k]\)
- Extension of the AVL tree algorithm of Rodeh et al. (2001)

Weight-balanced Algorithm

- Node weight of $u = \max w_i$ over all leaf nodes i in sub-tree rooted at u
- Node u is weight-balanced if its children differ in node weight by at most 1
Weight-balanced Algorithm

- **DELETE(u)** costs proportional to ancestor weight w_u
- How about balancing by w_u?
 - Can be done for 2-3 and 2-3-4 trees

Worst-case Tree Structure Cost Analysis

- Optimal worst-case bound is $3 \log n$
- Derived worst-case bounds for our algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>w_u</th>
<th>Algorithm Bound</th>
<th>Optimal Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height-balanced 2-4</td>
<td>$4 \log n$</td>
<td>$e = 1.618$</td>
<td>≈ 3.04</td>
</tr>
<tr>
<td>B-tree of order 4</td>
<td>$4 \log n$</td>
<td>$e = 1.618$</td>
<td>≈ 2.11</td>
</tr>
<tr>
<td>Weight-balanced 2-3-4</td>
<td>$\log n$</td>
<td>$b = 1.325$</td>
<td>≈ 1.30</td>
</tr>
</tbody>
</table>

Simulation Results

- Does good tree structure help performance?
 - We do not have a way to analyze restructuring cost
 - Trace data for multicast is problematic
 - Simulation may yield insights

Random Re-keying

- B-tree
- Height-balanced
- Weight-balanced
- Degree-k

Each point represents 1,000 consecutive operations

Pathological Deletions

- B-tree
- Height-balanced
- Weight-balanced
- Degree-k

Each point represents 1,000 consecutive operations
Summary: Online Key Tree Algorithms

- Algorithms to maintain balanced trees
- Identified 2 cost components
- Derived worst-case tree weight bounds
- Good performance, especially when tree becomes highly unbalanced

Future Potential

- Crypto technology is probably adequate for deployment
- Future depends on popularity of multicast
- May be other distributed applications that need secure group management
 - Access control in databases
 - Access control in file systems