Plan

- **DDoS:**
 - Can't prevent malicious traffic reaching you

- **Worms:**
 - Huge number of mostly-identical, poorly managed hosts
 - Cost/effort of timely updating SW is prohibitive
 - Automatic updating is not realistic

- **Today:**
 - What can you do when your machine is compromised? How do you find out?
 - What do we have available to us?
 - What’s the best you can do?
What is an intrusion?

- Attempt to:
 - Compromise confidentiality, integrity, availability
 - Bypass computer or network security mechanisms

- Results from:
 - internet attacks
 - authorized users misusing their privileges
 - authorized users escalating their privileges

Why are intrusions so prevalent?

- Larger # of machines accessible
 - 1988: Morris worm infected 6000 (10%)

- Greater connectivity
 - higher amplification factor, increased range

- Larger # of attackers

- Attack tools more accessible
 - Rise of the script kiddies

- Poorly administered, homogeneous OS & services

- More money in the Internet
How to limit intrusions?

- Prevention
 - Design / Implementation
 - Scan for vulnerabilities (SATAN, ISS)
 * Have to know what to look for
 - Use firewalls to contain / monitor avenues of attack
 * Leaves fewer number of gaping holes

- Preemption? (join the hackers)

How to limit intrusions?

- Deterrence
 - Dress down to unimpress; be boring
 - Scream loud about security measures
 - Add obstacles to increase cost / benefit
 * Must be convincing. Won’t deter all.

- Deflection
 - Contain/lure intruders to “safe” playpens
 - Jails, wrappers, honey pots
 - Dummy accounts with no privileges
 * Questionable legality & effectiveness.
 * Cost / resource expensive.
How to limit intrusions?

- **Detection**
 - Host vs. Network IDS
 - Anomaly vs. misuse detection

- **Countermeasures**
 - Alert sys admin
 - Require reauthentication of user
 - Terminate connection / usage
 - *Could backfire painfully.*

What is an IDS?

- **HW/SW which:**
 - Automatically processes events on computers and networks
 - Analyzes event for security compromise
 - Associates malicious activities with responsible party
 - Responds to attacks
Properties of ideal IDS

- Detects attacks in progress
 - Zero false positives / negatives
- Immediate notification
- Diagnoses attack
- Provides “fixes” for blocking the attack

Host-based IDS

- Analyzes audit trails and system logs for inappropriate sequences
 - Accessing protected files
 - Attempting to increase privilege
 - Illegal set of system calls
- Determines which process or user is attacking
- Determines outcome of attack
Host-based IDS

- Advantages:
 - Encrypted n/w traffic not a problem
 - Sees attacks not evidenced in n/w traffic
 - File access / replacement
 - Software modification (trojans)

- Disadvantages:
 - Don’t see multi-host attacks (scans)
 - Performance overhead
 - If OS compromised:
 - Audit & log trails can be manipulated
 - IDS may be disabled

Recent Host-based IDS research

- pH IDS
 - Create DB of “safe” system call traces
 - Watch system calls for anomalies
 - Susceptible to mimicry attacks

- LiveWire
 - Pull Host IDS out of host for protection
 - Monitor VMM interaction, use to “guess” software state of host

- ReVirt
 - Checkpoint using VMs, log nondeterministic events
 - Analyze by “playing back” attack
 - Doesn’t prevent, but detects and analyzes
Network-based IDS

- Interprets raw n/w packets
- Looks for malicious packets or sequence of packets

Why we like them:
- Can monitor entire n/w at once
- Passive, so no n/w mods required
- OS independent
- Can see multi-host attacks (scans)

Why they could be better:
- Because passive, fail-open
- Difficult keeping up w/ line speed
- Can’t analyze encrypted packets
- Can’t determine affect of individual packets
- Can’t determine success of attack
Anomaly Detection

- Compares expected activity with observed activity
 - Requires the construction of a model for known, expected behavior
 - Works well for predictable usage, but not widely varying, constantly changing usage

Anomaly Detection Usefulness

- Can result in a lot of false positives
 - Wasted sysadm time

- **BUT** is capable of detecting new attacks
 - Necessary to keep up w/ increasing # of attacks
 - Essential if attacks are intrusions are not easily detected
 - Scariest intrusions do hard-to-detect damage
Misuse Detection

- Looks for known “bad” activity
 - Signatures detects specific sequences of attack behavior
 - Invalid state transitions
 - Initial access, misuse privilege or escalate privileges

Misuse Detection Usefulness

- Why we use them:
 - Very effective at detecting known attacks
 - Compensates for long software upgrade delay
 - Could this be eliminated with upgrade distribution system?
 - Creates a safer environment for buggy, but necessary, services
Misuse Detection Usefulness

HOWEVER:
- does not detect new attacks or attack variations
- writing signatures is difficult
- there is no system for writing signatures and distributing them quickly
 - Could you build one?

Bro: A System for Detecting Network Intruders in Real-Time

Where does Bro fit in?
- Misuse-detection Network IDS
- “network grep” signature based system
- Searches both packet headers and contents for malicious content

High-speed network monitor
- Real-time event notification
- Separate policy & mechanism
- Extensible
Bro architecture

- Libpcap
 - Whittle pkt stream
- Event engine
 - Pkt hdr integrity
 - Maintains conn state
 - Dispatch to handler
 - Generate events
- Policy script interpreter
 - Process events as specified in policy scripts

Types of attacks detected by signature-based NIDSs

- Exploits:
 - CGI scripts (phf)
 - Web server attacks (////////)
 - Buffer overflows
- Reconnaissance
 - TCP scan, UDP scan, OS ID, account scans
- DoS:
 - Ping-of-death, SYN flood
Attacking Bro

- Monitor is passive (fail-open)
- Overload monitor & sneak by
 - Lots of packets to process
 - Packets that generate events
 - Packets that are logged
- Crash monitor by exhausting resources
 - Fragmentation, data reconstruction
- Subterfuge: desynchronize monitor state and endpoint state
 - TCP checksum, IP TTL, IP DF

Contributions

- Refocuses attention on security measures in light of increasing attacks
- Open development of NIDS
 - At the time, lots of commercial development
 - Previous military work, combined anomaly detection & event rules
- Enumerates possible attacks on monitor
 - Insertion, evasion, exhaustion
- Bro itself (in use at Berkeley?)
Discussion

- What percentage of attacks are known (stopped by misuse-detection)? How long are they needed?
 - How important are misuse vs. anomaly detection systems?

- Can we change the incentive from protection to prevention? Do we want to?
 - ISPs become responsible for preventing outgoing attacks

Discussion

- Can remote software administration (faster bug fixes) eliminate misuse detectors?

- Worms spread at an incredible rate. Could you quickly distribute signatures to prevent spread?

- If auto software distribution won’t work, how about distribution of IDS signatures?
Colourful Context

- 1975: Wozniak & Jobs create blue boxes to hack phone system; thanks Captain Crunch
- 1983: War Games
- 1986: Computer Fraud & Abuse Act, Electronic Communications Privacy Act
- 1987: Brain – first MSDOS computer virus?
- 1988: Morris Worm; CERT created
- 1991: Evening with Berford (Cheswick)
- 1993: Poulsen tries to win a Porsche
- 1995: Levin, Mitnick
- 1997: AOHell
- 2000: DDoS attacks on Yahoo, CNN, Amazon, Ebay
 - “I Love You” virus
- 2001: Code Red & Nimda worms